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CHAPTER 1 

YMG-MILLS FIELDS AND THE LATTICE 

Michael Creutz 
Physics Department, Brookhaven National Laboratory 

Upton, NY 11973, USA 
E-mail: creutzbnl.gov 

The Yang-Mills theory lies at  the heart of our understanding of elementary par- 
ticle interactions. For the strong nuclear forces, we must understand this the- 
ory in the strong coupling regime. The primary technique for this is the lattice. 
While basically an ultraviolet regulator, the lattice avoids the use of a pertur- 
bative expansion. I discuss some of the historical circumstances that drove us 
t o  this approach, which has had immense success, convincingly demonstrating 
quark confinement and obtaining crucial properties of the strong interactions 
from f i s t  principles. 

1. Introduction 

Originally motivated to extend the gauge theory of quantum electrodynam- 
ics t o  include isospin, the Yang-Mills theory has become a core ingredient of 
all modern theories of elementary particles. With the particular application to  
the strong interactions of quarks interacting by exchanging non-Abelian gauge 
gluons, some rather unique issues arise. In particular, asymptotic freedom and 
dimensional transmutation imply that low energy physics is controlled by large 
effective coupling constants. Long distance phenomena, such as chiral symme- 
try breaking and quark confinement, lie outside the realm of accessibility to  
the traditional Feynman diagram approach. This drove us to  new approaches, 
amongst which the lattice has proven the most successful. 

This chapter is a personal reminiscence of how the lattice approach was de- 
veloped and grew t o  become the dominant approach to  study non-perturbative 
effects in quantum field theory. Along the way we will see that the contributions 
have been both practical and fundamental. They are practical in the sense that 
we can perform quantitative computer calculations of non-perturbative effects 
in the strong interactions. They are fundamental in the sense that the lattice 
gives deep insights into the workings of relativistic field theory, in particular 
into anomalous features that distinguish between the classical and the quan- 
tum theories. 

1 
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2. Before the lattice 

I begin by summarizing the situation in particle physics in the late ~ O ’ S ,  when 
I was a graduate student. Quantum-electrodynamics had already been im- 
mensely successful, but that theory was in some sense “done.” While hard cal- 
culations remained, and indeed still remain, there was no major conceptual 
advance remaining. 

These were the years when the “eightfold way” for describing multiplets 
of particles had recently gained widespread acceptance. The idea of “quarks” 
was around, but with considerable caution about assigning them any physi- 
cal reality; maybe they were nothing but a useful mathematical construct. A 
few insightful theorists were working on the weak interactions, and the ba- 
sic electroweak unification was beginning to emerge. The SLAC experiments 
were observing substantial inelashic electron-proton scattering at large angles, 
and this was quickly interpreted as evidence for substructure, with the term 
“parton” coming into play. While occasionally there were speculations relating 
quarks and partons, people tended to  be rather cautious about pushing this too 
hard. 

A crucial feature of the time was that the extension of quantum electrody- 
namics t o  a meson-nucleon field theory was failing miserably. The analog of the 
electromagn’etic coupling had a value about 15, in comparison with the 1/137 of 
QED. This meant that higher order corrections t o  perturbative processes were 
substantially larger than the initial calculations. There was no known small 
parameter in which t o  expand. 

In frustration over this situation, much of the particle theory community set 
aside traditional quantum field theoretical methods and explored the possibil- 
ity that particle interactions might be completely determined by fundamental 
postulates such as analyticity and unitarity. This “S-matrix” approach raised 
the deep question of just “what is elementary?” A delta baryon might be re- 
garded as a combination of a proton and a pion, but it would be just as correct 
t o  regard the proton as a bound state of a pion with a delta. All particles are 
bound together by exchanging themselves. These “dual” views of the basic ob- 
jects of the theory persist today in string theory. 

3. The birth of QCD 

As we entered the 1970’s, partons were increasingly identified with quarks. 
This shift was pushed by two dramatic theoretical accomplishments. First was 
the proof of renormalizability for non-Abelian gauge theories1, giving confi- 
dence that these elegant mathematical structures2 might have something t o  
do with reality. Second was the discovery of asymptotic freedom, the fact that 
interactions in Yang-Mills theories become weaker at short distances3. Indeed, 
this was quickly connected with the point-like structures hinted at in the SLAC 
experiments. Out of these ideas evolved QCD, the theory of quark confining dy- 
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namics. 
The viability of this picture depended upon the concept of “confinement.” 

While there was strong evidence for quark substructure, no free quarks were 
ever observed. This was particularly puzzling given the nearly free nature of 
their apparent interactions inside the nucleon. This returns us to  the question 
of “what is elementary?” Are the fundamental objects the physical particles we 
see in the laboratory or are they these postulated quarks and gluons? 

Struggling with this paradox led to  the now standard flux-tube picture of 
confinement. The eight gluons are analogues of photons except that they carry 
“charge” with respect to  each other. Without confinement gluons would pre- 
sumably be free massless particles like the photon. But a massless charged 
particle would be a rather peculiar object. Indeed, what happens t o  the self 
energy in the electric fields around a gluon? Such questions naturally lead to 
a conjectured instability of the ether that removes zero mass gluons from the 
spectrum. This is to  be done in a way that does not violate Gauss’s law. Note 
that a Coulombic l/r2 field is a solution of the equations of a massless field, not 
a massive one. Without massless particles in the spectrum, such a spreading of 
the gluonic flux is not allowed since it cannot satisfy the appropriate equations 
in the weak field limit. But from Gauss’s law, the field lines emanating from 
a quark cannot end. Instead of spreading in the inverse square manner, the 
flux lines cluster together, forming a tube emanating from the quark and ulti- 
mately ending on an anti-quark as sketched in Fig. 1. This structure is a real 
physical object, and grows in length as the quark and anti-quark are pulled 
apart. The resulting force is constant at long distance, and is measured via the 
spectrum of high angular momentum states, organized into the famous “Regge 
trajectories.” In physical units, the flux tube pulls with a strength of about 14 
tons. 

The reason a quark cannot be isolated is similar t o  the reason that a piece of 
string cannot have just one end. Of course one can’t have a piece of string with 
three ends either, but this is the reason for the underlying SU(3)  group theory, 
wherein three fundamental charges can form a neutral singlet. It is important 
t o  emphasize that the confinement phenomenon cannot be seen in perturbation 
theory; when the coupling is turned off, the spectrum becomes free quarks and 
gluons, dramatically different than the pions and protons of the interacting 
theory. 

4. The 70’s revolution 

The discoveries related to  the Yang-Mills theory were just the beginning of a 
revolutionary sequence of events in particle physics. Perhaps the most dra- 
matic was the discovery of the J/$J particle*. The interpretation of this object 
and its partners as bound states of heavy quarks provided the hydrogen atom 
of QCD. The idea of quarks became inescapable; field theory was reborn. The 
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Fig. 1. A tube of gluonic flux connects quarks and anti-quarks. The strength of this string is 14 
tons. 

SU(3) non-Abelian gauge theory of the strong interactions was combined with 
the recently developed electroweak theory t o  become the durable “standard 
model.” 

This same period also witnessed several additional remarkable events on 
the more theoretical front. Non-linear effects in classical field theories were 
shown to have deep consequences for their quantum counterparts. Classical 
‘(lumpsyy represented a new way t o  get particles out of a quantum field theory5. 
Much of the progress here was in two dimensions, where techniques such as 
“bosonization” showed equivalences between theories of drastically different 
appearance. A boson in one approach might appear as a bound state of fermions 
in another, but in terms of the respective Lagrangian approaches, they were 
equally fundamental. Again, we were faced with the question “what is elemen- 
tary?“ Of course modern string theory is discovering multitudes of “dualities” 
that continue to raise this same question. 

The ensuing obsession with classical solutions quickly led to  the discovery 
of “pseudo-particles” or (‘instantons’’ as classical solutions of the four dimen- 

sional Yang-Mills theory in Euclidean space time. See R. Jackiw’s contribution 
t o  this volume. These turned out to  be intimately related to the famous anoma- 
lies in current algebra, and gave a simple mechanism t o  generate the anoma- 
lous masses of such particles as the 7’. These effects were all inherently non- 
perturbative, having an explicit exponential dependence in the inverse cou- 
pling. If the coupling is reduced in the theory with a fixed cutoff, these effects 
fall t o  zero faster than any power of the coupling. 

This slew of discoveries had deep implications: field theory can display 
much more structure than seen from the traditional analysis of Feynman di- 
agrams. But this in turn had crucial consequences for practical calculations. 
Field theory is notorious for divergences requiring regularization. The bare 
mass and charge are divergent quantities. They are not the physical observ- 
ables, which must be defined in terms of physical processes. To calculate, a 
“regulator” is required to  tame the divergences, and when physical quantities 
are related t o  each other, any regulator dependence should drop out. 
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The need for controlling infinities had, of course, been known since the early 
days of QED. But all regulators in common use were based on Feynman dia- 
grams; the theorist would calculate diagrams until one diverged, and that dia- 
gram was then cut off. Numerous schemes were devised for this purpose, rang- 
ing from the Pauli-Villars approach to  forest formulae t o  dimensional regular- 
ization. But with the increasing realization that non-perturbative phenomena 
were crucial, it was becoming clear that we needed a “non-perturbative” regu- 
lator, independent of diagrams. 

5. The lattice 

The necessary tool appeared with Wilson’s lattice theory. He originally pre- 
sented this as an example of a model exhibiting confinement. The strong cou- 
pling expansion has a non-zero radius of convergence, allowing a rigorous 
demonstration of confinement, albeit in an unphysical limit. The resulting 
spectrum has exactly the desired properties; only gauge singlet bound states 
of quarks and gluons can propagate. 

This was not the first time that the basic structure of lattice gauge theory 
had been written down. A few years earlier, Wegner? presented a 2, lattice 
gauge model as an example of a system possessing a phase transition but not 
exhibiting any local order parameter. In his thesis, Jan Smit8 described using 
a lattice regulator to  formulate gauge theories outside of perturbation theory. 
The time was clearly ripe for the development of such a regulator. Very quickly 
after Wilson’s suggestion, Balian, Drouffe, and Itzyksong explored an amaz- 
ingly wide variety of aspects of these models. 

To reiterate, the primary role of the lattice is to  provide a non-perturbative 
cutoff. Space is not really meant t o  be a crystal, the lattice is a mathematical 
trick. It provides a minimum wavelength through the lattice spacing a, i.e. a 
maximum momentum of n/a.  Path summations become well defined ordinary 
integrals. By avoiding the convergence difficulties of perturbation theory, the 
lattice provides a route towards the rigorous definition of quantum field theory. 

The approach, however, had a marvelous side effect. By discreetly mak- 
ing the system discrete, it becomes sufficiently well defined t o  be placed on 
a computer. This was fairly straightforward, and came at the same time that 
computers were growing rapidly in power. Indeed, numerical simulations and 
computer capabilities have continued to  grow together, making these efforts 
the mainstay of modern lattice gauge theory. 

6. Gauge fields and phases 

As formulated by Wilson; the lattice cutoff is quite remarkable in that it man- 
ages t o  keep exact many of the concepts of a gauge theory. Of course, there are 
many ways to  think of a gauge theory, and this is apparent in the variety of 
viewpoints expressed in the contributions to  this volume. 
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At the .most simplistic level, a Yang-Mills theory is just electrodynamics 
embellished with isospin symmetry. By working directly with elements of the 
gauge group, this is inherent in lattice gauge theory from the start. 

At another level, a gauge theory is a theory of phases acquired by a par- 
ticle as it passes through space time. Using group elements on links directly 
gives this connection, with the phase associated with some world-line being 
the product of these elements along the path in question. Of course, for the 
Yang-Mills theory the concept of “phase” becomes a rotation in the internal 
symmetry group. 

A gauge theory is a theory with a local symmetry. With the Wilson action 
being formulated in terms of products of group elements around closed loops, 
this symmetry remains exact even with the cutoff in place. 

In perturbative discussions, the local symmetry forces a gauge fixing t o  re- 
move a formal infinity of different gauges. For the lattice formulation, however, 
the use of a compact representation for the group elements means that the inte- 
gration over all gauges is finite. To study gauge invariant observables, no gauge 
fixing is required t o  define the theory. Of course gauge fixing can still be done, 
and must be introduced to study more conventional gauge variant quantities 
such as gluon or quark propagators. 

The only definition of a gauge theory that the lattice does not keep exact 
is how a gauge field transforms under Lorentz transformations. In a contin- 
uum theory the basic vector potential can change under a gauge transforma- 
tion when transforming between frames. The lattice, of course, breaks Lorentz 
invariance, and thus this concept looses meaning. 

7. The Wilson action 

The concept of gauge fields as path dependent phases leads directly t o  the con- 
ventional method for formulating the quark and gluon fields on a lattice. We 
approximate a general quark world-line by a set of hoppings lying along lattice 
bonds, as sketched in Fig. 2. We then introduce the gauge field as group valued 
matrices on these bonds. Thus the gauge fields form a set of SU(3)  matrices, 
one such associated with every nearest neighbor bond on our four-dimensional 
hyper-cubic lattice. 

In terms of these matrices, the gauge field dynamics takes a simple natural 
form. In analogy with regarding electromagnetic flux as the generalized curl 
of the vector potential, we are led t o  identify the flux through an elementary 
square, o r  “plaquette,” on the lattice with the phase factor obtained on running 
around that plaquette; see Fig. 3. Spatial plaquettes represent the “magnetic” 
effects and plaquettes with one direction time-like give the “electric” fields. 
This motivates the conventional “action” used for the gauge fields as a sum 
over all the elementary squares of the lattice. Around each square we multiply 



May 18,2004 9:38 WSPC/Trim Size: 9.75in x 6.5in for Review Volume 
- 

Yang-Mills fields and the lattice 

a 

X 

7 

Fig. 2. In lattice gauge theory the world-line describing the motion of a quark through space-time 
is approximated by a sequence of discrete hops. On each of these hops the quark wave function 
picks up a “phase” described by the gauge fields. For the strong interactions, this phase is a unitary 
matrix in the group SU(3) .  

the phases and t o  get a real number we take the real part of the trace 

P 1 E P  

Here the fundamental squares are denotedp and the links 1. As we are dealing 
with non-commuting matrices, the product around the square is meant t o  be 
ordered. 

Fig. 3. In analogy with Stoke’s law, the flux through an elementary square of the lattice is found 
from the product of gauge matrices around that square. The dynamics is determined by adding the 
real part of the trace of this product over all elementary squares. This “action” is inserted into a 
“path integral.” The resulting construction is formally a partition function for a system of “spins” 
existing in the group SU(3) .  

To formulate the quantum theory of this system one usually uses the Feyn- 
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man path integral. For this, exponentiate the action and integrate over all dy- 
namical variables to  construct 

Z= (dU)e-Os J 
where the parameter p controls the bare coupling. This converts the three 
space dimensional quantum field theory of gluons into a classical statistical 
mechanical system in four space-time dimensions. Such a many-degree-of- 
freedom statistical system cries out for Monte Carlo simulation, which now 
dominates the field of lattice QCD. Note the close analogy with a magnetic sys- 
tem; we could think of our matrices as “spins” interacting through a four spin 
coupling expressed in terms of the plaquettes. 

The formulation is in Euclidean four dimensional space, based on an un- 
derlying replacement of the time evolution operator e-iHt by e-Ht. Despite in- 
volving the same Hamiltonian, excited states are inherently suppressed and 
information on high energy scattering is particularly hard t o  extract. However 
low energy states and matrix elements are the natural physical quantities to  
explore numerically. This is the bread and butter of the lattice theorist. In- 
deed, the simulations reproduce the qualitative spectrum of stable hadrons 
quite well. Matrix elements currently under intense study are playing a cru- 
cial role in ongoing tests of the standard model of particle physics. 

8. A paucity of parameters 

Now I wish to  reiterate one of the most remarkable aspects of the theory of 
quarks and gluons, the small number of adjustable parameters. To begin with, 
the lattice spacing itself is not an observable. We are using the lattice t o  define 
the theory, and thus for physics we are interested in the continuum limit a + 0. 
Then there is the coupling constant, which is also not a physical parameter 
due t o  the phenomenon of asymptotic freedom. The lattice works directly with 
a bare coupling, and in the continuum limit this should vanish as predicted by 
asymptotic freedom 

2 + o  
go l og ( l /ha )  (3) 

In the process, the coupling is replaced by an overall scale A, which might be 
regarded as an integration constant for the renormalization group equation. 
Coleman and Weinberglo gave this phenomenon the marvelous name “dimen- 
sional transmutation.”. Of course an overall scale is not really something we 
should expect to  calculate, from first principles. Its value would depend on the 
units chosen, be they furlongs o r  light-fortnights. 

Next consider the quark masses. These also renormalize to  zero as a power 
of the coupling in the continuum limit. Removing this divergence, we can define 
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a renormalized quark mass, which is a second integration constant of the renor- 
malization group equations. One such constant n/r, is needed for each quark 
“flavor” or species i. Up to an irrelevant overall scale, the physical theory is 
then a function only of the dimensionless ratios Mi/A.  These are the only free 
parameters in the strong interactions. The origin of the underlying masses re- 
mains one of the outstanding mysteries of particle physics. 

With multiple flavors, the massless quark limit gives a rather remarkable 
theory, one with no undetermined dimensionless parameters. This limit is not 
terribly far from reality; chiral symmetry breaking should give massless pions, 
and experimentally the pion is considerably lighter than the next non-strange 
hadron, the rho. A theory of two massless quarks is a fair approximation t o  the 
strong interactions at intermediate energies. In this limit all dimensionless 
ratios should be calculable from first principles, including quantities such as 
the rho to  nucleon mass ratio. The one flavor theory provides an interesting 
intellectual exercise; indeed, the massless one flavor theory is not uniquely 
definedll . 

Sfnce it is absorbed into an overall scale, the strong coupling constant at any 
physical scale is not an input parameter, but should be determined from first 
principles. Such a calculation has gotten lattice gauge theory into the famous 
particle data group tabled2. With appropriate definition a recent lattice result 
is 

(4) ~ r , ( M z )  = 0.115 f 0.003 

where the input is details of the charmonium spectrum. 

9. Numerical simulation 

While other techniques exist, such as strong coupling expansions, large scale 
numerical simulations currently dominate lattice gauge theory. They are based 
on attempts to  evaluate the path integral 

Z =  (civ)e-ps (5) s 
with ,O proportional to  the inverse bare coupling squared. A direct evaluation 
of such an integral has pitfalls. At first sight, the basic size of the calculation 
is overwhelming. Considering a lo4 lattice, small by today standards, there are 
40,000 links. For each is an SU(3) matrix, parametrized by 8 numbers. Thus 
we have a lo4 x 4 x 8 = 320,000 dimensional integral. One might try to  replace 
this with a discrete sum over values of the integrand. If we make the extreme 
approximation of using only two points per dimension, this gives a sum with 

(6)  2320,000 = 3 g 1096,329 

terms! Of course, computers are getting pretty fast, but one should remember 
that the age of universe is only N nanoseconds. 
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These huge numbers suggest a statistical treatment. Indeed, the above in- 
tegral is formally just a partition function. Consider a more familiar statistical 
system, such as a glass of beer. There are a huge number of ways of arranging 
the atoms of carbon, hydrogen, oxygen, etc. that still leaves us with a glass of 
beer. We don’t need to  know all those arrangements, we only need a dozen or 
so “typical” glasses to  know all the important properties. 

This is the basis of the Monte Carlo approach. The analogy with a partition 
function and the role of as a temperature enables the use of standard tech- 
niques t o  obtain “typical” equilibrium configurations, where the probability of 
any given configuration is given by the Boltzmann weight 

~ ( c )  - e-PS(C) (7) 

For this we use a Markov process, making changes in the current configuration 

c -+ C’ + ... (8) 

biased by the desired weight. 
The idea is easily demonstrated with the example of ZZ lattice gauge 

theory13. For this toy model the links are allowed to  take only two values, ei- 
ther plus or minus unity. One sets up a loop over the lattice variables. When 
looking at a particular link, calculate the probability for it to  have value 1 

Then pull out a roulette wheel and select either 1 or  -1 biased by this weight. 
Lattice gauge Monte-Carlo programs are by nature quite simple. They are ba- 
sically a set of nested loops surrounding a random change of the fundamental 
variables. 

Extending this t o  fields in larger manifolds, such as the SU(3) matrices rep- 
resenting the gluon fields, is straightforward. The algorithms are usually based 
on a detailed balance condition for a local change of fields taking configuration 
C t o  configuration C’. If probabilities for making these changes in one step 
satisfy 

it is straightforward to  prove that any ensemble of configurations approaches 
the equilibrium ensemble. 

The results of these simulations have been fantastic, giving first principles 
calculations of interacting quantum field theory. I will just mention two ex- 
amples. The early result that bolstered the lattice into mainstream particle 
physics was the convincing demonstration of the confinement phenomenon. 
The force between two quark sources indeed remains constant at large dis- 
tances. 
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Another accomplishment for which the lattice excels over all other methods 
has been the study the deconfinement of quarks and gluons into a plasma at 
a temperature of about 170-190 Mev14. Indeed, the lattice is a unique quan- 
titative tool capable of making precise predictions for this temperature. The 
method is based on the fact that the Euclidean path integral in a finite tempo- 
ral box directly gives the physical finite temperature partition function, where 
the size of the box is proportional t o  the inverse temperature. This transition 
represents the confining flux tubes becoming lost in a background plasma of 
virtual flux lines. 

10. Quarks and random numbers 

While the gauge sector of the lattice theory is in good shape, from the earliest 
days fermionic fields have caused annoying difficulties. Actually there are sev- 
eral apparently unrelated fermion problems. The first is an algorithmic one. 
The quark operators are not ordinary numbers, but anti-commuting operators 
in a Grassmann space. As such, the exponentiated action itself is an operator. 
This makes comparison with random numbers problematic. 

Until relatively recently, most lattice work with quarks was done in the so 
called “valence” or “quenched approximation. A pure gauge simulation pro- 
vides a set of background gauge fields in which the propagation of quarks 
is calculated. The approximation is to  ignore any feedback of the quarks on 
the gauge fields. As the quarks involve large sparse matrices, the conjugate 
gradient algorithm is ideally suited. Combining the resulting propagators into 
hadronic combinations gives predictions on physical quantities such as spectra, 
matrix elements, etc. The rather random nature of the relevant background 
fields has hampered application of standard multi-scale techniques, but more 
work in this area is needed. The main issue with the valence approximation is 
that systematic errors are not under precise control. 

Over the years various clever tricks for dealing with dynamical quarks have 
been developed; numerous ongoing large scale Monte Carlo simulations do in- 
volve dynamical fermions. The algorithms used are all essentially based on an 
initial analytic integration of the quarks to  give a determinant. This, however, 
is the determinant of a rather large matrix, the size being the number of lattice 
sites times the number of fermion field components, with the latter including 
spinor, flavor, and color factors. For a Monte Carlo evolution we need to  know 
how this determinant changes with random changes in the gauge field. Intro- 
ducing auxiliary bosonic fields reduces the problem to  doing large sparse ma- 
trix inversions inside the Monte Carlo loop. It is these inversions that currently 
dominate the required compute time. In my opinion, the algorithms working di- 
rectly with these large matrices remain quite awkward. I often wonder if there 
is some more direct way to  treat fermions without the initial analytic integra- 
tion. On small systems direct evaluation. of Grassmann integrals by machine 
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is possible16>17, although the approach appears t o  be inherently exponential in 
the system volume. 

The algorithmic problem becomes considerably more serious when a chem- 
ical potential generating a background baryon density is present. In this case 
the required determinant is not positive; it cannot be incorporated as a weight 
in a Monte Carlo procedure. This is particularly frustrating in the light of strik- 
ing predictions of super-conducting phases at large chemical potentialls. This 
is perhaps the most serious unsolved problem in lattice gauge theory today. 

11. Chirality, anomalies, and the lattice 

While the difficulty in simulating Grassmann dynamics is a major issue, fur- 
ther conceptual fermion problems concern chiral issues. These are intimately 
entwined with the anomalous differences between classical and quantum field 
theories. Indeed, while the lattice is usually just thought of as a numerical 
technique, it also provides a path t o  understanding many subtleties of quan- 
tum field theory. As a full non-perturbative regulator, the lattice provides a 
foundation for defining quantum field theory. 

It is well h o w n  that some classical symmetries do not survive quantization. 
The most basic example, the scale anomaly, has been so fully absorbed into 
the lattice lore that it is rarely mentioned. The classical Yang-Mills theory is 
scale invariant and depends in a non-trivial way on the coupling constant. The 
quantum theory, however, is not at all scale invariant. Indeed, it is a theory of 
massive glueballs and the masses these particles set a definite scale. 

When the quark masses vanish, the classical Lagrangian for the strong in- 
teractions still contains no dimensional parameters. But the quantum theory is 
supposed to  describe baryons and mesons, and the lightest baryon, the proton, 
definitely has mass. As discussed in the earlier section on parameters, this is 
understood through the phenomenon of “dimensional transmutation,” wherein 
the classical coupling constant of the theory is traded, through the process of 
renormalization, for an overall scale parameterlo. 

The scale anomaly is perhaps the deepest, but it is not the only symmetry 
of the strong interactions of massless quarks that is lost upon quantization. 
The most famous are the anomalies in the axial-vector fermion  current^^^^^^^^^, 
also discussed in the contributions by S. Adler and R. Jackiw t o  this volume. 
Working in a helicity basis, the classical Lagrangian has no terms t o  change 
the number of left or right handed fermions. On quantization, however, these 
numbers cease t o  be separately conserved. Technically this comes about be- 
cause of the famous triangle diagram. This introduces a divergence which re- 
quires regularization via a dimensionful cutoff. For the strong interactions with 
its vector-like gluon couplings, this regulation is implemented so  that the vec- 
to r  current, representing total fermion number, is conserved. But if this choice 
is taken, then the axial current, representing the difference of right and left 
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handed fermion numbers, cannot be. There is a freedom in choosing which 
currents are conserved; however, in a gauge theory, consistency requires that 
gauge fields couple only to  conserved currents. 

In the full standard model, anomalies require some time honored conserva- 
tion laws to  be violated. The most famous example is baryon number, which 
in the standard model is sacrificed so that the chiral currents that couple 
to  the vector bosons are c o n ~ e r v e d ~ ~ s ~ ~ .  Baryon violating semi-classical pro- 
cesses have been identified and must be present, although at a very low rate. 
While not of observable strength, at a conceptual level any scheme for non- 
perturbatively regulating the standard model must either contain baryon vio- 
lating terms24 or extend the model t o  cancel these anomalies with, say, mirror 
 specie^^^>^^. 

Consistency under anomalies has non-trivial implications for the allowed 
species of fermions. To conserve all the gauged currents of the standard model 
requires the cancellation of all potential anomalies in currents coupled t o  gauge 
fields. In particular, the standard model is not consistent if either the leptons 
or the quarks are left out. This connection between quarks and leptons is a 
deep subtlety of the theory and must play a key role in placing the theory 
on a lattice. Although these effects are extremely tiny due to  the smallness 
of the weak coupling constant, without a precise non-perturbative regulator 
that is capapable of including these phenomena, it is not clear that the weak 
interactions fit into a meaningful field theory. 

At a more phenomenological level, there are a variety of reasons that chiral 
symmetries are important to  particle physics. Premier among these is the light 
nature of the pion, which is traditionally related t o  the spontaneous breaking 
of a chiral symmetry expected t o  become exact as the quark masses go to  zero. 
This is the explanation as to  why the pion is so much lighter than the rho 
meson, even though they are made of the same quarks, albeit in different spin 
states. 

Theories unifymg the various interactions also often make heavy use of 
chiral symmetry. Indeed, chiral symmetry protects fermion masses from large 
renormalizations, helping control an unwanted generation of large masses re- 
quiring fine tuning t o  avoid. This is also one of the main arguments for super- 
symmetry, enabling protection mechanisms for bosonic masses such as that of 
the Higgs boson. 

Despite its clear importance, chiral symmetry and the lattice have never 
fit particularly well together. When the lattice is in place, there are no diver- 
gences. Thus any symmetries of the defining action must remain exact. If we 
ignore the known anomalies in formulating our actions, something must go 
wrong. Indeed, the most naive methods for including fermions have what is 
known as the “doubling” problem. Extra species appear involving momentum 
components near the cutoff, and including them makes the naive axial symme- 
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try actually a vector symmetry. The doubling problem is not a nemesis, but a 
sign that the lattice is trying to tell us something deep. 

Fig. 4. In the domain wall approach we start with a five dimensional lattice theory set up so 
that low energy fermionic states are bound to  the four dimensional surfaces. Our four dimensional 
world arises as energy required to create excitations traveling into the fifth dimension goes to 
infinity. 

These issues are currently a topic with lots of activity. For a recent review, 
see27. This is not an appropriate place to get involved in technical details, some 
of which remain unresolved. Several elegant schemes for making chiral sym- 
metry more manifest have recently been developed. My current favorite is the 
"domain-wall" formulation28, where our four dimensional world is an interface 
in an underlying five dimensional theory, as sketched in Fig. (4). The five di- 
mensional quarks are given masses of order the cutoff, but the basic action is 
adjusted so that there are topologically stable zero mass modes bound on the 
surfaces of the system. At low energies in the continuum limit only these four 
dimensional modes are excited. 

This approach works quite well for vector-like theories, with opposite chi- 
rality quarks living on opp.osite walls of the five dimensional theory. For chi- 
ral gauge theories, however, it is necessary t o  eliminate the modes on one of 
the two walls. It is not known how to do this in a clean way since the gauge 
fields do not know about the fifth dimension, and thus see both walls. Vari- 
ous techniques have been proposed to  give a large mass t o  excitations on the 
the unwanted wall. This could be done with a Higgs coupling that becomes 
large on one wall; this is effectively a mirror fermion model. Another proposal 
involves artificially increasing the strength of the 't Hooft vertex on the un- 
wanted wall29; this involves four fermion couplings at the scale of the cutoff 
and is very difficult t o  treat rigorously. 
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Closely related to  the domain wall approach are the “Ginsparg-Wilson’ 
fermionic actions, which maintain an exact, albeit somewhat more complicated, 
chiral This approach is mathematically extremely elegant, 
giving rise t o  an exact lattice version of the continuum index theorem relating 
zero eigenvalues of the Dirac operator with the topological index of the gauge 
fields. While a lattice regularization of a full chiral gauge theory such as the 
standard model remains elusive, we may not be far off. 

12. Concluding remarks 

In summary, lattice gauge theory provides the dominant framework for inves- 
tigating non-perturbative phenomena in quantum field theory. The approach 
is currently dominated by numerical simulations, although the basic frame- 
work is potentially considerably more flexible. With the recent developments 
towards implementing chiral symmetry on the lattice, including domain-wall 
fermions, the overlap formula, and variants on the Ginsparg-Wilson relation, 
parity conserving theories, such as the strong interactions, are fundamentally 
in quite good shape. 

I personally am fascinated by the chiral gauge problem. Without a proper 
lattice formulation of a chiral gauge theory, it is unclear whether such models 
make any sense as a fundamental field theories. A marvelous goal would be 
a fully finite, gauge invariant, and local lattice formulation of the standard 
model. The problems encountered with chiral gauge theory are closely related 
to  similar issues with super-symmetry, another area that does not naturally fit 
on the lattice. This also ties in with the explosive activity in string theory and 
a possible regularization of gravity. 

The other major unsolved problems in lattice gauge theory are algorithmic. 
Current fermion algorithms are extremely awkward and computer intensive. It 
is unclear why this has to  be so, and may only be a consequence of our working 
directly with fermion determinants. One could to  this for bosons too, but that 
would clearly be terribly inefficient. At present, the fermion problem seems 
completely intractable when the fermion determinant is not positive. This is 
of more than academic interest since interesting superconducting phases are 
predicted at high quark density. Similar sign problems appear in other fields, 
such as doped strongly coupled electron systems, thus making this problem 
practically quite important. 

Finally, throughout history the question of “what is elementary?” continues 
t o  arise. This is almost certainly an ill posed question, with one or another ap- 
proach being simpler in the appropriate context. See E. Witten’s contribution 
t o  this volume for a discussion of some of the modern equivalences. At a more 
mundane level, for low energy chiral dynamics we lose nothing by consider- 
ing the pion as an elementary pseudo-goldstone field, while at extremely short 
distances string structures may become more fundamental. Quarks and their 
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confinement may just be useful temporary constructs along the way. 
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