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THE POINCARE MAP, LIE GENERATOR, NONLINEAR INVARIANT,
PARAMETER DEPENDANCE, AND DYNAMIC APERTURE FOR RINGS*

J. Bengtsson#

BNL, Upton, NY 11973, U.S.A.

Abstract
In earlier work related to the NSLS-II project we have

outlined a control theory approach for the dynamic
aperture problem. In particular, an algorithm for the joint
optimization of the Lie generator and the working point
for the Poincare map. This time we report on how the Lie
generator provides guidelines on acceptable magnitudes
for e.g. the intrinsic nonlinear effects from insertion
devices, and the nonlinear pseudo-invariant from the map
normal form can be used to optimize the dynamic
aperture. We also show how a polymorphic beam line
class can be used to study the parameter dependence and
rank conditions for control of optics and dynamic
aperture.

INTRODUCTION
In earlier work [1] we have shown that joint

optimization of the Lie generator of the Poincare map and
the working point is an effective approach to control the
dynamic aperture (DA). The method is non-perturbative'
in the sense that there is no need to bring the map into
normal form, i.e., to integrate the equations of motion by
perturbation theory. In particular, the corresponding
Taylor map can be transformed into the factored form [2]

rtf _ :114: :/1):rtf _ <?I-I :114: :/1):rp<?l
:JVL - ••• e e :JVLlinear -./1. ••• e e -,,\../1.

If the Lie generators are evaluated for a suitable
amplitude, there is essentially only one free parameter,
i.e., the weight on the generators driving resonances vs.
tune shifts. In fact, it turns out that reasonable solutions
for different lattices can be obtained without adjusting
individual weights.

NONLINEAR DYNAMICS GUIDELINES:
THE LIE GENERATOR

Having established a baseline lattice with adequate DA,
the residual Lie generator from the sextupole scheme can
then be used to provide insight into and guidelines for
acceptable magnitudes of nonlinear terms from other
sources. For example, to optimize the parameter choice
for Insertion Devices (IDs), see Table I [3]. In particular,
to view the IDs as an integral part of the system; rather
than a (nonlinear) perturbation of the (linear) optics.

I The Taylor map has a finite radius of convergence.
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Table 1: Lie Generators from the Sextupole Scheme and a
Single Insertion Device for Various Types.

Lie
Effect

Sextupole
DW CPMU SCUGenerator Scheme

hOO220 dV v Idlv 606.9 1,089.2 1,102.6 1,259.6
hOO220 2vv 76.2 52.3 6.9 39.5
hOO400 4vv 46.6 58.7 13.7 11.3

CELL TUNE VS. RESONANCES:
THE NONLINEAR INVARIANT

Our earlier approach for the DA aperture optimization
did not explicitly take into account the cell tune's
closeness to the betatron resonances driven by the Lie
generator. Therefore, we have evaluated how minimizing
the coefficients for the nonlinear pseudo-invariant

K(J,(j») = e:g(J,ib)k(J) = cst.

where lJ, (j)J are the action-angle variables for the linear

optics, : g(J,(j»): a canonical transformation to Ploquet

space, and k(J) a nonlinear rotation, compares in terms

of the resulting DA. It is obtained from the map normal
form [4]

M = JI-1 •• • i h4 :ihJ :2(JI---7 JI-'ig(J,¢j}.ik(J}.e:-g(J,¢}. JI

In other words, a perturbative approach; justified by the
fact that the objective is to maximize the phase space
region around the fixed point with regular motion.

In particular, the terms are of the form
J ax J b l ,

K. (J (j»)oc X-"

I' sin(.n-(nxvx+nyv"U

where Inx' nl' J are integers, [a, b] rational numbers, and

lvx' vy J the cell tune. Note the resonance denominator.

Intuitively, we expect the resulting dynamics to be more
regular since reducing the nonlinear part of the pseudo­
invariant brings it closer to the linear invariant (action).
To summarize, instead of controlling the dynamics by
reducing the nonlinear terms in the equations of motion
(Lie generator), we are now reducing the nonlinear terms
in the corresponding (perturbative) solutions.

To evaluate the relevance of the resulting pseudo-

invariant, we first compute it as a function of lJ, (j)J to 5th

order2 for a sample lattice and then evaluate it on a turn­
by-turn basis for different betatron amplitudes by
tracking, see Figs. 1-3. We conclude that it captures the

2 By truncated power series algebra (TPSA) [5J and a polymorphic beam
line class [6].



dynamics quite well up to an amplitude of -IOrnm and
starts to break down at -15mm, i.e., at about half the DA.
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Figure I: Variation of the Horizontal Linear Action with
Betatron Phase (on a turn-by-turn basis).

Figure 4: Tune Scan of Optimized DA (normalized

with ~ f3xf3 y , using Lie Generator).
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Figure 2: Variation of the Vertical Linear Action with
Betatron Phase (on a turn-by-turn basis). Figure 5: Tune Scan of Optimized DA (normalized

with ~ f3xf3y , using pseudo-invariant).
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Figure 3: Variation of the 5th Order Pseudo-Invariant on a
Turn-by-Turn Basis.

Figure 6: Tune Scan of Resulting DA for a Full Lattice

with Magnet Misalignments (normalized with ~ f3xf3 y ).



The basic algorithm for the DA-optimization is as
before3 and the result is shown in Figs. 4-5. Indeed, the

DAjJ/3x/3y =cst. surfaces are broadened in the latter.

The DA is shown in Figure 7. Moreover, the choice of
working point can then refined by re-computing the DA
(by tracking) for a full lattice with e.g. magnet
misalignment errors for the previously determined
quadrupole/sextupole tunes, see Figure 6.

the algorithm led to convergence. Later, this was
confirmed by rank analysis of the Jacobian for general
optics tuning with the short and long matching sections
(10 constraints) for a modified CDR lattice, i.e., with
triplets in the short straights, see Table 2. The approach
can be generalized to analyze the entire super cell.

Table 2: Rank Conditions for Control of the Impact of IDs
on the Linear Optics.

Gradients

,[mml
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Figure 7: Dynamic Aperture for J = 0 and ± 3% .

PARAMETER DEPENDANCE:
RANK CONDITIONS

The numerical/analytical model/framework, which is a
prerequisite for this work, also enables one to compute the
parameter dependence of any global property of the
lattice, e.g. the multipole strength. In fact, the DA
optimization algorithm uses this to compute the Jacobian
for the nonlinear systems that must be solved to:

• adjust the cell tune in a controlled manner
(quadrupoles),

• and to minimize the Lie generator4 or pseudo­
invariant (sextupoles)

=> straightforward to implement e.g. a gradient search.
Another use of the Jacobian is to check the rank

conditions of the governing equations for the control of a
(linearized) realistic system; by singular value
decomposition.

For example, even though the CDR -lattice [3] had
quadruplets in the short and long straight sections, we
experienced convergence issues with the (local) control of
the optics perturbations from the IDs [9]. In theory, this is
modeled by two decoupled 4 x 4 systems. Intuitively, we
concluded that this originated from degeneracy. Indeed,
removing one of the quadrupoles in each quadruplet from

CONCLUSION
We have outlined how, after having established a

baseline lattice with adequate DA, the Lie generator can
be used to obtain insight into and provide guidelines for
the acceptable magnitude of nonlinear terms from other
sources e.g. insertion devices. We have also evaluated
how well the nonlinear pseudo-invariant captures the
dynamics and how to use it to control the dynamic
aperture. Finally, we have shown how a polymorphic
beam line class can be used to study the parameter
dependence and rank conditions of the governing
equations for control of optics and dynamic aperture.
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