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Introduction

The CDF II experiment and the Tevatron proton-antiproton collider are parts of
the Fermi National Laboratories (Fermilab). The Fermilab is located in the vicinity
of Chicago, USA. Today, the Tevatron is the only collider which is able to produce
the heaviest known elementary particle, the top quark.

The top quark was discovered at the Tevatron by the CDF and the DØ collabo-
rations in 1995 [1]. So far, all the top quarks found are produced via the strong
interaction as top-antitop pairs. The Standard Model of elementary particle physics
also predicts single-top quark production via the electroweak interaction. This pro-
duction mode has not yet been observed. The CDF and the DØ collaborations have
set upper limits on the cross section for that process in Run I [2, 3] and improved
those results in Run II [4, 5].

Single-top quark production is one of the major interests in Run II of the Tevatron as
it offers several ways to test the Standard Model and to search for potential physics
beyond the Standard Model. The measurement of the cross section of singly pro-
duced top quarks via the electroweak interaction offers the possibility to determine
the Cabbibo-Kobayashi-Maskawa (CKM) matrix element Vtb directly. The CKM
matrix defines the transformation from the eigenstates of the electroweak interac-
tions to the mass eigenstates of the quarks. Vtb gives the strength of the coupling
at the Wtb vertex. The single-top quark is produced at this vertex and therefore
the cross section of the single-top quark production is directly proportional to |Vtb|2.
In the Standard Model, three generations of quarks and the unitarity of the CKM
matrix are predicted. This leads to Vtb ≈ 1. Up to now, there is no possibility to
measure Vtb without using the assumption that there are a certain number of quark
generations. Since the measurement of the cross section of single-top quark pro-
duction is independent of this assumption it could verify another prediction of the
Standard Model or give hints towards physics beyond the Standard Model such as a
fourth generation of quarks. In addition, electroweak single-top quark production is
an important background for the Higgs boson search in the mass range of 90 GeV/c2

to 130 GeV/c2 at the Tevatron in the WH channel.

Two single-top quark production modes are dominant at the Tevatron, the t-channel
or W -gluon fusion and the s-channel or W ∗ process. Since it is challenging to sep-
arate the signal from the various background events we use a neural network to
combine several variables into one powerful discriminant. The simulated Monte
Carlo sample outputs of the neural networks are used as templates for a likelihood
fit to the outputs of the neural networks of the data. In this thesis CDF II data
corresponding to an integrated luminosity of 695 pb−1 is discussed. As this analysis
yields no significant evidence of electroweak single-top production it is not possible
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to measure any cross sections. Consequently we determine upper limits on the cross
sections of the t- and s-channel production separately and combined.

This thesis is organized as follows. After giving a brief overview of the theoretical
backgrounds in the first chapter, the Tevatron and the CDF II experiment are
described in the second chapter. The third chapter provides details on the used
Monte Carlo and data samples, and on the event selection. Chapter four presents
the event yield and the signal and background estimation. Chapter five introduces
the technique used to discriminate between signal and background events. Since
we use a neural network package, the general usage of this package is described,
as well as the particular neural network training which is done in this analysis. In
addition, the method to create the templates needed in the likelihood function is
shown. Chapter six incorporates the description of the likelihood function used and
explains the two different approaches to determine upper limits on the single-top
quark production cross section, the combined and the separate search. The results
and an outlook can be found in the last chapter.
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Chapter 1

Top Quark Production within the

Standard Model

The Standard Model of Elementary Particle Physics (SM) describes the fundamen-
tal particles of matter and their interactions except gravitation. The SM uses a
quantum field theory to explain the interactions between particles [6, 7, 8].

In the past, the SM has been very successful in predicting a vast majority of proper-
ties of particles and interactions in different energy ranges explored by high energy
collider experiments such as DØ and CDF at the Tevatron, H1 and ZEUS at HERA
in Hamburg, Germany, or the four LEP experiments in Geneva, Switzerland. The
following sections will give a brief overview of the SM, the top-antitop production
and especially the single-top quark production via the electroweak interaction.

1.1 The Standard Model of Elementary Particle

Physics

There are four fundamental forces which are the source of any known dynamics in
nature: the strong force, the electromagnetic force, the weak force and the gravita-
tion (table 1.1).

force couples to effect rel. strength range

strong color charge binds quarks and gluons 100 10−15 m

electro- electric charge interaction between 10−2 infinite

magnetic el. charged particles

weak weak charge radioactive decay 10−5 sub nuclear

gravitation mass attraction of masses 10−38 infinite

Table 1.1: The four fundamental forces in nature and their most important characteristics [9].

Three out of those four forces are explained in the SM (the strong, the weak and
the electromagnetic force). Gravitation is explained by Einsteins Theory of General
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Relativity. The SM provides a very elegant theoretical framework using quantum
fields to describe the interactions. In these quantum field theories, the fundamental
forces of the SM are transmitted by gauge bosons. The gauge bosons are exchanged
between the matter particles.
The SM predicts two kinds of particles:

• Fermions: These are particles with spin s = 1
2

and they follow the Fermi
statistics. All matter particles in the SM are fermions.

• Gauge Bosons which are the carriers of the forces. They are particles with
spin s = 1 and they follow the Bose statistics.

Fermions come as quarks or leptons. They can be ordered in three generations or
families. Like all elementary particles, quarks and leptons are described by quantum
numbers. Each generation consists of two quarks, a charged lepton and its neutrino.
The different quark-types are called flavors. The SM predicts six different quark
flavors. Three of them are so called up type quarks (up, charm and top quark)
and the other three are down type quarks (down, strange and bottom quark). The
three different generations and some of their major characteristics are listed in ta-
ble 1.2. For all the mentioned particles we also have to consider the existence of
their antiparticles, the antiquarks and antileptons.

name category symbol el. charge mass

up quark u 2
3

(1.5 − 3.0)

down quark d −1
3

(3.0 − 7.0)

electron lepton e −1 0.511

e-neutrino lepton νe 0 < 2 · 10−6

charm quark c 2
3

(1.25 ± 0.09) · 103

strange quark s −1
3

(95 ± 25)

muon lepton µ −1 106

µ-neutrino lepton νµ 0 < 0.190

top quark t 2
3

(172.5 ± 2.3) · 103

bottom quark b −1
3

(4.20 ± 0.07) · 103

tau lepton τ −1 1777

τ -neutrino lepton ντ 0 < 18.2

Table 1.2: Properties of the fermions (spin-1

2
particles) [10]. The electric charge is in units

of the positron charge, the mass is in units of MeV/c2.

The quarks carry an additional quantum number, the color charge, which comes in
three different types: red, green and blue. Free colored particles are not observed in
nature; quarks always form colorless bound states, which are called hadrons. There
are two different kinds of hadrons:

• Mesons which consist of two quarks e.g. π+ (up (’red’), antidown (’antired’)).
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• Baryons which consist of three quarks with different colors, e.g. protons (up
(’red’), up (’green’), down (’blue’)) or neutrons (up (’green’), down (’red’),
down (’blue’)).

The quarks feel all the forces described by the SM. The leptons on the other hand
do not feel the strong force. This is because in the SM the fundamental forces are
transmitted by gauge bosons. Only particles that carry the charge of a force can
interact via this force, e.g. the gluon, the carrier of the strong force, does only couple
to particles which have a color charge. Since leptons do not have a color charge they
do not feel the strong force. A summary of the gauge bosons of the three forces
described by the SM and some of their properties are given in table 1.3.

name force symbol el. charge mass

gluon strong g 0 0
photon electromagnetic γ 0 0

W boson weak W± ±1 80.403 ± 0.029
Z boson weak Z0 0 91.188 ± 0.002

Table 1.3: Properties of the gauge bosons (spin-1 particles) [10]. The electric charge is in
units of the electron charge, the mass is in units of GeV/c2.

Two charged particles interact by the emission and reabsorption of a gauge boson.
These processes can be described by Feynman diagrams. In the diagrams only ele-
mentary particles (quarks, leptons and bosons) are allowed. The Feynman diagrams
visualize the physical process in the momentum space. There are Feynman rules
used to translate the Feynman diagram into formulas which calculate the transition
amplitude M for the corresponding physical process. With the transition amplitude
M it is possible to derive the cross section of the physical process by integrating
over all initial and final states, the phase space. As an example the Feynman dia-
gram for electron-electron scattering via the exchange of a virtual photon is shown
in figure 1.1.

Figure 1.1: Feynman diagram for electron-electron scattering. At the left hand side are the
two incoming electrons and on the right hand side are the scattered final state electrons.
The interaction between the two electrons is mediated by the exchange of a photon.

As mentioned above the Feynman rules are based on elementary particles as initial
and final states. At the Tevatron, the colliding particles are protons and antiprotons
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which are composite particles. The virtual gluons inside the protons and antiprotons
which hold the valence quarks together can split into quark-antiquark pairs, the
seaquarks. This leads to the situation, that the momentum of the proton pp is
shared by all three valence quarks, seaquarks and gluons. These components of the
proton or antiproton are also called partons. The fraction of the momentum xi = pi

pp
,

carried by each quark and gluon, is described by the Parton Distribution Function
(PDF) fi,p(xi, µ

2). It depends on the scale µ, which characterises the typical energy
regime of the interaction under consideration. For top quark production it is usually
set to the order of the top quark mass, µ = mt. Figure 1.2 shows the CTEQ5M1
parton distribution function for the scale µ2 = (175 GeV)2 [11]. These PDFs have to
be folded with the partonic cross sections to calculate the measurable cross section
in pp̄ collisions.

imomentum fraction x
-410 -310 -210 -110

)2 µ
 , i

 (
x

if

0

0.5

1

1.5

imomentum fraction x
-410 -310 -210 -110

)2 µ
 , i

 (
x

if

0

0.5

1

1.5

2
=(175 GeV)2µCTEQ5M1: 

val+seau

val+sead

seab

gluon

Figure 1.2: The CTEQ5M1 parton distribution function at µ2 = (175 GeV)2 [11].

Another important aspect of the SM is the Cabibbo-Kobayashi-Maskawa mixing
matrix (CKM-Matrix). This matrix is relevant for electroweak processes. There
was experimental evidence found that the mass eigenstates (s, d, b) of the quarks
are not equivalent to the flavor eigenstates (s′, d′, b′). The transformation of mass
eigenstates into flavor eigenstates is accomblished by multiplicaton with a 3 × 3
matrix, the CKM-matrix [12].





d′

s′

b′



 =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









d
s
b



 (1.1)

The elements Vq1q2 of the matrix have to be determined experimentally and are pro-
portional to the coupling of two quarks q1, q2 to a W boson. The most recent values
are given in (1.2) for 90 % Confidence Level [10]. The value for Vtb is determined by
exploiting the unitarity of the CKM-matrix, not by direct measurement.





0.9739 to 0.9751 0.221 to 0.227 0.0029 to 0.0045
0.221 to 0.227 0.9730 to 0.9744 0.039 to 0.044
0.0048 to 0.014 0.037 to 0.043 0.9990 to 0.9992



 (1.2)
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1.2 Production Modes of the Top Quark in the

Standard Model

The top quark belongs to the third generation of quarks and is the heaviest and most
recently found one. It has been discovered by the CDF and the DØ collaborations in
1995 [1]. The best current measurement of the top quark mass is mtop = 172.5±2.3
GeV/c2 [13]. Like every quark, the top quark takes part in electroweak and in
strong interactions. Due to that, there are several different production modes for
top quarks. The next section gives a brief overview of the pair production via
the strong force. Afterwards the single-top production via the electroweak force is
discussed in more detail.
A detailed review on top quark physics can be found in reference [14].

1.2.1 Top Quark Pair Production

In proton-antiproton collisions the dominant production mode for top quarks is
the pair production mode via the strong interaction. The cross section for this
production is approximately 2.5 times higher than for the electroweak production
of single-top quarks. Two leading order perturbation theory Feynman graphs are
given in figure 1.3.

(a) (b)

Figure 1.3: Some leading-order Feynman diagrams for top quark pair production: (a) quark-
antiquark annihilation and (b) gluon fusion.

The predicted tt̄ cross section for a top mass of 175 GeV/c2 at the Tevatron is 6.7±0.9
pb [15]. 80-90% of this cross section is due to the quark-antiquark annihilation
shown in figure 1.3 (a). This also includes next to leading order calculations. The
uncertainty in the prediction is due to the chosen set of parton distribution function
parameterizations of the proton and the uncertainty in choosing the interaction scale
Q2 for tt̄ events.
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1.2.2 Single-Top Quark Production

The production of single-top quarks via electroweak interactions is predicted by the
SM but has not yet been observed. This is due to a larger amount of background
events with a very similar signature as the single-top production compared to the
pair production of top quarks. There are two dominating production modes for
single-top quarks at the Tevatron. One is the t-channel or W -gluon fusion process
and the other one is the s-channel or W ∗ process. Those two processes will be out-
lined here in more detail. For completeness also the third process, the associated
production, will be described briefly. This process can be neglected in the search at
the Tevatron because its cross section is too tiny but it will contribute significantly
at the Large Hadron Collider (LHC). The two main production modes are labeled by
the relevant Mandelstam variables t and s involved in the transition matrix elements
M. The production involves the Wtb vertex for all production modes. They can be
distinguished by the virtuality Q2 = −q2 of the W boson (q is the four momentum
of the participating W boson).

• t-channel (q2 = t)
In the t-channel or W -gluon fusion a space-like (virtual) W boson (q2 = t < 0)
strikes a b quark inside the proton or antiproton. The name W -gluon fusion
originates from the fact that the b quark is a seaquark which is produced
through a gluon splitting into a bb̄ pair. The t-channel is the dominant mode
at the Tevatron as well as at the LHC. The leading order (LO) and some
next-to-leading order (NLO) Feynman graphs are shown in figure 1.4. The
cross section for the t-channel production is predicted to be 1.98+0.28

−0.22 pb at
a center of mass energy of

√
s = 1.96 TeV and a top mass of mtop = 175

GeV/c2 [16, 17] in pp̄ collisions.

�W+

b

q

t

q′

(a)

�b

W+

g

q

b̄

t

q′

(b) (c)

Figure 1.4: The leading order Feynman diagram and some NLO Feynman diagrams for
t-channel single-top quark production: leading order (a) and NLO (b), (c).

• s-channel (q2 = s)
In the s-channel or W ∗ production a time-like W boson with q2 ≥ mtop + mb

is produced by the fusion of two quarks. The leading order and some next-
to-leading order Feynman graphs are shown in figure 1.5. The cross section
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is predicted to be 0.88 ± 0.11 pb under the same premises as outlined for the
t-channel [16, 17].
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Figure 1.5: The leading order Feynman diagram and some NLO Feynman diagrams for
s-channel single-top quark production: leading order (a) and NLO (b), (c).

• associated production
As the top quark is produced in association with a real, or close to real, W
boson in the associated production this mode can be distinguished from the
other two. The leading order Feynman graph is shown in figure 1.6. The initial
state b quark is a seaquark again. As mentioned above, the associated produc-
tion can be neglected at the Tevatron, but will have a significant contribution
at the LHC.
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t

Figure 1.6: The leading order Feynman diagram for associated production.

There are several other production modes for single-top quarks via the electroweak
interaction but they are all strongly suppressed by tiny CKM matrix elements as
they include vertices like Wts and Wtd.

1.3 Fourth Generation Quarks Scenario

The Standard Model of elementary particle physics describes all known processes
in the field of high energy physics, but it is also known to have some weaknesses in
answering some fundamental questions. Several extensions to the Standard Model
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have been suggested to address these questions. Some of these theories are also
known as theories about so called new physics. Most of them are Grand Unification
Theories which have the goal to explain the unanswered questions of the Standard
Model and especially to find the one point where all the gauge couplings meet.
One extension of the Standard Model which is closely related to the search for
single-top quark production is the fourth generation scenario. This far, most of the
determinations of the CKM matrix elements in the third row, e.g. Vtb, can only
be done with the help of the unitarity constraints of the CKM matrix. The recent
measurement of the B0

s − B̄0
s oscillation frequency by the CDF collaboration [18]

allows to determine the ratio between Vtd and Vts without any unitarity constraints
to:

|Vtd/Vts| = 0.208+0.001
−0.002(exp) +0.008

−0.006

Another fraction of third row elements can be determined through top quark pair
production.

|Vtb|
√

|Vtd|2 + |Vts|2 + |Vtb|2
=

√

BR(t → Wb)
∑

q=d,s,b BR(t → Wq)
(1.3)

BR stands for branching ratio which is the ratio between the decay rate of an
individual decay mode and the total decay rate. Equation 1.3 is not a direct mea-
surement of Vtb. It can only be used to measure Vtb if the unitarity constraint
|Vtd|2 + |Vts|2 + |Vtb|2 = 1 is fulfilled. The single-top quark production cross section
on the other hand is directly proportional to |Vtb|2. Therefore, the measurement of
this cross section would yield a direct measurement of Vtb. A fourth generation of
quarks would change the CKM matrix to a 4×4 matrix which would still be unitary
but would of course not fulfill the unitarity constraints of the 3 × 3 CKM matrix.









Vud Vus Vub VuY

Vcd Vcs Vcb VcY

Vtd Vts Vtb VtY

VXd VXs VXb VXY









(1.4)

Since all the measurements of the third row CKM matrix elements are based on
those constraints, their values would not be well known anymore in case of a fourth
generation of quarks. Therefore, the direct measurement of the matrix element Vtb

would give the possibility to restrict the value of the matrix elements VtY and VXb.
The results of this analysis were already used to constrain the CKM matrix element
values |Vtd| and |Vts| [19]. This far those results are less restricting than the unitarity
constraints given for a 4 × 4 matrix:

|Vtd| ≤ 0.03, |Vts| ≤ 0.2, |Vtb| ≥ 0.8

Even though the fourth generation scenario is a possible and interesting approach
to explain some aspects in high energy physics which are not understood yet, there
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are several constraints additional to the ones arising from the unitarity. The fourth
generation is only allowed to have very little mixing with the other generations.
The quarks of the fourth generation have to be heavier than the top quark and the
corresponding charged lepton and neutrino have to be heavier than the Z boson [20].
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Chapter 2

The Experiment

The CDF II experiment is located at the Tevatron collider at the Fermi National
Accelerator Laboratory, abbreviated Fermilab, in Batavia, Illinois (USA). Batavia
itself is located in the Western vicinity of Chicago. Fermilab is used by more than
2,500 scientists from throughout the world to carry out research in the areas of
high-energy physics and astrophysics. The Tevatron is the accelerator with the
highest center-of-mass energy currently in operation in the world. The next section
describes the accelerator in more detail. After that the CDF II detector is explained.
An aerial photo of the Fermilab area is shown in figure 2.1.

Figure 2.1: Aerial shot of the Tevatron main ring. The CDF site in this view is located
at the eight o’clock position direct at the outside of the ring, the DØ site is at the twelve
o’clock position. The Fermilab main building is visible in the foreground.

2.1 The Accelerators

The Tevatron produces collisions of protons and antiprotons. In 1996, after collect-
ing an integrated luminosity of 106 pb−1 of data in the so called Run I, the first
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experimental evidence of the top quark was found. It was followed by the precise
determination of its mass. Starting in 1996, the accelerator complex was upgraded
to increase the instantaneous luminosity and the center-of-mass energy. Luminos-
ity is an important quantity to characterize a collider. The number n of produced
events in a given period is given by n = σ

∫

L dt. The quantity L is called instan-
taneous luminosity and

∫

L dt is the integrated luminosity over time. The collider
characteristics and goals for Run II can be found in table 2.1.

Run II(goals)

Colliding bunches (36×36)

Beam Energy [GeV] 980

Antiproton Bunches 36

β∗ [cm] 35

Bunch Length(rms) [cm] 37

Bunch Spacing [ns] 396

Interactions/Crossing 2.3

Typical Luminosity [cm−2s−1] 8.6 − 16.1 × 1031

Table 2.1: Operational goals for Run II of the Tevatron [21, 22].

In the beginning of Run II the Tevatron did not meet the designed goals, partially
because the new Main Injector was not well understood. With more knowledge
about the accelerator the instantaneous luminosity also increased. The amount of
data delivered by the Tevatron and written to tape is presented as a function of
time in figure 2.2.
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Figure 2.2: Delivered (upper curve) and recorded (lower curve) integrated luminosity since
the start of Run II until the end of 2005. This thesis uses all data until September 2005.

CDF and the second Tevatron experiment DØ, were upgraded as well. Run II
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started in June 2001 and is supposed to run until 2009. The baseline goal is to
achieve an integrated luminosity of 4.4 fb−1, the design integrated luminosity goal
is 8.4 fb−1. As it looks now, the design integrated luminosity will be reached. The
design integrated luminosity for the end of fiscal year 2005 was 1.2 fb−1, a goal that
was attained. The Tevatron is running at a center-of-mass energy of 1.96 TeV. To
reach such high energies there needs to be a chain of accelerators leading to the
final accelerator, the Tevatron. A schematic overview of the accelerators is shown
in figure 2.3.

Figure 2.3: Schematic overview of the accelerator chain for Run II of the Tevatron.

The first accelerator in the chain is the Cockcroft-Walton pre-accelerator. In the
Cockcroft-Walton pre-accelerator hydrogen gas is ionized to create negative ions.
These negative ions are accelerated by a positive voltage to an energy of 750 keV.
The pre-accelerated ions now enter a linear collider (LINAC) which is roughly 130 m
long. The acceleration to 400 MeV is done by means of an oscillating electric field.
The next step in the accelerator chain is the Booster. Before the ions go to the
Booster they are sent through a carbon foil where the electrons are stripped off
and therefore only protons enter the next accelerator. The Booster is a circular
accelerator which accelerates the beam of protons within some 20.000 revolutions to
an energy of 8 GeV. Like every circular accelerator the Booster also uses magnets to
bend the beam onto a circular path. The protons are then sent to the Main Injector
where they are accelerated from 8 GeV to 150 GeV. Some of the protons are not
accelerated up to 150 GeV but are used for the antiproton production. These are also
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accelerated in the Main Injector but only until they reach 120 GeV. Once they get
to this energy they are sent to the antiproton source, where the protons collide with
a nickel target. The collision produces a wide range of secondary particles including
antiprotons. The antiprotons are collected, focused, and stored in the Accumulator
ring at an energy of 8 GeV. As soon as a sufficient number of antiprotons has been
produced they are sent back to the Main Injector tunnel which also incorporates the
so-called Recycler. The Recycler was originally designed to collect the antiprotons
coming back from the Tevatron. This plan has been abandoned. Now the purpose of
the Recycler is to stack and cool fresh antiprotons before they are sent to the Main
Injector for further acceleration up to 150 GeV. The electron cooling of antiprotons
has been introduced in July 2005 and every shot at the Tevatron has passed the
electron cooling by the end of August 2005. The final step in the chain of accelerators
is the Tevatron which is an accelerator and storage ring. It has a circumference of
six kilometers and accelerates the protons and antiprotons to 0.98 TeV. Protons and
antiprotons circulate in opposite directions in the ring. That leads to a center-of-
mass energy of 1.96 TeV at the two interaction points DO, where the DØ detector
is located, and BO, where CDF is located.

2.2 The CDF II Detector

The CDF II experiment is a general purpose solenoid detector measuring proton
antiproton collisions at the interaction point BØ. The CDF II detector covers most
of the 4π solid angle around the beam spot and it also has azimuthal and forward-
backward symmetry. Just like every general purpose solenoid detector the CDF II
detector can track charged particles in its core, the tracking system, measure energy
deposits in the calorimeters, and identify muons in the muon system. Strong mag-
netic fields help to identify charged particles. A more detailed description of the
CDF detector can be found in its technical design report [23].
The detector was built and is maintained by scientists from 50 different institutions
and eleven different countries throughout the world. The Institut für Experimentelle
Kernphysik (EKP) in Karlsruhe is the only German institution in the CDF collab-
oration.
Figure 2.4 shows an elevation view of one half of the CDF II detector. In the follow-
ing angles and directions are referred to as defined in the CDF coordinate system
shown in figure 2.5. The polar angle θ is measured with respect to the proton beam
axis (z-axis), pointing in east direction. The azimuthal angle ϕ is measured from
the plane of the Tevatron. Transverse and longitudinal are meant with respect to
the proton beam, i.e. parallel or perpendicular to the proton beam respectively. An
often-used quantity is the pseudorapidity defined by η = − ln

(

tan θ
2

)

.

CDF II uses the same solenoid as in Run I but the complete tracking system has
been replaced. The superconducting solenoid is 4.8 meters long and has a radius of
1.5 meters. It generates a 1.4 Tesla magnetic field.
The tracking system consists of four parts: Layer 00, the SVX II (Silicon Ver-
tex Detector), the ISL (Intermediate Silicon Layers) and the COT (Central Outer
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2

5

Figure 2.4: Elevation view of one half of the CDF II detector.

Tracker), which is an open drift cell chamber. Layer 00 improves the precision of
track measurements and tagging efficiencies. Layer 00 is glued directly to the beam
pipe therefore it is closest to the beam, with its modules placed at radii r = 1.35 cm
and r = 1.62 cm of the beam pipe. It is a single-sided radiation hard silicon mi-
crostrip detector and provides a coverage of |η| < 4.0. Layer 00 is enclosed by the
SVX II. The SVX II detector design is driven by high luminosity, the Tevatron short
bunch spacing of 396 ns and by the physics requirement of B hadron decay vertex
identification within collimated high-PT jets. SVX II is comprised of three cylindri-
cal barrels which cover ≈ 2.5σ of the interaction region providing track information
to pseudorapidity |η| < 2. Five layers of double-sided silicon sensors at radii from
2.4 to 10.7 cm supply r − ϕ as well as 3 r − z and 2 small angle stereo measure-
ments. The results provide good pattern recognition and 3-d vertex reconstruction
with an impact parameter resolution σϕ < 30µm and σz0 < 70µm for central high
momentum tracks. The impact parameter is the distance of closest approach of the
track helix to the beam axis measured in the plane perpendicular to the beam. The
SVX II provides coverage up to |η| ≈ 2. In the region |η| < 1 the combination of the
SVX II and the COT can provide full 3D tracking, but the reconstruction will need
to be anchored on COT tracks. To increase the tracking volume, the three layers of
the silicon detector ISL are placed between the SVX II and the COT.
The outer part of the tracking system is a drift chamber. The Central Outer Tracker
(COT) is 3.1 meters long and has radii between 40 and 137 cm. It covers |η| < 1.0,
and can measure particles with transverse momenta as low as 400 MeV/c. All this
is done by 96 measurement layers organized into alternating axial and ±2 stereo
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Figure 2.5: The CDF coordinate system.

superlayers. The hit position resolution is approximately 14µm and the momentum
resolution σ(pT )/p2

T = 0.0015 (GeV /c)−1. Due to the high luminosity and the short
bunch spacing, the COT is designed to operate with a maximum drift time of 100 ns
by reducing the maximum drift distance and by using a gas mixture (Argon-Ethane
(50:50)) with a fast drift velocity.

Between the COT and the solenoid, a Time-of-Flight system (TOF) is installed
mainly for particle identification. It consists of scintillator panels which provide
both timing and amplitude information. The timing resolution is 100 ps. The de-
tector covers the central region up to |η| < 1.1 and is capable of distinguishing
kaons from pions by their flight time difference with at least 2σ separation up to
kaon momenta of 1.6 GeV/c.

The tracking system and the solenoid are surrounded by the calorimeters. They
are designed to measure the energy of all particles and jets in the detector by
absorbing all the particles except muons and neutrinos. There are two main η
regions covered by the calorimeters, central and plug. Each region has an electro-
magnetic calorimeter (CEM, Central ElectroMagnetic calorimeter, and PEM, end-
Plug ElectroMagnetic calorimeter) with lead absorbers and an hadronic calorimeter
(CHA/WHA, Central HAdron/end-Wall HAdron calorimeter, and PHA, end-Plug
HAdron calorimeter) with iron absorbers. Those calorimeters deliver a coverage of
2π in azimuth and |η| < 3.64. Each calorimeter is segmented in azimuth and in
pseudorapidity to form a projective tower geometry which points back to the nom-
inal interaction point. The calorimeters are sampling calorimeters with scintillators
as active medium.

The most outer part of the detector is the muon system. Figure 2.6 shows a
schematic picture of the CDF II muon system. The additional information on the
figure which is not explained is not needed here. The system consists of four sepa-
rate systems of scintillators and drift tubes. The central hadron calorimeters act as
absorber for the Central Muon detection System (CMU). Four layers of drift cham-
bers outside of the central hadronic calorimeter form the CMU. It covers a range of
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Figure 2.6: The CDF II muon system.

|η| < 0.6 and muons with a transverse momentum above 1.4 GeV/c can be detected.
Four additional layers of drift chambers are located behind a 0.6 m thick absorber
layer of steel. These drift chambers are called Central Muon uPgrade (CMP). The
CMP covers the same η range as the CMU. To cover a bigger η range the Central
Muon eXtension (CMX) is used. It covers the pseudorapidity range 0.6 < |η| < 1.0.
Two of the chambers of the CMX, the miniskirts and keystones, can be seen in
figure 2.7. The Intermediate Muon System (IMU) covers a range of 1.0 < |η| < 1.5.

The trigger system plays an important role to efficiently extract the most interesting
physics events from the large number of minimum bias events, because the collision
rate is equal to the mean crossing rate of 1.7 MHz while, the tape writing speed is
about 75 Hz at present. The CDF trigger is a three level system with each level
providing a sufficient rate reduction for the processing of the next level.
The first two triggers are hardware triggers, the last one is a software trigger run-
ning on a Linux PC farm. Level-1 uses custom designed hardware to find physics
objects based on a subset of the detector. The hardware consists of three parallel
synchronous processing streams: one to identify calorimeter based objects, another
one to identify muons, while the third one does tracking in the COT using the eX-
tremly Fast Tracker (XFT). The decision is done by simple counting these objects
(e.g. one electron with 12 GeV). If an event is accepted by the Level-1 trigger, the
data are moved to one of the four on-board Level-2 buffers, to average out the rate
fluctuations. The typical rate of the Level-1 triggers is at present 24 kHz.
The Level-2 trigger does a limited event reconstruction using custom-designed hard-
ware. The hardware consists of several asynchronous subsystems, e.g. the hardware
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Figure 2.7: Schematic view of the CMX-wedges.

cluster finder using calorimeter information. In addition, data from the shower max-
imum detector can be used to improve the identification of electrons and photons.
The most challenging part of the Level-2 trigger is the Silicon Vertex Tracker. The
SVT allows to select tracks with large impact parameter, which opens a complete
new window for physics measurements at a hadron collider. The level-2 trigger ac-
cepts 300 events per second, which are transferred to the Level-3 processor farm.
At the processor farm the events are reconstructed and filtered, using the algorithms
run in the “offline” reconstruction, and are written to permanent storage with ap-
proximately 75 Hz at present. To facilitate the handling of the huge data volumes
collected with the CDF II detector, events passing the Level-3 trigger are split into
eight different streams.



Chapter 3

Event Selection

In this chapter, the Monte Carlo samples and the data samples we use in this analysis
are explained. In addition, the event selection procedure which all those samples
have to pass is outlined.

3.1 Monte Carlo Samples

Monte Carlo generators randomly generate hard parton interactions according to the
probability density of phase space and the matrix element of the physics process.
The resulting partons are then processed by a parton showering program to simulate
gluon radiation, fragmentation and decays. The resulting particles are then handed
to the detector simulation. The CDF collaboration uses the GEANT3 [24] package
to simulate the tracking of particles through matter. To model the drift chamber
(COT), a GARFIELD simulation is used, that was tuned to match the data [25].
The calorimeter simulation GFLASH [26] was also tuned using test beam data for
electrons and high transverse momentum pions. A more detailed description of the
CDF II simulation can be found elsewhere [27].
The Monte Carlo samples used for this analysis are generated by the matrix element
generator MadEvent [28], the Monte Carlo program Pythia [29] or a combination
of Alpgen [30] and HERWIG [31]. Simulation and production were performed
using the 5.3.3 release of the CDF offline software. The reconstructed events were
passed through TopFind, linked against CDF software release 5.3.3 nt, to produce
TopNtuples [32]. Table 3.1 gives an overview of the Monte Carlo samples we use.
All these Monte Carlo samples were simulated with run dependent settings covering
the run range from run number 141544 to 203799. MadEvent implements the
correct polarization of the top quark. The theory of electroweak interactions predicts
that single-top quarks are 100% polarized along the d quark direction in the top
quark rest frame [33, 34]. This will be outlined in more detail in chapter 5.2.
The modeling of the single-top t-channel has a particular intricacy. If only the
leading order diagram, figure 1.4 (a), is used, the b̄ (also called the second b) is
obtained by backward evolution with the shower Monte Carlo program Pythia.
The kinematic distributions of the b̄ are not well modeled by this procedure. In
particular, the pT distribution of the second b is too soft, and the η distribution is
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Sample Process Generator N events
ttop1oNew t-channel (2 → 2) MadEvent 400554
ttop2oNew t-channel (2 → 3) MadEvent 199506
ttop1oNew+
ttop2oNew match t-channel (matched) MadEvent 600060

ttop0oNewCat s-channel MadEvent 577276
ttopvl+ttopkl+ttopyl+
ttoptl tt̄ Pythia 2965060

wtop1w+wtop2w WW Pythia 606877
wtop1z+wtop2z WZ Pythia 594502
ztopcz+ztopfz ZZ Pythia 809509
ztop7i Z → ee Pythia 3251489
ztop0i+ztopei Z → µµ Pythia 1794600
ztop1i+ztop4i+ztop5i Z → ττ Pythia 3538885
ltop0b Wbb̄ + 0p (W → eνe) Alpgen+Herwig 315072
ltop1b Wbb̄ + 0p (W → µνe) Alpgen+Herwig 315297
ltop0c Wcc̄ + 0p (W → eνe) Alpgen+Herwig 271274
ltop1c Wcc̄ + 0p (W → µνe) Alpgen+Herwig 310336
ltop1a Wc + 1p (W → eνe) Alpgen+Herwig 263613
ltop2a Wc + 1p (W → µνe) Alpgen+Herwig 217200
ltop1n W + 1p (W → eνe) Alpgen+Herwig 280109
ltop1m W + 1p (W → µνe) Alpgen+Herwig 232837
ltop2n W + 2p (W → eνe) Alpgen+Herwig 161434
ltop2m W + 2p (W → µνe) Alpgen+Herwig 184531
ltop3n W + 3p (W → eνe) Alpgen+Herwig 178293
ltop3m W + 3p (W → µνe) Alpgen+Herwig 173988

Table 3.1: Signal and background Monte Carlo samples used in the single-top analysis. In all
single-top samples, the W from the top quark decays to leptons, W → e, µ, τ + ν.
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too much forward (shifted to high values of |η|). The problem can be obviated by
generating two t-channel samples with MadEvent, one 2 → 2 (qb → q′t) and one
2 → 3 (qg → q′tb) sample, see figure 1.4 (b). Both samples are mixed to better
reproduce the theoretically predicted distributions of the second b quark. The exact
mixing prescription is documented in detail in references [16, 35].

3.2 Data Samples

Our analyses will focus on the so called lepton+jets channel. Therefore, we use the
data stream including all inclusive high-pT lepton samples. Data is re-processed
offline before being used by the different physics groups. This re-processing was
done with CDFSOFT2 version 5.3.3 for the so-called 0d data set and with CDFSOFT2

version 6.1.2 for the 0h samples. The calibrations used online are checked and
corrected, silicon alignment is corrected, tracks are re-fitted, cluster energies are
checked, leptons are found, and “tagging” algorithms for secondary vertices were
run. After that the data were stripped into the datasets bhel0d, bhel0h, bpel0d,
bpel0h, bhmu0d and bhmu0h. The data sets are subdivided into the different sets
based on the lepton that has triggered the event and according to the run range
the event came from. The central electron data (bhel0d/h) have to pass level 3
trigger ELECTRON CENTRAL 18, the forward electron data (bpel0d/h) have to pass
level 3 trigger MET PEM and the muon data (bhmu0d/h) have to pass level 3 trigger
MUON CMUP18 or MUON CMX18. Those triggers are all high pT lepton triggers which
demand that in case of a electron the transverse energy is ET > 18 GeV and in case
of a muon the transverse momentum is pT > 18 GeV/c. Other requirements of these
trigger paths are a track in the COT and a matching signal in the corresponding
calorimeter component for the electrons. The 0d samples include runs from run
number 138425 up to 186598 which were taken from April 2002 till August 2004.
The 0h samples include the runs from 190697 up to 203799 and were taken in the
period from December 2004 till September 2005. For this analysis the good run list
version 10a was used. The list is created by the lepton+jets group [36]. It contains
all runs, in which all detector components needed for this analysis were functional
and included in the data taking process. Additionally, run 164844 was removed
due to problems with the Consumer Server Logger. The largest samples (CEM and
CMUP) correspond to an integrated luminosity of 695.5 pb−1.

3.3 Event Selection Procedure

In order to separate single-top quark events from various background events it is
necessary to reconstruct the events with very high precision. Within the Standard
Model, the top quark decays to almost 100% to a W boson and a bottom quark. To
suppress Quantum ChromoDynamic (QCD) multijet events the selection focuses on
the leptonic decay modes of the W boson. We only consider the decay channels W →
eνe and W → µνµ, because high purity τ lepton identification has low efficiency at
CDF. This means that the characteristic signatures we are looking for in the data are
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the leptonic decay products of the W boson originating from the top quark decay,
i.e. we are looking for an isolated lepton and missing transverse energy. A lepton
is isolated if the energy deposition in the electromagnetic calorimeter in a cone of
radius ∆R=0.4 around the cluster, excluding the cluster itself, is determined and
the ratio of this energy to the cluster energy is less than 0.1. In addition to the
isolated lepton we expect hadronic jets, from which at least one should be identified
as a b jet. There are several vetos and requirements to restrict the background
even more. The selection mainly follows the standard cuts of the CDF top physics
group for lepton+jets analyses [37]. The following sections will show the main
requirements used throughout the analysis and point out differences to the standard
cuts in lepton+jets analyses. A typical cut flow can be seen in table 3.2 for the
matched t-channel sample ttop1oNew+ttop2oNew match.

3.3.1 Lepton Cuts

Since one isolated high pT lepton originating from the W decay is one of the main
characteristics for single-top production, this criteria is the starting point of our
cuts. The first thing that needs to be done is to decide whether a lepton candidate
fulfills the requirements we need for our event. Leptons are divided into different
categories. The ones we need are tight leptons and loose leptons. A lepton is called
tight if it belongs to one of the four main lepton categories (CEM, PHX, CMUP
and CMX). The electrons are required to have a transverse energy ET > 20 GeV.
The CEM electrons cover the η-range up to |η| < 1.1 and the PHX electrons the
range 1.2 < |η| < 2.0. In case of muons a transverse momentum of pT > 20
GeV/c is required. Muon candidates are accepted in the η-range of 0.0 < |η| < 1.0.
In particular the CMUP muons have η values between 0.0 < |η| < 0.6 and the
CMX muons 0.6 < |η| < 1.0, respectively. Loose leptons are leptons which fulfill
less stringent ID requirements. The lepton cuts also include requirements on the
shower profile Lshr, the ratio of the energy between the hadronic calorimeter to the
electromagnetic calorimeter Ehad/Eem, the electromagnetic energy divided by the
momentum of the maximum pT matched track E/P, and several other. They can
all be found in detail in [37] for the different lepton types.
There is another requirement especially concerning the leptons in each event that
has to be fulfilled. An event is only accepted if there is exactly one isolated tight
lepton. That means no additional leptons are allowed, neither another tight lepton
nor a loose lepton.

3.3.2 Event Cuts

In addition to the cuts only dealing with the leptons there are requirements the
whole event has to fulfill. The major ones are listed here.

• The Z boson veto is used to reduce the background coming from Z+jet pro-
duction. Therefore, events are rejected in which a combination of the identified
tight lepton and a second object found in the event forms an invariant mass,
that falls in the window of
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76 GeV/c2 < Mll < 106 GeV/c2

around the Z boson mass.

• The hadronization of a final state quark creates a jet of hadrons. Hadroniza-
tion describes the transition from colored partons to color neutral hadrons.
These particles then form a particle jet. Since the energy of hadrons is mea-
sured in the hadronic calorimeters, the momentum of the initial quark can
be reconstructed by combining the energy measurements in the calorimeter
towers that belong to the jet. In CDF the JetClu algorithm [38] is used to
reconstruct jets. Because the reconstruction is distorted by several effects a
set of jet corrections has been derived. In our analysis all the jets are level 4
corrected. This means that they are corrected for relative η-dependence and
for multiple interactions. More information on the jet corrections can be found
elsewhere [39]. The jets have been reclustered after the removal of the towers
assigned to the selected isolated lepton from the leptonic W decay and after
a correction of the measured transverse energy in the towers for the location
of the primary vertex.
In t-channel single-top events the light flavor jet is emitted in forward direction.
Therefore, the η range is defined wider than in the standard CDF analyses.
The jets have to have ET ≥ 15 GeV and |ηdetector| ≤ 2.8. The pseudorapidity
ηdetector is the pseudorapidity coordinate of the calorimeter tower with respect
to the origin of the coordinate system, the center of the detector. Through the
extension of the η range the acceptance for t-channel events increases about
30%, whereas the background acceptances do not increase much.
In addition to the jets with ET ≥ 15 GeV which are called ’tight’ jets there is
also a category of jets with ET ≥ 8 GeV and ET ≤ 15 GeV which are called
’loose’ jets. In this analysis we require exactly two ’tight’ jets.

• The neutrino from the W decay cannot be detected in any of the parts of the
detector. Therefore, there has to be some missing transverse energy (ET/ ) in
the event. Since a neutrino associated with the high momentum lepton from
the W boson decay is likely to carry a lot of transverse energy, the missing
transverse energy has to fulfill corrected ET/ ≥ 20 GeV.
ET/ is calculated as the vector sum of the energy in each calorimeter tower
multiplied by the azimuthal direction of the tower. If the identified lepton of
such an event is a muon, ET/ is corrected by the subtraction of the muon energy
deposit in the calorimeter and by addition of the transverse muon momentum
to the vector sum. If we would not apply this correction missing transverse
energy would be artificially created. Since corrected jet energies are used for
the jet counting, one needs to correct ET/ to be consistent.

• The QCD veto is applied to reduce the QCD background, i.e. events where
no real W boson is created. Therefore, those events are referred to as non-W
events. We want to reject events with low missing transverse energy and where
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the leading jet and the ET/ vector are aligned. In these events ET/ is created
by jet mismeasurements. Consequently, we accept all the events with ET/ > 30
GeV. Out of the events with ET/ < 30 GeV we accept those which have an
opening angle ∆φ between the ET/ vector and the transverse momentum vector
of the leading jet between 0.5 < ∆φ < 2.5. The leading jet is chosen after the
jet corrections (level 4) are applied.

• At least one of the jets in the event must be identified to be likely to contain
a B hadron. Consequently, at least one SecV tx tagged jet is required [40].
The b-tagging relies on the reconstruction of displaced secondary vertices with
a silicon micro-strip detector. An event which contains a B hadron is likely to
have a displaced secondary vertex, since the bottom hadron carries most of the
momentum of the original quark due to its relatively large mass. Consequently,
the hadron is boosted and, due to its mean lifetime of approximately 1.5 ps,
it travels a sizable distance before it decays.
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Cut 0 jet 1 jet 2 jet 3 jet 4 jet ≥ 5 jets all
Total 11514 135394 287304 136399 25299 4150 600060
Good Run 10270 120666 256023 121352 22473 3689 534473
OBSV < 60.0 10043 117878 249895 117374 21735 3567 520492
CMX Good Total 9948 117253 248886 118075 21893 3600 519655
≥ 1 Tight Std. lepton 3600 40171 71688 14446 2254 294 132453
LooseLepton cut 3598 40154 71675 14446 2254 294 132421

CEM electrons
Tight Di-Lepton Veto 1566 18507 34122 6852 1075 133 62255
Z Vertex Cut 1566 18504 34114 6846 1074 132 62236
Z veto 1555 18302 33533 6740 1056 129 61315
Missing Et 1466 16376 30279 6056 955 118 55250
QCD Veto 1466 15641 28729 5744 910 107 52597
taggable 0 11484 25675 5453 890 105 43607
b tag ≥ 1 0 5522 13061 3168 541 80 22372

PHX electrons
Tight Di-Lepton Veto 699 6452 9725 1871 279 39 19065
Z Vertex Cut 699 6452 9725 1871 279 39 19065
Z veto 692 6401 9599 1833 277 39 18841
Missing Et 647 5589 8367 1591 244 30 16468
QCD Veto 647 5237 7747 1497 218 29 15375
taggable 0 3956 7168 1453 215 28 12820
b tag ≥ 1 0 1855 3582 847 146 13 6443

CMUP muons
Tight Di-Lepton Veto 870 10383 19368 3967 620 74 35282
Z Vertex Cut 870 10383 19366 3966 620 74 35279
Z veto 869 10345 19217 3930 615 73 35049
Missing Et 813 9230 17130 3494 546 65 31278
QCD Veto 813 8798 16208 3284 508 61 29672
taggable 0 6470 14468 3107 498 61 24604
b tag ≥ 1 0 3059 7215 1784 313 38 12409

CMX muons
Tight Di-Lepton Veto 435 4619 8171 1690 262 47 15224
Z Vertex Cut 435 4619 8171 1690 262 47 15224
Z veto 434 4594 8128 1683 259 47 15145
Missing Et 416 4079 7212 1497 225 44 13473
QCD Veto 416 3873 6805 1394 209 40 12737
taggable 0 2841 6106 1345 206 40 10538
b tag ≥ 1 0 1370 3116 779 128 18 5411

All
Tight Di-Lepton Veto 3570 39961 71386 14380 2236 293 131826
Z Vertex Cut 3570 39958 71376 14373 2235 292 131804
Z veto 3550 39642 70477 14186 2207 288 130350
Missing Et 3342 35274 62988 12638 1970 257 116469
QCD Veto 3342 33549 59489 11919 1845 237 110381
taggable 0 24751 53417 11358 1809 234 91569
b tag ≥ 1 0 11806 26974 6578 1128 149 46635

Table 3.2: Cut flow for the t-channel sample ttop1oNew+ttop1oNew match.
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Chapter 4

Signal and Background Estimate

and Event Yield

One of the most crucial parts in many high energy physics analyses is the estima-
tion of the number of predicted events for the amount of data that is analysed. This
theoretical prediction has to be consistent within errors with the actually observed
number of events in the data. Otherwise this is a strong hint that the physical
processes are not well understood and that the theoretical presumptions need some
more careful crosschecks.

The determination of the event yield is not only done for the so-called two jet
bin which is the jet bin we focus on in our analysis but also for the one and the
three jet bin. This gives us the possibility to cross check our results. The event
yield is determined by a combination of two different techniques. For some of the
physical processes the number of expected events can be calculated with the help
of Monte Carlo samples and theoretical cross sections. The other processes can
only be estimated through data. The first approach is only suitable for physical
processes that are theoretically very well understood. We use the Monte Carlo based
technique to determine the number of predicted events for the signal as well as for
tt̄- and diboson backgrounds. Those processes are well described through Monte
Carlo samples and their cross sections are known for proton antiproton collisions
at the center of mass energy of the Tevatron. The second section includes all the
backgrounds that are not as well understood as tt̄ and diboson or are not even real
physical processes but mismeasurements in the detector, namely mistags and non-W
background. Therefore, the estimation of the number of expected events has to be
done differently. Those backgrounds are estimated based on data. This is why they
are referred to as data based backgrounds.
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4.1 Monte Carlo Based Estimates

4.1.1 Signal

In this section, the calculation of the event detection efficiency for single-top quark
production is explained. As the same method is also used in section 4.1.2 and 4.1.3
for the so called Monte Carlo based background estimate some aspects of the tech-
nique are explained from a general point of view in this section.
To derive the event detection efficiencies for the physical processes mentioned above
we make use of a Monte Carlo generator technique. We can use this technique
because the processes of single-top production are theoretically well described and
already implemented in most of the common Monte Carlo generators. The final aim
of every single-top quark analysis should be to calculate the single-top quark produc-
tion cross section σst for the reasons outlined in the Introduction. The calculation
is based on the following formula:

σst =
Nsignal

(ǫevt ·
∫

L dt)
(4.1)

Here Nsignal is the number of observed signal events, which we obtain for example
from a maximum likelihood fit. ǫevt is the event detection efficiency which is the
average probability of a single-top event to be detected, i.e. to be found in the
sample of selected candidates.

∫

L dt is the integrated luminosity, which we will
abbreviate as Lint in the paragraphs below. Equation (4.1) is used to calculate the
number of expected signal events. For this purpose it takes the form:

Npredict
signal = σtheo

st · ǫevt · Lint (4.2)

The purpose of this section is to describe the calculation of ǫevt, the event detection
efficiency. This is done using the Monte Carlo samples listed in table 3.1. ǫevt can
be decomposed into 4 factors:

ǫevt = ǫMC
evt · ǫBR · ǫcorr · ǫtrig (4.3)

Here ǫMC
evt is the event detection efficiency as we obtain it from our samples of sim-

ulated events. In some of these samples, the W boson was only allowed to decay
into leptons: W → e/µ/τ + ν. This has to be taken into account by applying the
factor ǫBR = 0.324 [10]. ǫcorr is a correction factor which takes into account the
difference between simulated and data events and thereby gives a measure of how
well the Monte Carlo simulation models the detector. ǫtrig is the trigger efficiency.
The correction factor is again composed out of several parts:

ǫcorr =
ǫdata
z0

ǫMC
z0

·
ǫdata
ID/Reco

ǫMC
ID/Reco

·
ǫdata
tag

ǫMC
tag

(4.4)

Since trigger and lepton id efficiencies vary for different subdetectors (we use CEM,
PHX, CMUP and CMX), we have different ǫevt in the four cases: ǫCEM

evt , ǫPHX
evt , ǫCMUP

evt

and ǫCMX
evt . We use the following values for the trigger efficiencies and reconstruction

and identification scale factors which are derived from data:
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Efficiencies CEM PHX CMUP CMX

Trigger 0.9691±0.0042 0.8861±0.0025 0.915± 0.005 0.9276± 0.0034

ID/Reco. 0.981± 0.005 0.942 ± 0.013 0.8789± 0.0044 0.9593 ± 0.004

Table 4.1: Electron and muon trigger efficiencies and ID efficiency scale (correction) factors.

• The electron and muon trigger and identification efficiencies ǫtrig and ǫdata
ID/Reco/ǫ

MC
ID/Reco

are listed in table 4.1 and can also be found in references [41, 42, 43]. We apply
numbers averaged over the entire run range.

• ǫdata
z0 = 0.955 ± 0.003 is the z vertex cut efficiency in data [44].

• The b tagging efficiency differs between data and Monte Carlo. Therefore,
we need to correct our acceptance calculation which is based on Monte Carlo
events. SFtag = ǫdata

tag−jet/ǫ
MC
tag−jet = 0.89 ± 0.07 is the correction factor for the

b tagging efficiency [45]. This correction factor is valid per tagged b jet. If
a Monte Carlo sample contained only events with one and only one b jet per
event, the factor would be applicable globally. However, since there are also
double-tagged or even triple-tagged events, a global correction factor has to
be determined. It is possible to bin the distribution of the number of b tags
in the Monte Carlo samples and then use the per b tag jet scale factor given
above to calculate the event correction factor given per jet bin. If the fractions
of 1-tag, 2-tag, and 3-tag events in a given jet bin are f1, f2, and f3 , then for
that jet bin the correction factors are calculated as shown below.

K1 = SFtag + 2 · f2

f1
SFtag(1 − SFtag) + 3 · f3

f1
SFtag(1 − SFtag)

2 (4.5)

K2 = SF 2
tag + 3 · f3

f2

SF 2
tag(1 − SFtag) (4.6)

K12 = f1SFtag + f2(2SFtag − SF 2
tag) + f3(3SFtag − 3SF 2

tag + SF 3
tag) (4.7)

The results on the correction factor K = ǫdata
tag /ǫMC

tag obtained with this method
are given in table 4.2 for 3 cases: (1) 1 or 2 b tags (K12), (2) exactly 1 b tag
(K1), (3) exactly 2 b tags (K2).

B-tag Efficiencies

Process Sample K12 K1 K2

t-chan 1 Jet bin ttop1oNew+ttop2oNew match 0.89±0.07 0.89±0.07 –

t-chan 2 Jet bin ttop1oNew+ttop2oNew match 0.89±0.07 0.89±0.07 0.79±0.12

t-chan 3 Jet bin ttop1oNew+ttop2oNew match 0.91±0.06 0.93±0.05 0.79±0.13

s-chan 1 Jet bin ttop0oNewCat 0.89±0.07 0.89±0.07 –

s-chan 2 Jet bin ttop0oNewCat 0.92±0.06 0.96±0.03 0.79±0.12

s-chan 3 Jet bin ttop0oNewCat 0.92±0.05 0.96±0.03 0.79±0.13

Table 4.2: Correction factor for the b tagging efficiency of the various single-top samples.
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We determine the event detection efficiency based on Monte Carlo events. We apply
all selection and identification cuts to the simulated data. Table 4.3 summarizes the
calculation for the t-channel. The number of remaining events in the 1-jet, 2-jet and
3-jet bin after the complete event selection are given in the line named b tag ≥ 1.
The number of expected events in every subdetector for a luminosity of 695.5 pb−1

can be found in the line named Nevt. We use the number of events passing the good
run criteria as denominator (line Good Run).
To calculate ǫevt we need to derive ǫcorr first. We have to do that for each sample
separately, since the b tagging efficiency per event depends on the sample. We cal-
culate the errors on ǫcorr by adding the relative errors on ǫdata

z0 /ǫMC
z0 , ǫdata

leptonid/ǫ
MC
leptonid,

ǫdata
reco /ǫMC

reco and ǫdata
tag /ǫMC

tag . Having calculated ǫcorr we compute ǫevt based on equa-
tion (4.3). Using the values for ǫevt we calculate the number of expected events
according to equation (4.2). The result is presented in table 4.3 for the t-channel.
The Monte Carlo event detection efficiency is given separately for the different sub-
detectors. The last row in each subdetector section gives the number of expected
events in the corresponding subdetector for a luminosity of 695.5 pb−1. ǫevt refers to
the total event detection efficiency including the corresponding scale factors. The
last section of the table summarizes the number of expected events. The numbers
given refer to an integrated luminosity of 695.5 pb−1. The number of expected events
for the t-channel and the s-channel in the different subdetectors are also summarized
in tables 4.6 - 4.10.

4.1.2 tt̄ Background

As mentioned in section 1.2.1 the top quark production in pp̄ collisions at
√

s =
1.96 TeV is dominated by top-pair production via the strong interaction. Quark-
antiquark annihilation is the dominating sub-process, contributing about 85% of
the cross section. Next-to-leading order (NLO) corrections to the cross section are
available since the late 1980’s [46, 47]. More recent calculations try to improve
the predictions by resumming leading and next-to-leading order logarithmic terms
in the cross section. Table 4.4 shows the predictions of three different groups for
mtop = 175 GeV/c2. The results of Berger and Contopanagos (BECO) are scaled
down from their predictions for

√
s = 2.00 TeV. In our analysis we use the prediction

by Bonciani et al. (BCMN) [49, 50] to calculate the number of expected tt̄ events.
Two reasons motivate that decision:

1. BCMN work with the most recent set of PDFs.

2. The error assigned by BCMN includes systematic uncertainties due to the
choice of the PDF.

To take into account different predictions by BECO and Kidonakis we assign half
the difference between BCMN and BECO as additional systematic uncertainty ∆2 =
0.23 pb and add it in quadrature to the error assigned by BCMN. Since we use a
Gaussian constraint on the background in our analysis we also need to symmetrize
the errors. We do that by taking the average between the negative and positive
errors. Additionally, we need to add the uncertainty in σtt̄ due to the top mass
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t-channel
Cut 1 jet 2 jet 3 jet

Total 135394 287304 136399
Good Run 120666 256023 121352
OBSV< 60.0 117878 249895 117374
K1 0.89±0.07 0.89±0.07 0.93±0.05
K2 0.89±0.07 0.79±0.12 0.79±0.13
K12 0.89±0.07 0.89±0.07 0.91±0.06

CEM electrons
b tag ≥ 1 5522 13061 3168
ǫMC
evt [%] 1.033 2.444 0.593

ǫevt [%] 0.2685±0.0262 0.6296±0.0606 0.1551±0.0128
Nevt 3.70±0.36 8.67±0.83 2.14±0.18

PHX electrons
b tag ≥ 1 1855 3582 847
ǫMC
evt [%] 0.347 0.670 0.158

ǫevt [%] 0.079±0.0089 0.1516±0.0168 0.0364±0.0035
Nevt 1.09±0.12 2.09±0.23 0.50±0.05

CMUP Muons
b tag ≥ 1 3059 7215 1784
ǫMC
evt [%] 0.572 1.350 0.334

ǫevt [%] 0.1258±0.0145 0.2942±0.0335 0.0739±0.0072
Nevt 1.73±0.20 4.05±0.46 1.02±0.10

CMX Muons
b tag ≥ 1 1370 3116 779
ǫMC
evt [%] 0.256 0.583 0.146

ǫevt [%] 0.0624±0.0065 0.1406±0.0144 0.0357±0.0032
Nevt 0.84±0.09 1.90±0.20 0.48±0.04

Number of expected events

N(695.50pb−1) 7.36±0.77 16.71±1.72 4.14±0.37

Table 4.3: t-channel event yield estimate for the single-top event selection.
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mtop σtt̄ Ref.
Berger and Conto. 175 GeV/c2 7.15+0.09

−0.55 pb [48]
Bonciani et al. 175 GeV/c2 6.70+0.71

−0.88 pb [49, 50]
Kidonakis 175 GeV/c2 6.77 ± 0.42 pb [15]
Bonciani et al. 170 GeV/c2 7.83+0.86

−1.04 pb [49, 50]
Bonciani et al. 180 GeV/c2 5.75+0.59

−0.75 pb [49, 50]

Table 4.4: Cross section predictions by three different groups of theorists for pp̄ collisions at√
s = 1.96 TeV.

uncertainty ∆mtop = 5 GeV/c2. We take the average difference between the cross
section for 170/175 GeV/c2 and 180/175 GeV/c2, which is ∆3 = 1.04 pb. Adding
all three uncertainties in quadrature we get:

∆σtt̄ =
√

0.7952 + 0.232 + 1.042 pb = 1.32 pb (4.8)

Thus, we use σtt̄ = (6.70±1.32) pb. Including the scaled uncertainty due to the other

170 GeV/c2 (7.83 ± 1.54) pb
175 GeV/c2 (6.70 ± 1.32) pb
180 GeV/c2 (5.75 ± 1.13) pb

Table 4.5: Cross section predictions used in our analysis to predict the number of tt̄ background
events.

theoretical predictions (also for mtop = 170, 180 GeV/c2) we get the numbers given
in table 4.5. The event detection efficiency ǫevent for tt̄ events is calculated using
the Pythia Monte Carlo generator. We use the tt̄ Monte Carlo samples listed
in table 3.1. To determine the number of expected tt̄ events we use the method
described in section 4.1.1. The results are summarized in tables 4.6 - 4.10.

4.1.3 Diboson Background

To predict the number of diboson events in our selected data sample we use the
theoretical cross sections predicted by Campbell and Ellis [51]:

√
s WW WZ ZZ

2.00 TeV 13.5 pb 4.02 pb 1.60 pb
1.96 TeV 13.30 pb 3.96 pb 1.57 pb

Campbell and Ellis give a relative error on the cross sections of 3%. Their numbers
are given for

√
s = 2.00 TeV. We rescale those numbers to 1.96 TeV. Therefor, the

mean of a linear and a quadratic interpolation is taken. The number of expected
diboson events is calculated in the same way as for single-top and tt̄ production.
We also determine the number of expected events for the processes Z → ττ and
Z → µµ. For these processes, the cross section is determined using the Z peak for
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the invariant mass region of the lepton pair and and a K-factor of 1.4. This leads
to σZ · BR(Z → ℓ+ℓ−) = (336.0 ± 8.0) pb. The uncertainty due to the luminosity
is not included, since it will be considered when calculating the number of expected
events. We use the Monte Carlo samples listed in table 3.1. The results are shown
in tables 4.6 - 4.10.

Process 1 jet 2 jets 3 jets

for 695.5 pb−1 of data in CEM

t-channel 3.70 ± 0.36 8.67 ± 0.83 2.14 ± 0.18

s-channel 1.75 ± 0.17 6.04 ± 0.44 1.25 ± 0.09

tt̄ 2.53 ± 0.25 20.29 ± 1.61 46.32 ± 3.46

WW 0.77 ± 0.07 1.86 ± 0.18 0.51 ± 0.05

WZ 1.25 ± 0.12 2.85 ± 0.24 0.65 ± 0.05

ZZ 0.01 ± 0.00 0.06 ± 0.00 0.05 ± 0.00

Z → ττ 0.93 ± 0.09 1.60 ± 0.16 0.69 ± 0.07

Z → µµ 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Total MC bkg. 5.49 ± 0.30 26.66 ± 1.65 48.22 ± 3.46

Table 4.6: Summary of number of expected events for t-channel and s-channel single-top, tt̄ and
diboson production in the CEM detector.

Process 1 jet 2 jets 3 jets

for 695.5 pb−1 of data in PHX

t-channel 1.09 ± 0.12 2.09 ± 0.23 0.50 ± 0.05

s-channel 0.42 ± 0.05 1.33 ± 0.11 0.26 ± 0.02

tt̄ 0.52 ± 0.06 4.70 ± 0.43 10.31 ± 0.89

WW 0.27 ± 0.03 0.73 ± 0.08 0.19 ± 0.02

WZ 0.64 ± 0.07 1.39 ± 0.13 0.34 ± 0.03

ZZ 0.00 ± 0.00 0.03 ± 0.00 0.01 ± 0.00

Z → ττ 1.02 ± 0.11 0.00 ± 0.00 0.20 ± 0.02

Z → µµ 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

Total MC bkg. 2.45 ± 0.15 6.85 ± 0.46 11.05 ± 0.89

Table 4.7: Summary of number of expected events for t-channel and s-channel single-top, tt̄ and
diboson production in the PHX detector.
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Process 1 jet 2 jets 3 jets

for 695.5 pb−1 of data in CMUP

t-channel 1.73 ± 0.2 4.05 ± 0.46 1.02 ± 0.10

s-channel 0.83 ± 0.10 2.87 ± 0.25 0.62 ± 0.05

tt̄ 1.27 ± 0.15 10.78 ± 1.01 24.67 ± 2.18

WW 0.42 ± 0.05 0.83 ± 0.10 0.26 ± 0.03

WZ 0.52 ± 0.06 1.25 ± 0.12 0.32 ± 0.03

ZZ 0.03 ± 0.00 0.09 ± 0.01 0.02 ± 0.00

Z → ττ 0.59 ± 0.07 0.78 ± 0.09 0.58 ± 0.07

Z → µµ 5.92 ± 0.68 3.33 ± 0.37 0.25 ± 0.03

Total MC bkg. 8.75 ± 0.70 17.06 ± 1.09 26.15 ± 2.18

Table 4.8: Summary of number of expected events for t-channel and s-channel single-top, tt̄ and
diboson production in the CMUP detector.

Process 1 jet 2 jets 3 jets

for 695.5 pb−1 of data in CMX

t-channel 0.84 ± 0.20 1.90 ± 0.20 0.48 ± 0.04

s-channel 0.39 ± 0.04 1.29 ± 0.10 0.27 ± 0.02

tt̄ 0.54 ± 0.06 4.58 ± 0.39 10.37 ± 0.83

WW 0.23 ± 0.02 0.39 ± 0.04 0.13 ± 0.01

WZ 0.37 ± 0.04 0.61 ± 0.05 0.19 ± 0.02

ZZ 0.00 ± 0.00 0.04 ± 0.00 0.01 ± 0.00

Z → ττ 0.43 ± 0.04 0.21 ± 0.02 0.21 ± 0.02

Z → µµ 3.91 ± 0.41 1.11 ± 0.11 0.28 ± 0.03

Total MC bkg. 5.48 ± 0.42 6.94 ± 0.42 1.19 ± 0.84

Table 4.9: Summary of number of expected events for t-channel and s-channel single-top, tt̄ and
diboson production in the CMX detector.
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Process 1 jet 2 jets 3 jets

for 695.5 pb−1 of data

t-channel 7.36 ± 0.77 16.71 ± 1.72 4.14 ± 0.37

s-channel 3.40 ± 0.36 11.52 ± 0.91 2.41 ± 0.19

tt̄ 4.85 ± 0.51 40.34 ± 3.45 91.66 ± 7.37

WW 1.68 ± 0.18 3.81 ± 0.40 1.10 ± 0.12

WZ 2.77 ± 0.29 6.09 ± 0.55 1.50 ± 0.13

ZZ 0.05 ± 0.01 0.21 ± 0.02 0.10 ± 0.01

Z → ττ 2.96 ± 0.32 2.59 ± 0.27 1.68 ± 0.18

Z → µµ 9.84 ± 1.09 4.44 ± 0.48 0.53 ± 0.06

Total MC bkg. 22.15 ± 1.29 57.48 ± 3.56 96.57 ± 7.37

Table 4.10: Summary of number of expected events for t-channel and s-channel single-top, tt̄ and
diboson production.
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4.2 Data Based Background Estimates

We estimate the W+jets background and the non-W background with the standard
method used in the CDF top physics group, the so-called method 2 [52]. The first
step is the estimation of the non-W fraction in the pretag sample. The sample is
called pretag because the events have to pass all the criteria outlined in section 3.3
except for the requirement of a b tagged jet.

4.2.1 Non-W

Since the cross section for jet production via QCD processes is much larger than the
cross section for the electroweak production of W bosons we still have a substantial
rate of multi-jet events passing our selection cuts. In these events, a jet is mis-
identified as an electron or muon. This is the so-called non-W background. To
reduce this background, the QCD veto was introduced.
We use the standard method to estimate the rate of non-W events: the ET/ -versus-
Isolation method, which we call here the four sector method. The basic assumption
of this method is that the variables ET/ and isolation are uncorrelated for multi-jet
events. Four sectors of the ET/ versus isolation plane are used for the analysis. They
are shown and defined in figure 4.1.

1. sector A: iso ≥ 0.2 and ET/ ≤ 15 GeV

2. sector B: iso ≤ 0.1 and ET/ ≤ 15 GeV

3. sector C: iso ≥ 0.2 and ET/ ≥ 20 GeV

4. sector D: iso ≤ 0.1 and ET/ ≥ 20 GeV

Figure 4.1: Definition of the four sectors used in the four sector method.

We apply our selection criteria to the data samples, omitting the cuts on isolation of
the lepton, the ET/ and the b tag. We count the number of events in the four sectors.
Sector D is the signal region, sectors A, B and C are sideband regions. The analysis
is performed separately for four different lepton categories, i.e. CEM, PHX, CMUP,
and CMX.
Events with non-isolated leptons need a special treatment compared to the standard
selection of events with isolated leptons:

1. For non-isolated electrons, we remove jets from the jet list that match the
electron candidate within ∆R =

√

∆η2 + ∆φ2 < 0.4. This is relevant for the
jet counting. Otherwise the same physical object would be counted twice, once
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as an electron and secondly as a jet. These matched jets are also not used to
correct the missing transverse energy.

2. For non-isolated muons we apply a correction to the ET/ . We subtract the
muon pT vectorially, but add the muon calorimeter energy vectorially back in.

The raw event rates in the sideband regions are corrected for the signal content,
i.e. the number of W+jets events in the sidebands. To predict the distribution of
W+jets events in the sectors we use W+jets Monte Carlo events. The Monte Carlo
samples we use are: ltop1n, ltop2n, ltop3n, ltop1m, ltop2m, and ltop3m listed in
table 3.1.
The non-W fraction fnonW in the signal sector D is then predicted using the corrected
event counts in the sideband regions.

fnonW =
N corr

B · N corr
C

N corr
A · ND

(4.9)

The corrected event count in the background regions is obtained from:

N corr
i = Ni − Mi

SD

MD
(4.10)

where SD is the number of signal events in sector D, which is given by SD = ND ·
(1 − fnonW). Mi is the number of Monte Carlo events in region i. Solving this
equation we find an ambiguity. The unphysical solution (negative number of events)
is dismissed. The results for the non-W fractions are given in table 4.11. The

1 jet 2 jets 3 jets

CEM 0.021 0.039 0.065

PHX 0.16 0.26 0.26

CMUP 0.016 0.010 0.014

CMX 0.018 0.014 0.014

Table 4.11: Predicted non-W fractions for the different lepton categories broken up into 3 jets.
The relative uncertainty on these fractions is 25% for CEM, CMUP and CMX. For PHX we use
an uncertainty of 30%. The given non-W fractions include the cut on the ∆φ between the axis of
leading jet in the transverse plane and the ET/ vector (QCD cut).

systematic uncertainty for CEM, CMUP and CMX is taken to be 25%, the same
number as used in tt̄ analyses (e.g. reference [52]). We tried to use the 4-sector
method also for the PHX events taken with the MET PEM v trigger. But it turns
out that the standard method is not applicable here because there are too few events
predicted. One reason could be a potential trigger bias, since the ET/ distribution is
distorted by the trigger. That is why we use events taken with the PLUG ELECTRON 20

trigger. The resulting numbers are given in table 4.11. We assign a systematic
uncertainty of 30% to these pretag non-W fractions for the PHX samples.
To predict the number of non-W events in the b tagged sample we multiply the
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1 jet 2 jets 3 jets

Electrons 0.026 0.029 0.029

Muons 0.030 0.045 0.029

Table 4.12: b tag fractions.

1 jet 2 jets 3 jets

CEM 20.0 ± 5.0 7.2 ± 1.8 2.0 ± 0.5

PHX 88.1 ± 26.4 110 ± 38 6.9 ± 2.1

CMUP 8.5 ± 2.1 1.3 ± 0.3 0.3 ± 0.1

CMX 5.6 ± 1.4 1.0 ± 0.3 0.2 ± 0.1

Total 122.1 ± 34.9 119.5 ± 40.4 9.3 ± 2.7

Table 4.13: Number of predicted non-W events with b tag.

number of pretag events by the tagging rates ǫtag, as quoted in table 4.12, and the
non-W fraction in table 4.11. The resulting numbers of b tagged non-W events are
listed in table 4.13.

Since the background is still underestimated in the PHX W + 2 jets sample after
b tagging, the described standard method to estimate the non-W fraction does not
work for the PHX sample. Therefore, we fit the distribution of ∆φ between the
second leading jet and the ET/ vector to determine the number of non-W events
we expect in the PHX region. The distribution can be seen in figure 4.2. This
distribution has a significant peak at low values where the ET/ points in direction
of the jet. To model the shape of non-W events which we need for the fit of the
distribution we use a sample of generic jet events, where one jet with a high fraction
of energy deposited in the electromagnetic part of the calorimeter is used to mock
an electron candidate. Using the fit result we find 110 ± 38 non-W events in the
PHX sample which is also listed in table 4.13. This corresponds to a non-W fraction
of about 50%.

4.2.2 Mistags

One substantial background arises from falsely reconstructed secondary vertices
which lead to a false b tag for W+ light flavor jets events. We estimate the number
of mistagged events by applying the mistag matrix provided by the CDF high-pT b
tagging group [53]. This matrix gives the probability to mistag a light jet as a heavy
jet. The result of the mistag estimate is shown in table 4.14. The uncertainties of
the prediction are calculated taking the correlations between jet bins into account.
In addition to the statistical uncertainties quoted in table 4.14 there is an additional
systematic uncertainty of 8% on the number of predicted negative tags. α · β is a
scale factor.
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Figure 4.2: Distribution of the difference in azimuth, ∆φ, between the 2nd leading jet and the ET/
Vector. This distribution is used to extract the non-W fraction in the PHX sample.

4.2.3 Heavy Flavor

The heavy flavor backgrounds are estimated by applying heavy flavor fractions fHF

measured in generic jet data to the pretag W+jets samples. The numbers can be
found in reference [54]. The number of W + heavy flavor events NHF is estimated
according to

NHF = Npretag · (1 − fnonW) · fHF · ǫtag . (4.11)

The number of events in the pretag sample Npretag is given in table 4.15. Using
equation 4.11 we get the result for the expected heavy flavor backgrounds as given
in table 4.15.

4.2.4 Event Yield Summary

If we add up all the numbers of expected events for the different processes we
estimated in the sections before, we get our total event yield. It is shown for the
three jet bins and divided into the different processes in table 4.16. The last line
shows the number of events we find in data. Our prediction matches the data in
all three jet bins well. Table 4.17 shows the event yield observed in data split up
into lepton categories as well as our prediction. Since our analysis focuses on the
W +2 jets sample the column 2 jets is of most interest. For our analysis we expect
674.1±96.1 events and we find 689 events in data. This is a good agreement between
prediction and observation.
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Predicted negative tags

1 jet 2 jets 3 jets

CEM 115.3 ± 6.9 53.5 ± 1.4 19.4 ± 0.3

PHX 73.4 ± 3.0 42.5 ± 0.8 15.81 ± 0.3

CMUP 52.5 ± 3.0 23.3 ± 0.8 7.3 ± 0.1

CMX 30.8 ± 2.1 14.2 ± 0.5 3.9 ± 0.1

Total 272.0 ± 10.9 133.5 ± 2.2 46.4 ± 0.5

Observed negative tags

CEM 122 53 12

PHX 62 40 16

CMUP 48 20 5

CMX 39 14 1

Total 271 127 34

Correction factor α · β = 1.37 ± 0.15

Predicted positive mistags

Total 351.3 ± 52.5 164.3 ± 29.6 56.0 ± 7.6

Table 4.14: Number of predicted and observed negative tagged events broken up into the different
lepton categories. The numbers given in this table are before subtracting the non-W fraction. The
number of predicted positive mistags, however, does include the correction for the non-W fraction.

1 jet 2 jets 3 jets

Npretag 81080 ± 1550 13934 ± 550 2394 ± 146

Wbb̄ 270.0 ± 81.2 170.7 ± 49.2 48.5 ± 12.5

Wcc̄ 94.7 ± 23.7 64.5 ± 17.3 20.7 ± 5.6

Wc 268.5 ± 56.4 69.4 ± 15.3 12.2 ± 2.6

Total HF 633.2 ± 161.3 304.6 ± 81.9 81.4 ± 20.7

Table 4.15: Number of predicted heavy flavor events.



4.2. Data Based Background Estimates 51

1 jet 2 jets 3 jets

Wbb̄ 270.0 ± 81.2 170.7 ± 49.2 48.5 ± 12.5

Wcc̄ 94.7 ± 23.7 64.5 ± 17.3 20.7 ± 5.6

Wc 268.5 ± 56.4 69.4 ± 15.3 12.2 ± 2.6

Total HF 633.2 ± 161.3 304.6 ± 81.9 81.4 ± 20.7

Non-W 122.1 ± 34.9 119.5 ± 40.4 9.3 ± 2.7

Mistags 351.3 ± 52.5 164.3 ± 29.6 56.0 ± 7.6
Total data based
background 1106.6 ± 169.7 588.4 ± 96.0 146.7 ± 22.0

tt̄ 4.85 ± 0.51 40.34 ± 3.45 91.66 ± 7.37

WW 1.68 ± 0.18 3.81 ± 0.40 1.10 ± 0.12

WZ 2.77 ± 0.29 6.09 ± 0.55 1.50 ± 0.13

ZZ 0.05 ± 0.01 0.21 ± 0.02 0.10 ± 0.01

Z → ττ 2.96 ± 0.32 2.59 ± 0.27 1.68 ± 0.18

Z → µµ 9.84 ± 1.09 4.44 ± 0.48 0.53 ± 0.06

Total MC bkg. 22.2 ± 1.3 57.5 ± 3.6 96.6 ± 7.4

t-channel 7.36 ± 0.77 16.71 ± 1.72 4.14 ± 0.37

s-channel 3.40 ± 0.36 11.52 ± 0.91 2.41 ± 0.19

Total Single-Top 10.8 ± 1.1 28.2 ± 2.6 6.5 ± 0.6

Total Prediction 1139.4 ± 161.3 674.1 ± 96.1 249.8 ± 23.2

Observation 1141 689 280

Table 4.16: Expected and observed event yield split up into different processes.

Predicted Number of Events

1 jet 2 jets 3 jets

CEM 465.1 ± 99.1 250.7 ± 47.0 112.7 ± 13.1

PHX 315.4 ± 74.7 236.8 ± 52.4 57.6 ± 10.7

CMUP 226.4 ± 47.2 120.6 ± 21.9 53.5 ± 5.8

CMX 132.5 ± 27.8 65.8 ± 12.6 26.0 ± 3.1

Total 1139.4 ± 161.3 674.1 ± 96.1 249.8 ± 23.2

Observed Number of Events

1 jet 2 jets 3 jets

CEM 440 259 127

PHX 329 221 85

CMUP 222 137 47

CMX 150 72 21

Total 1141 689 280

Table 4.17: Predicted and observed event yield split up into lepton categories.
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Chapter 5

Neural Network Discriminants

In this chapter, the used technique to distinguish between signal and background is
introduced. We use neural networks to combine several discriminants into one more
powerful discriminant. First the NeuroBayes r© package [55], the neural network
we use, is introduced. After that, the training of the networks for our analysis is
explained and finally the creation of the templates out of the neural network outputs
is outlined in detail.

5.1 NeuroBayes

The NeuroBayes r© package used in this analysis is provided by the company Phi-
T. It combines a three-layer feed forward neural network as seen in figure 5.1 (a)
with a complex robust preprocessing of the input variables. Bayesian regularization
techniques are used for the training process. There is one input node for each input
variable plus one bias node. The number of nodes in the hidden layer can be freely
chosen by the user. There is one output node which gives a continuous output in
the interval [-1,1].
The nodes of two consecutive layers are connected with variable weights. For each
node j, a biased weighted sum of the values of the previous layer xi is calculated

aj(x) =
∑

i

ωixi + µ0,j (5.1)

and passed to the transfer function which gives the output of the node. The bias
µ0,j , which is calculated for each input, implements the thresholds of the several
nodes: if the input to a node is larger than its threshold, the node will send an
input to the next layer. The output of each node is determined by a transformed
sigmoid function

S(x) =
2

1 + e−a(x)
− 1 (5.2)

which gives an output of -1 for background and +1 for signal.
As can be seen in figure 5.1 (b), the sigmoid function is only sensitive to a relatively
small range about zero. By this transformation, the interval ]−∞,∞[ is mapped
to the interval [-1,+1]. For very large (x → ∞) or very small (x → −∞) values, a
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saturation effect is reached. The bias mentioned above shifts the mean of the input
data distribution to the linear part of the sigmoid function.

Input layer

Hidden layer

Output layer

(a)

a(x)
-10 -5 0 5 10

S
(a

(x
))
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0

0.5

1

(b)

Figure 5.1: (a) The geometry of a 3 layer neural network and (b) the sigmoid function given
by formula (5.2).

The output of the neural network for the output node is calculated by

o = S(
M

∑

j=0

ω
(2)
j · S(

d
∑

i=0

ω
(1)
ji xi + µ0,j)) (5.3)

where d is the number of input and M the number of hidden nodes. ω
(1)
ji denotes

the weights from the input to the hidden layer, ω
(2)
j the weights from the hidden

layer to the output node. µ0,j is the weight that connects the bias node with the
hidden nodes.

5.1.1 The Training Process

The training of the neural network is done by minimizing the deviation between the
true output and the one calculated by using the actual weights. The error function
minimized in this neural network is the entropy error function, which is essentially
given by the sum of the logarithms of the output values. The aim of the training
of the neural network is to find the minimum in the multidimensional structure of
the error function with local maxima and minima. As this task can be difficult to
solve, the training process is done by the combined method of gradient descent and
backpropagation. The neural network is trained with regularization techniques to
improve generalization performance and to avoid overtraining. During the training
process, weights (and even nodes) that have become completely insignificant are
pruned away. This reduces the number of free parameters and hence improves the
signal-to-noise ratio by removing the cause of the noise. This leads again to an
improved generalization ability. Figure 5.2 (b) displays a control plot of the training



5.1. NeuroBayes 55

process. It shows an error in arbitrary units that is minimized during the training
process. In this case the error is minimized after only few training iterations. For
more information on the the above mentioned features of NeuroBayes r© see [55].

Training iteration
20 40 60 80

ar
b

. u
n

it
s

-0.18

-0.14

-0.1

-0.06

Error Learning Sample

Figure 5.2: Control plot for the neural network training: an error in arbitrary units that needs to
be minimized against the number of training iterations.

5.1.2 Preprocessing of the Variables

To find the optimal starting point for minimizing the error function, the input vari-
ables are preprocessed. This preprocessing is done in a completely automatic way.
To reduce the influence of extreme outliers, the input distributions are equalized to
lie between -1 and 1. Those flattened distributions are then converted into a Gaus-
sian distribution, centered at zero with standard deviation 1. This avoids saturation
of the nodes due to the above mentioned shape of the activation function (see figure
5.1 (b)). After this transformation, the input variables are linearly decorrelated by
diagonalization and rotation of the covariance matrix into a unit matrix.
The above mentioned transformation to a Gaussian distribution may be altered
by an individual variable preprocessing like fitting the flattened distribution with
splines if this is considered to be sensible. In addition, discrete variables can be
treated as members of classes. The preprocessing of those kinds of variables can
also deal with a certain order of values if this is important, e.g. the number of jets
in an event. The preprocessing is also able to deal with variables that are not given
for every event by assigning the missing values to a δ-function.
Of course, those preprocessed input variables do not have any physical meaning
anymore, unlike the original ones.

5.1.3 Automatic Variable Selection

The significances of the training variables are determined automatically during the
preprocessing in Neurobayes r©.



56 Chapter 5. Neural Network Discriminants

The correlation matrix of all preprocessed input variables is calculated including
the correlation of all variables to the target. One variable after the other is omitted
to determine the loss of the total correlation to the target caused by its removal.
The variable with the smallest loss of correlation is discarded leading to an (n-1)-
dimensional correlation matrix. The same procedure is repeated with the reduced
correlation matrix to find the least important of the (n-1) remaining variables. At
the end of the preprocessing, we get a list of variables ordered according to their
correlation to the target.
The significance of each variable is calculated by dividing the loss of correlation
induced by its removal at the relevant point in the procedure described above by
the square root of the sample size, i.e. those significances are relative numbers in
terms of the reduced correlation matrices.
After the preprocessing, it is possible to cut on the significance of the variables.
Only those variables are taken into account that include relevant information that
is not already incorporated by other variables.

5.2 Training of the Neural Networks

5.2.1 Training Samples

Since we want to measure a combined single-top cross section σt+s as well as separate
cross sections for the t-channel σt and s-channel σs, we need three different trained
neural networks in this analysis. Consequently, we train separate neural networks
for t-channel, s-channel and t- and s-channel combined for the 2 jet bin. Therefore,
three separate training samples are needed. Each used training sample includes
roughly 17000 events. The samples contain a ratio of signal to background of 35%
to 65%. In the training of an s-channel network, the t-channel events are treated as
background and vice versa, although this is negligible in our case. Due to the fact
that there is no non-W Monte Carlo we add the non-W fraction to 80% to the Wbb̄
fraction and to 20% to the Wcc̄ fraction. This estimation is based on a fit performed
to the output of the neural network b tagger [56] in a control sample enriched in b
tagged QCD multi-jet events. The configurations of the training samples are shown
in table 5.1. The distribution of the 65% background to the different background
processes is the same for all three networks. The difference is that in the training
sample for the t-channel 1% of the 17000 events in the sample are s-channel events
which are treated as background, whereas in the t + s-channel training sample 14%
of the 17000 events are s-channel events, 15% are t-channel (2 → 2) and 6% (2 → 3)
events which are all treated as signal. The same can be seen for the s-channel
training sample where 34% are s-channel events which are marked as signal in the
training process and 1% are t-channel events which are treated as background.

5.2.2 Input Variables for the Neural Networks

A neural network is a tool to combine information from different sources concerning
one target into one powerful discriminant considering correlations between the dif-
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t-channel s-channel t- and s-channel

t-channel 2− >2 23.0% 0.5% 15.0%

t-channel 2− >3 11.0% 0.5% 6.0%

s-channel 1.0% 34.0% 14.0%

tt̄ 4.6% 4.6% 4.6%

WW 0.4% 0.4% 0.4%

WZ 0.7% 0.7% 0.7%

ZZ 0.0% 0.0% 0.0%

Z− > ττ 0.3% 0.3% 0.3%

Wbb̄ 0 parton (e,ν) 11.8% 11.8% 11.8%

Wbb̄ 0 parton (µ,ν) 11.8% 11.8% 11.8%

Wcc̄ 0 parton (e,ν) 4.2% 4.2% 4.2%

Wcc̄ 0 parton (µ,ν) 4.2% 4.2% 4.2%

Wc 1 parton (e,ν) 4.4% 4.4% 4.4%

Wc 1 parton (µ,ν) 3.6% 3.6% 3.6%

mistags 18.9% 18.9% 18.9%

Table 5.1: Configuration of the training samples for the 2 jet bin (35% signal, 65% background).

ferent sources. In our case the input for the neural network are variables measured in
the detector or reconstructed out of the measured values. A perfect variable would
have a completely different shape for signal events, t-channel and s-channel, than
for background events. Unfortunately, there is no single “golden” variable and most
variables have only a small discrimination power.
As mentioned in section 5.1.2, NeuroBayes r© is able to select the most relevant vari-
ables automatically. We studied approximately 40 variables and pruned away all
which had a significance of less than three sigma. After that all three networks have
14 input variables. Table 5.2 shows the 14 variables ranked according to the output
of NeuroBayes r©. The significance σ is also shown in the list. It is possible that
a variable has a better rankt than another variable even though its significance is
smaller. This can happen because of the way in which the two values are calculated
by NeuroBayes r© as explained in section 5.1.3.

The input variables are measured or derived values for every event. Since we focus
on the so called W+2 jets channel, each event we select has exactly one tight lepton
and missing transverse energy both originating from the W decay as well as two tight
jets. The input variables can be reconstructed from these values, e.g. the invariant
mass of the lepton, the missing transverse enregy and the b jet, Mlνb, or they are
already directly measured in the detector, e.g. the transverse energy of the leading
jet ET (j1). The third category of input variables are values which are calculated
by algorithms out of the measured values, e.g. the neural network b-tagger ANN
B-Jets1 [56]. In the following the 14 input variables are described and a Monte
Carlo study for four different processes is done. The t-channel is shown in black,
the s-channel in red, the tt̄ events in yellow and the Wbb̄ in dashed blue. All the
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Rank Variable correlation significance [σ]

1. ANN B-Jets1 33.39 44.52

2. Mlνb 27.20 36.27

3. Q · η 18.17 24.23

4. ET (j2) 16.11 21.48

5. cos(Θl,q) 12.25 16.33

6. ET (j1) 8.51 11.35

7. log10(∆34) 6.97 9.30

8.
∑

i η(ji) 6.35 8.47

9. PT (lep) 6.53 8.70

10. ηW 5.48 7.31

11. χ2
3 4.31 5.75

12. Mj1,j2 3.76 5.02

13.
∑

η(jT , jl) 2.49 3.32

14. ∆χ2 2.49 3.33

Table 5.2: Input Variables of the t+s-channel neural network ordered according to their correlation
to the target. The significance of the variable is also shown.

curves are normalized for comparison reasons. Those four processes are chosen since
we want to see how the two signal processes look like for the input variables, the tt̄
background is the only background with a real top in it and the Wbb̄ background
resembles all the other backgrounds not including a real top. This Monte Carlo
study should display how different the input variables look like for the different
processes.

• The first two input variables described are the so called dijet mass Mj1,j2 and
the reconstructed top mass Mlνb. Both variables are reconstructed masses
which are calculated using the measured values from the detector. The dijet
mass is the invariant mass of the two jets in the event. The two Lorentz
vectors of the jets are added vectorially and the mass of the resulting vector is
the invariant dijet mass of the event, figure 5.3 (a). The two jets in the Wbb̄
sample originate from gluon splitting. Therefore, the sum of their Lorentz
vectors gives a lower value for the mass than in the cases of the other three
processes where the jets do not originate from the same object. This explains
why the curve of the Wbb̄ sample peaks for lower values. The reconstructed
mass of the top quark is calculated using the fact that the top decays in nearly
100% of the cases into a W boson and a b jet. Therefore, the reconstructed
top mass is the sum of the reconstructed W boson and the identified b jet. If
there is more than one b jet in the event, the jet with the larger value of Q · η
is chosen. The W boson is reconstructed from the measured tight lepton and
the missing transverse energy in the event. Since only the missing transverse
energy is known, there is an ambiguity for the pz of the neutrino. We choose
the solution with the smaller value for |pz|. The reconstruction also explains
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the different shapes of the three different processes that include real tops. First
of all, the Wbb̄ background peaks at lower values since there is no top in the
events which can be seen in figure 5.3 (b). The other three processes do all
peak around the top mass since they all include real tops. The fact that the
three processes still have different shapes can be explained if we take a look
at the reconstruction. For t-channel events there should only be one b tagged
jet and therefore the only ambiguity arises from the W boson reconstruction.
In case of the s-channel it is very likely that the wrong jet is assigned as the
b jet, since there are two b jets produced. In the case that there are two b
tagged jets an additional ambiguity occurs. Only in about 55% of the cases
the assignment of the b jet is correct. Therefore, the peak of the s-channel
is not as sharp as the peak of the t-channel. The tt̄ peak is even less sharp
than the s-channel peak since there is one real top and one real antitop in the
event which both produce a b jet once they decay. This results in even more
combinatorial options.
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Figure 5.3: (a) The invariant mass of the two leading jets and (b) the reconstructed top
mass.

• The Q ·η variable is used as an input variable for the neural network since it is
a very strong discriminant for the t-channel. This can be seen in figure 5.4 (a)
where the t-channel peaks in the forward direction, whereas the other distribu-
tions peak in the central region. The variable Q ·η is defined as the product of
the charge of the lepton and the pseudorapidity η of the light quark jet (the jet
which is not assigned as the b jet from the top decay). The asymmetry of the
t-channel is due to the parton distribution function of the proton. A proton
consists of two up quarks, one down quark, gluons and seaquarks. Since in
the t-channel production mode the initial state partons are a valence quark of
the proton and a b quark from gluon splitting, the top (antitop) quark and
the light quark (antiquark) are produced propagating in the proton direction.
There are two times more top quarks than antitop quarks produced if the
initial state parton comes from the proton. The lepton in an antitop event
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has always a negative charge. The multiplication of the pseudorapidity of the
light quark with the charge of the lepton leads to the characteristic peak in the
positive regime of the Q · η distribution for t-channel events. The argument
is made for the protons, but it is the same for antiprotons with the difference
that the quarks (antiquarks) propagate in antiproton direction and two times
more antiprotons are produced. The charge of the lepton switches the peak
from the negative to the positive range.
The transverse momentum of the lepton in the event is another input vari-
able. Its Monte Carlo study can be seen in figure 5.4 (b). The lepton cut at
20 GeV/c can be seen easily.
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Figure 5.4: (a) The charge of the lepton times pseudorapidity of the leading light jet and
(b) the transverse momentum of the lepton.

• The logarithm of the ∆34 value which is calculated by the KT jet clustering
algorithm [57]. ∆34 is the cut off parameter at which the algorithm merges
four jets of the event into three jets. It is a good variable to discriminate tt̄
events. The logarithm of the cut off parameter, log10(∆34), can be seen in
figure 5.5 (a). The neural network b tagger output is a very strong variable to
discriminate backgrounds which do not include a real b. The neural network
b-tagger is described in more detail in [56]. Since all the four Monte Carlo
samples we look at include a real b jet and therefore peak at high values we
also show the distribution for mistags in green (dashed). It peaks at low
values and thus is easily separated from the other processes which is shown in
figure 5.5 (b).

• The input variable cos(Θl,q) is again a very strong variable to separate the
t-channel from the other processes as shown in figure 5.6 (a). This is because
the top quarks are produced 100 % polarized along the direction of the d-type
quark in the top rest frame in case of the t-channel as well as the s-channel.
This effect is due to the P violation in the electroweak force. Because the W
boson only couples to left handed fermions and because of the short lifetime of
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Figure 5.5: (a) The logarithm of ∆34, calculated by the KT jet clustering algorithm and (b)
the neural network output of the b tagger for the first b tagged jet.

the top quark (no hadronization) the properties of the top quark are transfered
to its decay products. This polarization can experimentally be seen through
the angle Θq,l. This is the angle between the lepton from the top decay and
the light quark jet axis in the top rest frame. In case of the s-channel, the light
quark jet axis is the beam axis. We also investigated the variable cos(Θl,beam)
but this variables does not have as much power to distinguish between signal
and background as cos(Θq,l).
The pseudorapidity of the W boson is another input variable. The W boson is
reconstructed the same way as described above. The difference of the shapes
of the different processes can be seen in figure 5.6 (b). The shape of the tt̄
sample is different because the top and the antitop are produced more central
and therefore the W boson is more central for this process as well. The shapes
of the two signal samples look very much alike and the shape of the Wbb̄
sample is much broader since it contains a real W boson not originating from
the top quark decay.

• The transverse energies of the two jets, ET (j1) and ET (j2), are measured in the
hadronic calorimeters. They are both direct measurements from the detector.
Their discriminants can be seen in figure 5.7. The different shapes can be
explained in a similar way as for the shapes of the reconstructed dijet mass.
The Wbb̄ sample peaks at low values since both jets originate from the same
gluon. Those jets lie in low energy ranges. For the tt̄ sample on the other hand
the possibility to have a high energetic jet is significantly higher and therefore
the shape is broader.

• The sum of the pseudorapidities of the two jets
∑

i η(ji) is an input variable
that is calculated from the two reconstructed jets of the event. The relevant
Monte Carlo distributions can be seen in figure 5.8 (a). The shape of the
t-channel sample can be explained through the fact that the light quark is
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Figure 5.6: (a) The cosine of the angle between the lepton and the light jet in the top rest
frame and (b) the pseudorapidity of the W boson.

produced in forward direction. Therefore, the distribution of the pseudorapid-
ity is wider. The sum of the pseudorapidity of the reconstructed top vector
and the pseudorapidity of the light quark jet

∑

η(jT , jl) on the other hand is
again influenced by the the fact that the top and antitop quarks are produced
more central for the tt̄ events. Figure 5.8 (b) shows the shape differences.

• The last two input variables are based on a Kinematic Fitter developed at the
University of Illinois [58]. This fitter uses kinematic variables to reconstruct
the objects in the event through a fit routine. The fits do all have χ2 values to
give a measure how well the fit matches the data. Since there are two possible
assignments for the b jet and two possible assignments for pz, there are four
different fits and we get four χ2 values. The χ2 is calculated according to
equation 5.4.

χ2 =
(Pb − P obs

b )2

σ2
Pb

+
(ηb − ηobs

b )2

σ2
ηb

+
(Φb − Φobs

b )2

σ2
Φb

+ (5.4)

(ET/ − ET/ obs)2

σ2
ET/

+
(Φ/ ν − Φ/ obs

ν )2

σ2
Φ/ ν

+
(Mlνb − Mobs

t )2

σ2
Mt

+ Y (Im(Pz))
2

The variables defining the χ2 can all be calculated from the Lorentz vector of
the b jet and the missing transverse energy in the event. Pb is the energy, ηb

the pseudorapidity, and Φ the angle in the x-y plane of the b jet. ET/ is the
missing transverse energy in the event, Φ/ is the angle in the x-y plane of the
missing energy, and Mlνb is the reconstructed top mass. We set the top mass
Mt to 175 GeV/c2. A penalty term proportional to the square imaginary part
of the neutrino’s pz solution with Y = 5 pushes the kinematic fit away from
unphysical neutrino solutions.
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Figure 5.7: (a) The transverse energy of the leading jet ET (j1) and (b) the transverse energy
of the second jet ET (j2).
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Figure 5.8: (a) The sum of the pseudorapidities of the jets in the event and (b) the sum of
the pseudorapidity of the reconstructed top quark and the light jet.

We examined all four χ2 plus some combinations of the four values. Based on
the variable ranking given by NeuroBayes r© we decided to take the third χ2

which can be seen in figure 5.9 (a) as well as the logarithm of the difference
between the first and the second χ2 calculated by the Kinematic Fitter ∆(χ2

1,2)
shown in figure 5.9 (b).

The neural network package provides a feature that shows the training success of
the neural network. In figure 5.10 (a), the neural network output for signal and
background can be found. This graphic is just for illustration purpose, since it
depends on the ratio of signal to background in the training sample. The graphic
just proves that the neural network is able to distinguish between background and
signal events. In figure 5.10 (b), the purity in each bin versus the neural network
output is shown. For a well trained network the points should lie on the diagonal.
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Figure 5.9: (a) The χ2 of the Kinematic Fitter for top reconstruction and (b) the difference
between the first and the second χ2 of the Kinematic Fitter for top reconstruction.

The presented graphics are examples taken from the training of the neural network
for the t-channel 2 jet bin. The other networks have different training outputs but
are generally comparable and are for that reason not shown here.

Network Output
-1 -0.6 -0.2 0.2 0.6 1

N
 E

ve
n

ts

0

200

400

600

Network Output for Signal and Background

(a)

Network Output
-1 -0.6 -0.2 0.2 0.6 1

P
u

ri
ty

0

0.2

0.4

0.6

0.8

1

Purity vs. Network Output

(b)

Figure 5.10: (a) Neural network output for signal and background of the t-channel network
and (b) purity versus neural network output for the t-channel network.

5.2.3 Validation of Input Variables

To make sure that the training is done in the right way it is not only important to
check that the purity versus neural network output plot in figure 5.10 (b) looks good
and that the error shown in figure 5.2 reached its minimum but it is also important
that the Monte Carlo matches the data. Therefore, we need to do data Monte Carlo
comparisons for the input variables. For some of the input variables the comparison
is shown in figure 5.11 and 5.12. The calculation of the variables is done in the same
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way as described in section 5.2.2. The Monte Carlo sample is put together according
to our event prediction in table 4.16 from the Monte Carlo samples listed in table 3.1.
In the plots the data is shown with black dots, the Monte Carlo estimate is shown
in red and the yellow band is the statistical error on the Monte Carlo prediction, i.e.
only statistical uncertainties are included in these plots, no systematic uncertainties.
The statistical uncertainty is the square-root of the number of entries in a certain bin.

The data Monte Carlo comparison shows good agreement within the uncertainties
for the input variables. Therefore it is sensible to assume that the presumptions we
made are correct.
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Figure 5.11: Some of the input variables for the neural network, comparing the data and the
prediction: (a) the invariant mass of the two leading jets, (b) the reconstructed top mass,
(c) the logarithm of ∆34, calculated by the KT jet clustering algorithm [57], and (d) the
lepton charge times pseudorapidity of the light jet. The Monte Carlo is normalized to the
data.
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Figure 5.12: Some of the input variables for the neural network, comparing the data and
the prediction: (a) the transverse energy of the leading jet, (b) the transverse energy of the
second jet, (c) the neural network output of the b tagger for the first b tagged jet, and (d)
the χ2 of the Kinematic Fitter for top reconstruction. The Monte Carlo is normalized to
the data.
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5.3 Neural Network Output Templates

Since our final aim in this analysis is to measure single-top content in data, we use
the neural network output as discriminant between signal and background. We use
a binned likelihood function to search for single-top in data or to calculate upper
limits on the cross section of single-top production in case we find no evidenz for
single-top. Therefore we use shape templates from Monte Carlo samples for different
processes in the likelihood fit. In addition we want to divide the output of the neural
network into a signal and a background region.
Therefore, we determine the predicted cut efficiencies which display the ratio of each
process that would survive a cut on a certain neural network output. Figure 5.13
(a) shows four examples of the cut efficiencies against the neural network output.
The t-channel is shown in black, the s-channel is shown in red, Wbb̄ dashed in blue
and tt̄ in yellow. This illustrates the use of this cut since the shapes of the curves
show that there are certain cuts where we loose significantly more on background
than we loose on signal. These cut efficiencies and the number of expected events
lead to an estimate for the ratio of signal S to square-root of background

√
B for

the different neural network outputs. This is a good indicator to choose the cutting
point for our neural network. The graph for σ = S√

B(1+0.2)
can be found in figure

5.13 (b). It includes a systematic error of 20% on the background which makes the
S√
B

smaller to be conservative.
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Figure 5.13: (a) Cut efficiency against the neural network output for different samples, (b)
σ versus neural network output.

The sigma distribution has its maximum around NNOutput = 0.2; therefore, we
choose to cut at this value. The expected σ is roughly 1.9. The output of the neural
network is divided into two regions: The background region from -1.0 to 0.2 and the
signal region from 0.2 to 1.0.
It would be possible to create templates for every physical process, but the more
templates are handed to the likelihood fit the more difficult it gets, since the fit has
more free parametersa and is not able to distinguish between the different templates.
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Looking at the different network outputs for the different processes in figure 5.14,
we realize that it is possible to combine the different processes into four templates
because the shape of the neural network output is very similar. The four templates
are: Single-top (t- and s-channel), tt̄, charm-like and bottom-like. The charm-like
template contains Wcc̄, Wc, WW and mistags. The bottom-like template is Wbb̄,
WZ, ZZ, Z− > µµ and Z− > ττ .
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Figure 5.14: (a) Neural network output for the different physical processes plotted for the
bottom like processes and (b) the charm like processes.

The number of expected events for the complete region can be found in table 5.3. It
also contains the cut efficiencies for NNOutput = 0.2. The numbers of the expected
events in the signal region is derived by the multiplication of the cut efficiency with
the total number of expected events. Consequently, the number of expected events
in the background region is calculated by subtracting the number of expected events
in the signal region from the total number of expected events. Figure 5.15 shows
the signal region of the neural network.

The expectation based on table 5.3 can be seen as the stacked histogram of the
different predicted processes. The data is shown as black marks with the statistical
uncertainty shown as black error bars. We expect 65.1 ± 9.3 events in the signal
region, while we observe 59 in data. The distribution shows no obvious evidence for
single-top production.

Now the templates are created. The tt̄ template is created by taking the output
of the neural network of the tt̄ sample. As mentioned before, the single-top tem-
plate, the bottom like and the charm like templates consist of different processes.
Every template has to be put together in the right proportion. Therefore, we take
the resulting templates for every process and weight it according to the number of
expected events for this process. Finally we have to create the three needed tem-
plates by adding up the right templates. That means for the single-top template the
t-channel and schannel template, for the charm like template we need to add the
Wcc̄, Wc, WW and mistags templates, and for the bottom-like template we need
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Figure 5.15: Data distribution of the neural network output in the signal region. The expectation
is displayed as a stacked histogram and the data as black marks.

to add the Wbb̄, WZ, ZZ, Z− > µµ and Z− > ττ templates. Since the templates
of every process were weighted according to the number of expected events for the
corresponding process it can happen that the final templates is dominated by one
process, e.g. the bottom like template is strongly dominated by the Wbb̄ sample.
The resulting four different templates can be seen in figure 5.16 (a) for the combined
neural network. The templates are normalized to unit area for better comparison.
The single-top template is shown in black and even though the shape is fairly flat
it can be seen that it is the template which is the most signal-like. The templates
for the charm-like background in green and the bottom-like background in blue
peak for low neural network outputs, which classifies them clearly as background.
Since tt̄ includes a real top, the template for this process in red is also flat. But
in comparison to the single-top template it has its peak in the background region.
Figure 5.16 (b) shows the neural network output for the two single-top production
modes we consider for the combined neural network, t-channel in red and s-channel
in green. The t-channel is better recognized as signal than the s-channel. In black,
the combined single-top template can be seen. They are also normalized to unit
area.

In figure 5.17, the five templates for the separate search are shown. They are created
in the same way as the templates for the combined search except for the fact that
they are two dimensional with the output of the t-channel neural network on the
x-axis and the output of the s-channel neural network on the y-axis. Figure 5.17 (a)
shows that t-channel events are detected by the t-channel network as signal as well
as by the s-channel network. The s-channel events on the other hand are not as well
detected as the t-channel events which can be seen in figure 5.17 (b). Figure 5.17
(c) shows the tt̄ template which looks a bit like the s-channel template, which
approves the combined templates where s-channel and tt̄ also looked a bit alike.
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Process bkg region signal region total cut eff.

total 609.0 65.1 674.1 —

t-channel 7.35 9.36 16.71 0.56

s-channel 7.95 3.57 11.52 0.31

single-top 15.30 12.93 28.23 —

tt̄ 30.26 10.09 40.34 0.25

WZ 5.53 0.56 6.09 0.092

ZZ 0.19 0.02 0.21 0.074

Z → µµ 4.03 0.41 4.44 0.092

Z → ττ 2.35 0.24 2.59 0.092

Wbb̄ 232.68 28.76 261.44 0.11

bottom-like 244.79 29.98 274.8 —

Wcc̄ 90.46 2.70 93.16 0.029

Wc 66.07 3.33 69.40 0.048

WW 3.71 0.1 3.81 0.026

mistags 158.39 5.91 164.3 0.036

charm-like 318.62 12.05 330.67 —

Table 5.3: Number of expected events in the signal, background, and total region and the cut
efficiency for a cut at NNOutput = 0.2.

The difference between them is again that the tt̄ background template peaks a bit
towards lower neural network output values. The charm-like template (figure 5.17
(d)) and the bottom-like template (figure 5.17 (e)) both peak in the lower left corner
which indicates that they are recognized as background by both neural networks.
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Figure 5.16: (a) The four templates: single-top, tt̄, charm like and bottom like; (b) the two
different single-top processes and the single-top template.
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Figure 5.17: Two signal 2D templates for (a) t-channel and (b) s-channel and the three
background 2D templates of (c) tt̄, (d) charm-like and (e) b-like backgrounds.



Chapter 6

Single-Top Search

In this chapter, the analysis techniques used in this analysis are presented as well
as the results for the different searches. The likelihood function which is used to
measure the single-top contents of the CDF data samples and to calculate upper
limits on the single-top production cross sections is introduced in the first part of
the chapter. After that, the results of the combined search with neural networks
are presented followed by the results of the simultaneously measured cross section
in the separate search.

6.1 Likelihood Fit

In our analysis, a binned likelihood function, based on reference [59], is used. Binned
likelihood functions use the contents ni of a set of bins i derived from a distribution
as observables. The parameter aimed to measure is the production cross section
σ. For convenience reasons, the parameter β = σ/σSM is used, which is the cross
section normalized to its Standard Model prediction.
The binned likelihood function L(β) is defined by

L(β) =
B

∏

i=1

P (ni, µi) (6.1)

The statistical content ni of a bin i is described by the Poisson distribution

P (ni, µi) =
µni

i

ni!
e−µi (6.2)

where µi denotes the expectation value of the distribution in this bin i. This expec-
tation value µi is the sum of all signal and background process expectation values µji

contributing to the specific bin i. Each µji is the product of the normalized produc-
tion cross section βj, the integrated luminosity Lint, the event detection efficiency
of process j, νj, times the normalized content of bin i of the template histogram
for process j, αji. The product of αji times νj is sometimes called the bin specific
acceptance function νji. Thus, the Poisson mean for a bin i in the presence of d
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signal and background processes is

µi =
d

∑

j=1

µji =
d

∑

j=1

νji · βj · Lint =
d

∑

j=1

νj · αji · βj · Lint (6.3)

The likelihood consisting of B bins within this scenario is then defined by

L(β) =
B

∏

i=1

µni

i

ni!
e−µi (6.4)

We use the same likelihood function as used for the single-top search described in
reference [4]. In the following, the likelihood fit is explained considering the com-
bined search. Therefore, there are only four classes of processes. In the case of the
separate search, five processes are considered. In the combined case the classes are:
the combined single-top production modes, tt̄ background, charm-like background
and bottom-like background.

All the formulas do not include any systematic uncertainties this far. If we include
a certain number S of systematic uncertainties the expected mean in bin i changes
to:

µi =

4
∑

j=1

βj · νj · Lint ·
{

S
∏

m=1

(1 + δm · ǫjm)

}

· αji

·
{

S
∏

l=1

(1 + |δl| · (κjli+H(δl) + κjli−H(−δl)))

}

(6.5)

Some of the variables used in equation 6.5 were already explained before but they
are mentioned here for consistency reasons again. The following variable definitions
are used:

1. We consider four processes: j = index over the processes
j = 1 : single-top, j = 2 : tt̄, j = 3 : bottom-like backgrounds, j = 4 :
charm-like backgrounds.

2. The event detection efficiency of process j is named νj .

3. The normalized content of bin i of the template histogram for process j is αji.

4. We consider six effects which cause systematic uncertainties in acceptance and
in the shape of the template histograms: jet energy scale, Parton Distribution
Functions (PDF), Initial and Final State Radiation (ISR, FSR), signal gener-
ator, and neural net b tag shapes. The sources of systematic uncertainties are
indexed with m. The relative acceptance uncertainties due to these sources
are named ǫji. The relative uncertainties in the bin content of bin i of the
template histograms are called κjli. Most shape uncertainties are asymmetric.
Thus, we have to introduce positive and negative uncertainties: κjli+ and κjli−.
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5. The variation in strength of a systematic effect m is measured with the variable
δm.

Figure 6.1 illustrates how shape uncertainties are treated. We use shifted histograms
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Figure 6.1: Shifted histograms to estimate the shape uncertainty due to the uncertainty in the
jet energy scale for the b-like background and the s-channel, and due to the uncertainty in the
modeling of the neural network b tagger.

for the different uncertainties. As an example the shifted histograms due to the jet
energy scale for the bottom-like background and the s-channel are shown. Another
example is the shifted histogram of the charm-like background due to the uncer-
tainty in the modeling of the neural network b tagger. We estimate the individual
contribution of a particular source of systematics by investigating the shift in the
central value. These results are given in table 6.1. We add an additional systematic
uncertainty for the modeling of the non-W contribution. We vary the assignment
of the non-W to the two different background templates we use. The default is
bottom-like:charm-like = 80:20. We vary between bottom-like:charm-like = 100:0
and bottom-like:charm-like = 50:50. This gives us large modeling uncertainties of
about 30%, mainly because the non-W background is so large in the PHX lepton
category. It sticks out that the total systematic uncertainties for the s-channel and
the combined search are dominated by the non-W modeling, whereas the total sys-
tematic uncertainty of the t-channel search is mainly dominated by the jet energy
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Syst. Source t-channel s-channel t- and s-channel combined

ISR ±2% ±1% ±2.7%

FSR ±3% ±1% ±2.1%

Jet Energy +7% / -5% ±4% +5% / -1%

PDF ±3% ±1.5% ±1.8%

NN b tagger ±1% ±1% ±6%

non-W modeling ±2% +170% / -90% +26% / -31%

Total +8.7% / -7.2% +170.1% / -90.1% +27.4% / -31.8%

Table 6.1: Estimate of the systematic uncertainty on the central value of the likelihood fits to the
neural network outputs. The t- and s-channel values refer to the separate search, the number of t-
and s-channel combined to the combined search.

scale uncertainty.
The inclusion of systematic uncertainties is described in more detail in reference [59].
To obtain the probability distribution for the SM normalized signal cross sections
βt+s−ch, we integrate out all nuisance parameters from the likelihood function:

L∗(βt+s−ch) =

∫ +∞

0

∫ +∞

0

∫ +∞

0

L(β1, ... , β4) dβ2dβ3dβ4 (6.6)

This reduced or marginalized likelihood only depends on the normalized combined
single-top cross section. This technique is also referred to as marginalization. The
integration is implemented as a Monte Carlo integration. For each integration point
random numbers are generated for the nuisance parameters βk according to Gaussian
distributions G(βk, 1.0, ∆k). With other words in case of 10000 pseudo-experiments
we first throw 10000 random numbers, for every background process that we con-
sider, based on a Gaussian distribution. In addition, all random numbers we need for
the systematic uncertainties are thrown as well and stored together with the other
numbers as tuples. They are used in the same combination in every integration step.
This reduces the needed time to perform the pseudo-experiments significantly. The
width of the Gaussian is given by the uncertainty of the background estimation.
Based on reference [60] we choose ∆3 = 19% for the tt̄ background, ∆4 = 13% for
the charm-like background, and ∆5 = 23% for the bottom-like background. The
marginalized likelihood is finally maximized with respect to the data set.

6.2 Combined Search

We use a network trained with t-channel and s-channel events as signal to search for
single-top events. We assume the ratio between the two single-top processes to be
as predicted by the Standard Model. Now the maximum likelihood fit introduced
in section 6.1 is applied to the network output. Using pseudo-experiments, we
determine whether it is better to fit the entire neural network output histogram



6.2. Combined Search 77

or only the signal region. Pseudo-experiments are also known as ensemble tests.
They are used to test that the analysis is not biased and to determine the predicted
sensitivity as well as the expected result of the analysis. For the combined analysis,
we do 10000 pseudo-experiments. We start by throwing random numbers of events
for every process Nj from a Poisson distributions. The Poisson distributions are well
defined since we know the number of expected events for every process which is used
as the expectation value of the Poisson distribution. Based on that we create the
distribution of the discriminants by throwing Nj random numbers for every process
from the corresponding templates. This already creates a set of 10000 pseudo data
sets. At this point, the usual analysis technique starts. The pseudo data sets are
analysed like real data and the fitted results of the pseudo-experiments are put into
a histogram and the Root Mean Square (RMS) of this distribution is used as a
measure for the sensitivity, i.e. the expected statistical uncertainty of a potential
measurement. From these studies we conclude that a fit to the entire distribution
returns the best sensitivity since the RMS for the fit of the signal region is bigger
than the RMS for the fit of the total region.

The likelihood fit to data yields a best value for the cross section of

0.8+1.3
−0.8 (stat.) +0.2

−0.3 (syst.) pb

This corresponds to β = 0.27+0.46
−0.27 (stat.). This value is taken from the maximum of

the posterior probability density which is shown in figure 6.2. The resulting upper
limit on the cross section is calculated by integrating over this distribution starting
at zero until the integral covers 95% of the area under the distribution. This leads
to an upper limit of 3.4 pb (β95 = 1.17) at the 95% confidence level.
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Figure 6.2: Posterior probability density for the combined search using the neural network.
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The result of the likelihood fit to the data is illustrated in figure 6.3. The data
is shown as black dots with error bars. The fit result can be seen as the stacked
histogram added up from single-top in red, tt̄ in yellow, charm-like backgrounds in
blue and bottom-like backgrounds in green.
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Figure 6.3: Data distribution of the neural network output in the entire output region. The fitted
components are shown as the stacked histogram.

The fit result on data has now to be compared with the expectation from pseudo-
experiments. Therefore the results of pseudo-experiments are shown in figure 6.4.
Figure 6.4 (a) shows the distribution of the upper limits obtained for the pseudo-
experiments. Single-top events are included in these experiments at the expected
Standard Model rate. We define the median of the distribution as the expected
upper limit, since that means that in 50% of the pseudo-experiments the expected
upper limit at the 95% C.L. was higher than the value we choose and in 50% it
was lower. With this definition we obtain 5.7 pb as the expected upper limit. The
distribution of fit values in figure 6.4 (b) shows the central values obtained from
the likelihood fit for each pseudo-experiment. The RMS of this distribution is our
expected statistical uncertainty which is 51%. That means that we can trust the
result of our likelihood fit to the data, since it is approved by the results of the
pseudo-experiments within the uncertainties.
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6.3 Separate Search

We use two independent neural networks, one trained for s-channel and the other
one for t-channel, which provide the opportunity to search for both channels si-
multaneously. The training and input variables of the networks are similar to the
one described in section 5.2 except that each network is trained particularly for one
channel. The creation of the templates for signal and background processes was
already explained in section 5.3.

As described in section 6.2, we apply a maximum likelihood fit to the network 2D
output. The only difference in the likelihood function used is the generalization
for two dimensions. In order to estimate the sensitivity presuming a scenario of
Standard Model single-top production, pseudo-experiments are performed in the
same way as described in the last section. The resultant estimates of the likelihood
fits for the Standard Model normalized t- and s-channel cross sections and the
resultant 2D distribution are shown in figure 6.5. The RMS values are again taken
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Figure 6.5: Pseudo-experiment distributions of (a) t-channel and (b) s-channel cross section
measurement normalized to the SM prediction and (c) the 2D distribution.

to be the expected statistical uncertainties. For the t- and s-channel, the expected
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statistical uncertainty is therefore 68% and 138%, respectively. Table 6.2 shows
further values of the distributions. To calculate the expected upper limit we integrate

t-channel s-channel

95% C.L. 2.16 4.09

RMS 0.68 1.38

# in 1st bin 10.82% 25.06%

Table 6.2: Characteristical values of the pseudo-experiment distributions (in units of β). # in 1st
bin shows the percentage of pseudo-experiments in which the fit finds no single-top at all.

over the distribution starting from zero until we cover 95% of the area. The value we
stop at is the expected upper limit at 95% C.L. given in units of β. This translates
to σt−ch < 4.28 pb at the 95% C.L. for the t-channel and σs−ch < 3.60 pb at the 95%
C.L. for the s-channel. Table 6.2 also shows the percentage of pseudo-experiments
in which the fit finds no single-top at all. In case of the t-channel network nearly
11% of the pseudo-experiments show no single-top t-channel fraction in the fit. For
the s-channel network the fit result for s-channel is zero in 25% of the cases.
The 2D data distribution can be seen in figure 6.6 (a), the total expectation in
figure 6.6 (b). The upper right corner in the two histograms is the signal region
since this is the area where both the t-channel and s-channel network outputs are
high. Neither a deficit nor an excess can be seen in this region. Figures 6.6 (c)
and (d) show the corresponding 3D distributions for the data and the prediction on
logarithmical scale. The corresponding likelihood fit to the data shown in figure 6.7
gives a cross sections for the t-channel of σt−ch = 0.6+1.9

−0.6(stat.)+0.1
−0.1(syst.) pb and

for the s-channel of σs−ch = 0.3+2.2
−0.3(stat.)+0.5

−0.3(syst.)pb. The central value is marked
as the black point, the Standard Model prediction as the red point, the statistical
uncertainties are given by the black one sigma line, and to get the upper limits at
the 95% confidence level we take the values indicated by the yellow band on the t-
and s-channel axis which are σt−ch < 3.1 pb and σs−ch < 3.2 pb at the 95% C.L.,
respectively.
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Figure 6.6: (a), (b) 2D, and (c), (d) 3D distributions of both neural network outputs of data
on the left and total expectation on the right.
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Chapter 7

Conclusion and Outlook

In this thesis a data set corresponding to an integrated luminosity of 695 pb−1 has
been analysed in search for electroweak production of single-top quarks. The first
step was to determine the number of expected signal and background events. It
is important to make sure that the expectations match the numbers found in data
well. This was the case. We used a neural network technique to separate the sig-
nal from the background events. In the process of optimizing the discrimination
between signal and background we investigated the separation power of over 40 dif-
ferent variables. We found that 14 of those variables have a sufficient significance.
They are used as input variables for the neural networks. Those neural networks
were then trained with Monte Carlo events. After that we applied them to Monte
Carlo and data samples. We built templates from the output of the Monte Carlo
samples. Those templates were used in the likelihood fit to match the data. Since
this analysis is a shape based analysis it is important that all the processes involved
are well understood. This was verified by a data Monte Carlo comparisons of the
input variables.

Two different approaches are taken to measure the cross sections of single-top quark
production. The first one is the combined search in which only one network is used.
This network is trained with t- and s-channel events as signal. The second approach
is the simultaneous measurement of the t-channel and the s-channel production cross
section. Here two separately trained networks are used. Since neither analysis finds
any evidence for a signal we calculate upper limits on the single-top cross section
using a Bayesian technique. The observed limit at the 95% Confidence Level (C.L)
on the s + t combined single-top cross section is 3.4 pb. For the separate search
the observed limits at the 95% C.L. are 3.1 pb and 3.2 pb on the t-channel and s-
channel single-top production cross section, respectively. In table 7.1, we summarize
the expectations and results of our analyses. These limits are the most stringent
limits for the single-top quark production determined up to date.

Based on the results of this analysis there seems to be a deficit of single-top events.
But it is hard to conclude whether this deficit is caused by the nature of electroweak
single-top quark production, by not well understood background processes and de-
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Technique Expected Limit Observed Limit

NN combined 5.7 pb 3.4 pb

NN t-channel 4.3 pb 3.1 pb

NN s-channel 3.6 pb 3.2 pb

Table 7.1: Summary of expected and observed upper limits at the 95% Confidence Level. The
pseudo-experiments that were used to find the expected limits included single-top events at the
predicted Standard Model rate.

tector effects, or even wrong theoretical calculations. The CDF collaboration will
be able to answer this question in the near future with further improved analyses
and more data taken.
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