
PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC02-76CH03073

PRINCETON PLASMA PHYSICS LABORATORY
PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PPPL-3960 PPPL-3960
UC-70

Analytic, High-beta Solutions
of the Helical Grad-Shafranov Equation

by

D.R. Smith and A.H. Reiman

May 2004



PPPL Reports Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United
States Government or any agency thereof.

Availability

This report is posted on the U.S. Department of Energy’s Princeton
Plasma Physics Laboratory Publications and Reports web site in Fiscal
Year 2004. The home page for PPPL Reports and Publications is:
http://www.pppl.gov/pub_report/

DOE and DOE Contractors can obtain copies of this report from:

U.S. Department of Energy
Office of Scientific and Technical Information
DOE Technical Information Services (DTIS)
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@adonis.osti.gov

This report is available to the general public from:

National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Telephone: 1-800-553-6847 or
(703) 605-6000

Fax: (703) 321-8547
Internet: http://www.ntis.gov/ordering.htm



Analytic, high-beta solutions

of the helical Grad-Shafranov equation

D. R. Smith and A. H. Reiman

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543

(Dated: April 26, 2004)

Abstract

We present analytic, high-beta (β ∼ O(1)), helical equilibrium solutions for a class of helical axis

configurations having large helical aspect ratio, with the helix assumed to be tightly wound. The

solutions develop a narrow boundary layer of strongly compressed flux, similar to that previously

found in high beta tokamak equilibrium solutions. The boundary layer is associated with a strong

localized current which prevents the equilibrium from having zero net current.
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I. INTRODUCTION

Helically symmetric MHD equilibria represent the large aspect ratio limit of stellarator

equilibria, and they have been extensively used to study the physics of large aspect ratio

stellarator configurations. (See e.g. Refs. 1-7 and references cited therein.) Recent analytical

studies of the helical equilibrium equations in the context of astrophysical problems have

focused on finding exact solutions for special pressure and current profiles that linearize the

equilibrium equation.8,9 In this paper we use an asymptotic matching technique to obtain

analytic solutions for a class of high β helical equilibria, valid for a broad class of pressure

and current profiles. Of particular interest is the value of the net current in the equilibrium

solutions.

The asymptotic matching technique applied here is an extension of that developed by

Cowley et al for high β, large aspect ratio, axisymmetric equilibria.10 A new piece of physics

that appears in non-axisymmetric equilibria is the generation of rotational transform (finite

ι = 1/q) by the non-axisymmetric flux surface geometry even in the absence of a current.

This allows conventional stellarator equilibria to have zero net current in each flux surface

(the steady state solution in the absence of a bootstrap current and externally driven cur-

rent), while axisymmetric equilibria cannot have zero net current. As we will discuss below,

for the class of equilibria we have studied, the high beta equilibrium solutions develop a

narrow boundary layer of strongly compressed flux, similar to that previously found in high

β tokamak equilibrium solutions. The boundary layer is associated with a strong localized

current which prevents the equilibrium from having zero net current.

In this paper we specialize to helical axis configurations having a large helical excursion.

To further simplify the calculation, the helix is assumed to be tightly wound. (In the limit

that the winding becomes infinitely tight, we recover the solution to the axisymmetric Grad-

Shafranov equation.) These assumptions will be stated more precisely in the next section.

We study fixed boundary equilibria, with the boundary shape assumed to be circular. The

generalization to a non-circular boundary is straightforward using the method of Ref. 10.

It should be noted that the free-boundary solution can be expected to introduce additional

constraints on realizable equilibria.11

Section II develops the helical Grad-Shafranov equation in dimensionless form and intro-

duces our ordering. Section III presents an analytic solution of the helical Grad-Shafranov
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equation for β = O(1) and qh = O(1), where qh is defined in Section II. The net current is

shown to be non-vanishing, with the current localized primarily in the boundary layer. Sec-

tion IV considers other possible orderings, further investigating the conditions under which

a boundary layer forms and the implications for the existence of equilibrium solutions with

zero net current.

II. HELICAL GRAD-SHAFRANOV EQUATION AND ORDERING

Consider a helical plasma with helical excursion r0 and minor radius a in a cylindrical

coordinate system r, θ, z as shown in Figure 1. The plasma is helically symmetric if physical

quantities are functions only of r and u ≡ mθ−kz for some fixedm and k. m = 0 corresponds

to the special case of axisymmetry. We will focus primarily on the m = 1 helical system

in this paper, but will retain m throughout the analysis to facilitate comparison with the

axisymmetric case. The helical plasma is periodic in the z direction with wavelength 2π/k

and consists of N periods. The vectors u and h are defined as1,2

u ≡ mθ̂ − krẑ

m2 + k2r2
(1)

h ≡ r̂× u =
mẑ + krθ̂

m2 + k2r2
. (2)

The divergence-free magnetic field can be written

B = ∇ψ × h +Bhh (3)

where ψ = ψ(r, u) is the helical stream function and Bh ≡ mBz+krBθ is the helical magnetic

field. Ampere’s law µ0J = ∇×B gives

µ0J = ∇Bh × h−
(

(m2 + k2r2)L(ψ)− 2mkBh

m2 + k2r2

)
h (4)

where

L(ψ) ≡ 1

r

∂

∂r

(
r

m2 + k2r2

∂ψ

∂r

)
+

1

r2

∂2ψ

∂u2
. (5)

The force balance equation is ∇p = J × B. From B · ∇p = 0 we find p = p(ψ). From

J · ∇p = 0 we find Bh = Bh(ψ). Substituting B and J into the force balance equation gives

the helical Grad-Shafranov equation1,2

1

r

∂

∂r

(
r

m2 + k2r2

∂ψ

∂r

)
+

1

r2

∂2ψ

∂u2
= −µ0

dp(ψ)

dψ
−
Bh(ψ)dBh(ψ)

dψ

m2 + k2r2
+

2mkBh(ψ)

(m2 + k2r2)2
. (6)
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The standard derivation of the axisymmetric Grad-Shafranov equation can be recovered

by setting m = 0 in Eqs. 1-6, with h → θ̂/kr and Bh → krBθ. It follows from Eq. 4

that in axisymmetry the net current is determined entirely by L(ψ). The net current for a

nontrivial axisymmetric equilibrium cannot be set to zero. For non-axisymmetric equilibria

the net current is also influenced by the value of Bh(ψ), allowing the net current to be set to

zero on each flux surface in conventional stellarator equilibria. A key issue investigated in

this paper is the impact of the Bh component of the current at high β, focusing particularly

on the conditions under which it is possible to obtain zero net current at high β.

The helical Grad-Shafranov equation requires that the pressure profile p(ψ) and the

helical field profile Bh(ψ) be specified. Rather than specify Bh(ψ) directly, we will specify

the helical safety factor profile qh(ψ) and relate qh(ψ) to Bh(ψ). The toroidal flux is defined

as3

ΦT (ψ) ≡ k

2π

∫

V

B · ẑd3x (7)

=
k

2π

∫

V

∇ψ · (h× ẑ)d3x+
k

2π

∫

V

mBh

m2 + k2r2
d3x (8)

where the integral is taken over the volume of one period. The helical flux is defined as3

ΦH(ψ) ≡
∫ 2π

0

∫ r(ψ)

r(ψmax)

m2 + k2r2

k
B · udrdθ (9)

= −2π

k
(ψ − ψmax) (10)

where the integral is taken over a ribbon of constant u that extends from the magnetic axis

r(ψmax) to the flux surface r(ψ) and twists with the magnetic axis. The helical safety factor

is defined as3

qh(ψ) ≡ dΦT

dΦH

= − k

2π
Φ′
T (ψ). (11)

The toroidal flux derivative Φ′
T (ψ) can be expressed as 3,4

Φ′
T (ψ) =

k

2π

∫

V

2km2

(m2 + k2r2)2d
3x+

k

2π

d

dψ

∫

V

mBh

m2 + k2r2
d3x. (12)

The differential volume element is

d3x =
|dS| dψ
|∇ψ| =

√√√√
(
∂r

∂u

∣∣∣∣
ψ

)2 (
1 +

k2r2

m2

)
+

r2

m2

dudzdψ

|∇ψ| . (13)
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In the axisymmetric limit, the helical flux reduces to the poloidal flux and the helical safety

factor reduces to the conventional safety factor. The corresponding large aspect ratio stel-

larator has a rotational transform

ι

2π
=
N(1 + qh)

mqh
. (14)

It is convenient to work with dimensionless variables. The dimensionless radial variable

x is defined such that

r ≡ r0 + ax = r0(1 + εx) (15)

where ε ≡ a/r0 is the inverse helical aspect ratio and −1 ≤ x ≤ 1. (Note that ε is not

the inverse aspect ratio of the corresponding large aspect ratio stellarator.) We consider

configurations for which ε ¿ 1, using ε as an expansion parameter in subsequent analysis.

The winding parameter is κ ≡ ka. The plasma column cannot overlap itself and this imposes

the geometric constraint κ ≤ π for non-axisymmetric equilibria. We specialize further to

configurations for which the helix is tightly wound, κ À ε, such that κ = O(1). ψ is

normalized as

ψ = ψmaxΨ (16)

such that 0 ≤ Ψ ≤ 1. The boundary conditions are Ψ = 1 at the magnetic axis and Ψ = 0

at the circular wall. Similarly, p(ψ) and Bh(ψ) are normalized as

p = pmaxP (17)

Bh =
κ

ε
BmaxB (18)

such that 0 ≤ P,B ≤ O(1). With these dimensionless variables, the helical Grad-Shafranov

equation is

ε2
[

1

1 + εx

∂

∂x

(
1 + εx

ε2m2 + κ2(1 + εx)2

∂Ψ

∂x

)
+

1

(1 + εx)2

∂2Ψ

∂u2

]
=

−µ0a
2pmax
ψ2
max

dP

dΨ
− a2B2

max

ψ2
max

κ2B dB
dΨ

ε2m2 + κ2(1 + εx)2
+
aBmax

ψmax

2mκ2ε3B

(ε2m2 + κ2(1 + εx)2)2
. (19)

Scalings relating ψmax, pmax, and Bmax are now needed.

Combining Eqs. 11-13 and utilizing dimensionless variables gives

qh(Ψ) = − 1

2π

∫ Ψ

1

∫ umax(ϕ)

umin(ϕ)

2mκ2ε3(1 + εx)

(ε2m2 + κ2(1 + εx)2)2

√√√√1 +

(
κ2 +

ε2m2

(1 + εx)2

) (
∂x

∂u

∣∣∣∣
ϕ

)2
dudϕ∣∣∇̄ϕ

∣∣

− 1

2π

aBmax

ψmax

∫ umax(Ψ)

umin(Ψ)

κ2B(Ψ)(1 + εx)

ε2m2 + κ2(1 + εx)2

√
1 +

(
κ2 +

ε2m2

(1 + εx)2

) (
∂x

∂u

∣∣∣∣
Ψ

)2
du∣∣∇̄Ψ

∣∣(20)
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where ∇̄ = a∇ and umin/max(Ψ) are the minimum and maximum values of u on the flux

surface Ψ. For the purposes of Section 3, we will take

aBmax

ψmax
= 1 (21)

so the first term of Eq. 20 is O(ε3) and the second term is O(1). qh can now be written

qh(Ψ) = −κ
2B(Ψ)

2π

∫ umax(Ψ)

umin(Ψ)

1 + εx

ε2m2 + κ2(1 + εx)2

√
1 + (κ2 + ε2m2)

(
∂x

∂u

∣∣∣∣
Ψ

)2
du∣∣∇̄Ψ

∣∣ +O(ε3)

(22)

such that qh = O(1). The ordering β = O(1) is satisfied by simply taking µ0pmax = B2
max.

This β ordering combined with Eq. 21 gives

µ0a
2pmax
ψ2
max

= 1. (23)

With the scalings of Eqs. 21 and 23, the helical Grad-Shafranov equation is now

ε2
[

1

1 + εx

∂

∂x

(
1 + εx

ε2m2 + κ2(1 + εx)2

∂Ψ

∂x

)
+

1

(1 + εx)2

∂2Ψ

∂u2

]
=

−dP
dΨ

− κ2B dB
dΨ

ε2m2 + κ2(1 + εx)2
+

2mκ2ε3B

(ε2m2 + κ2(1 + εx)2)2
. (24)

III. ANALYTIC SOLUTION OF THE HELICAL GRAD-SHAFRANOV EQUA-

TION FOR β = O(1) AND qh = O(1)

In this section we use an asymptotic matching technique introduced by Cowley et al10 to

solve the helical Grad-Shafranov equation for β = O(1) and qh = O(1). Our assumptions

have been described in the previous section.

A. Core Solution

In the plasma core (outer region), derivatives of Ψ are O(1) and the helical Grad-

Shafranov equation can be written

0 = (1 + 2εx)
dP

dΨ
+G(Ψ) +O(ε2) (25)

where

G(Ψ) ≡ B(Ψ)
dB

dΨ
. (26)
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P (Ψ) and qh(Ψ) are specified, so Ψ, B(Ψ), and G(Ψ) are expanded in powers of ε and then

all functions of Ψ are Taylor expanded around Ψ0. These expansions are substituted into

the helical Grad-Shafranov equation and orders of ε are collected. The O(1) equation gives

0 = P ′(Ψ0) +G0(Ψ0) or

P (Ψ0) +
1

2
B2

0(Ψ0) = C (27)

where C is a constant of integration. The O(ε) equation gives

0 = 2xP ′(Ψ0) +G1(Ψ0) (28)

and therefore Ψ0 = Ψ0(x). In fact, all Ψn are independent of u. This functional form can

satisfy the boundary condition Ψ = 1 on the magnetic axis, but not the boundary condition

Ψ = 0 on the circular wall. A boundary layer is needed to satisfy the wall boundary

condition. The boundary layer is located at the wall, so the outer solution is physically

located in the core away from the wall.

Now use Eq. 22 to find Ψ0(x). With derivatives of Ψ large in the boundary layer and Ψ0

independent of u in the core, Eq. 22 gives

qh(Ψ0) = −B(Ψ0)

2π dΨ0

dx

∫ κ
√

1−x2

−κ√1−x2

du+O(ε) (29)

= −κ
π

√
2(C − P (Ψ0))

√
1− x2

dΨ0

dx

+O(ε) (30)

where we used umax/min = ±κ√1− x2 and Eq. 27. See Figures 1 and 2 in Ref. 10.

Integration with respect to x from −1 to x gives

∫ Ψ0

D

qh(ϕ)dϕ√
2(C − P (ϕ))

= − κ

2π

(π
2

+ x
√

1− x2 + sin−1 x
)
. (31)

The constants C and D will be determined by boundary layer properties. Given P (Ψ) and

qh(Ψ), Eq. 31 provides an implicit relation between Ψ0 and x valid only in the core region.

B. Boundary Layer Solution

In the boundary layer, derivatives of Ψ are large. With this in mind, the helical Grad-

Shafranov equation can be written

ε2
[
∂2Ψ

∂x2
+ κ2∂

2Ψ

∂u2

]
= −κ2(1 + 2εx)

dP

dΨ
− κ2G(Ψ) +O(ε2). (32)
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To simplify the analysis, we take the plasma boundary to be circular in planes of constant

θ. (The solution can be extended to boundaries of arbitrary shape using the method of Ref.

10.) The geometry suggests analysis in a polar coordinate system ρ, ζ where x = ρ cos ζ and

u = κρ sin ζ. The derivatives transform accordingly,

∂

∂x
= cos ζ

∂

∂ρ
− sin ζ

ρ

∂

∂ζ
(33)

κ
∂

∂u
= sin ζ

∂

∂ρ
+

cos ζ

ρ

∂

∂ζ
. (34)

Transforming to polar coordinates, the helical Grad-Shafranov equation becomes

ε2
[
∂2Ψ

∂ρ2
+

1

ρ

∂Ψ

∂ρ
+

1

ρ2

∂2Ψ

∂ζ2

]
= −κ2(1 + 2ερ cos ζ)

dP

dΨ
− κ2G(Ψ) +O(ε2). (35)

To match the core solution and also match the boundary condition at ρ = 1, the left hand

side must be O(ε). This is achieved with a boundary layer width δ = O(ε1/2). Define the

boundary layer variable t such that ρ ≡ 1− ε1/2t to get

ε
∂2Ψ

∂t2
− ε3/2

∂Ψ

∂t
= −κ2(1 + 2ε(1− ε1/2t) cos ζ)

dP

dΨ
− κ2G(Ψ) +O(ε2). (36)

Now expand Ψ and G in powers of ε1/2 and then Taylor expand around Ψ0. The O(1)

equation reproduces Eq. 27. The O(ε1/2) equation gives G1/2(Ψ0) = 0. The O(ε) equation

gives
∂2Ψ0

∂t2
= 2κ2(x(Ψ0)− cos ζ)P ′(Ψ0) (37)

where x(Ψ0) comes from Eq. 31. Multiply Eq. 37 by ∂Ψ0

∂t
and integrate to get

1

2

(
∂Ψ0

∂t

)2

= 2κ2

∫ Ψ0

Ψcore(cos ζ)

(x(ϕ)− cos ζ)P ′(ϕ)dϕ ≡ κ2V (Ψ0, ζ) (38)

where Ψcore(cos ζ) is the core solution given by Eq. 31. Further integration of Eq. 38 gives

t(Ψ0, ζ) =

∫ Ψ0

0

dϕ√
2κ2V (ϕ, ζ)

. (39)

Eq. 39 can be inverted to give the boundary layer solution, Ψ0(ρ, ζ) with ρ = 1− ε1/2t.

We can now determine the constants C and D in Eq. 31. The boundary layer width

goes to zero at x = −1, so it follows that D = 0. The boundary condition Ψ0 = 1 at the

magnetic axis, x = 1−O(ε1/2), gives
∫ 1

0

qh(ϕ)dϕ√
2(C − P (ϕ))

= −κ
2

(40)

which determines C.
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C. Net Current

We evaluate the current within a flux surface using Ampere’s law and a contour in the

θ = const plane,

µ0I =

∮
B · dl =

∫ 2π

0

B · ∂x
∂ζ

∣∣∣∣
θ

dζ (41)

where x = rr̂ + zẑ. In the core region, the integrand can be evaluated to give

B · ∂x
∂ζ

∣∣∣∣
θ

= −εψmax
κ

[
x
∂Ψ

∂x
+mxB(Ψ) +O(ε)

]
. (42)

For the boundary layer region, transform to the polar coordinates ρ, ζ to get

B · ∂x
∂ζ

∣∣∣∣
θ

= −εψmax
κ

[
ρ
∂Ψ

∂ρ
+mρB(Ψ) cos ζ +O(ε)

]
. (43)

With ρ = 1− ε1/2t

B · ∂x
∂ζ

∣∣∣∣
θ

=
ψmax
κ

[
ε1/2

∂Ψ

∂t
+O(ε)

]
, (44)

so the boundary layer contribution to Eq. 41 dominates the core contribution. The normal-

ized current within a flux surface can be written using Eq. 38 to give

µ0I

ψmax
= ε1/2

∫

BL

√
2V (Ψ0, ζ) dζ +O(ε) (45)

where the integral is taken over the boundary layer portion of the flux surface. The normal-

ized net current is given by the current within the outermost flux surface,

µ0I

ψmax
= ε1/2

∫ 2π

0

√
2V (Ψ0, ζ) dζ +O(ε) (46)

= 2ε1/2
∫ 2π

0

(∫ cos ζ

−1

p [ψcore(x)] dx

)1/2

dζ +O(ε). (47)

The net current is finite, with an O(ε1/2) normalized value.

D. Example: P (Ψ) = P ′Ψ and qh(Ψ) = q0

If we assume P (Ψ) = P ′Ψ and qh(Ψ) = q0, then we can explicitly evaluate Eq. 31 to

recover Ψ0(x) in the core region.10 That is, we can solve the equation

∫ Ψ0

0

q0√
2(C − P ′ϕ)

dϕ =
κ

2π
A(x) (48)
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for Ψ0(x) where

A(x) =
π

2
+ x

√
1− x2 + sin−1 x. (49)

To determine C, use the boundary condition Ψ0 = 1 at x = 1−O(ε1/2) to get

C =
(8q2

0 + P ′)2

32q2
0

. (50)

Now Eq. 48 can be evaluated to give

Ψ0(x) =
κA(x)

π

(
1 +

P ′

8q2
0

)
− κ2A(x)2

π2

P ′

8q2
0

. (51)

This is Ψ0(x) in the core region assuming P (Ψ) = P ′Ψ and qh(Ψ) = q0. It in turn determines

Ψ0(ρ, ζ) in the boundary layer through Eqs. 38 and 39, given the inversion of Ψ0(x) to

determine x(Ψ0).

IV. ALTERNATIVE ORDERINGS ASSOCIATED WITH A BOUNDARY LAYER

We further investigate the conditions under which a boundary layer forms, and the im-

plications for the existence of equilibrium solutions with zero net current. In order to obtain

zero net current for a nontrivial equilibrium, the leading order contributions to the cur-

rent due to Bh and ψ must cancel. We have seen that this cannot happen for β = O(1),

qh = O(1). In this section we consider a more general set of orderings.

With β = O(εγ1) and qh = O(εγ2), the helical Grad-Shafranov equation in the core region

is

ε2
[
∂2Ψ

∂x2
+ κ2∂

2Ψ

∂u2

]
= −ε2γ2κ2

(
(1 + 2εx)εγ1

dP

dΨ
+G(Ψ)

)
+O(ε3). (52)

If the 2εxdP
dΨ

term of Eq. 52 is lower order than the LHS, then a boundary layer is needed

to match the boundary condition Ψ = 0 on the wall. Thus, a boundary layer is needed if

2γ2 + γ1 < 1. (53)

We must also have γ1 ≥ 0 (β ≤ O(1)), or else the leading order equation gives the non-self-

consistent dP/dΨ = 0. The implied constraint on γ2 is also sufficient for the second term of

Eq. 20 to dominate the first. (We require γ2 < 3 for this purpose.)

To interpret Eq. 53, we define an average helical beta by analogy with the poloidal

beta for the axisymmetric case, β̄h ≡ µ0pmaxr
2
0/ψ

2
max. Eq. 53 corresponds to the condition

εβ̄h À 1.

10



Now suppose that there is a boundary layer of thickness δ = εγ3 . In the boundary layer,

the helical Grad-Shafranov equation to lowest order in ε can be written

ε2(1−γ3)∂
2Ψ

∂t2
= −ε2γ2κ2

(
(1 + 2εx)εγ1

dP

dΨ
+G(Ψ)

)
. (54)

The LHS must be of equal or lower order than the 2εxdP
dΨ

term for the boundary layer solution

to match the wall boundary condition. This requires

1− 2γ3 ≤ γ1 + 2γ2. (55)

Using Eq. 53, we see γ3 > 0. The integrand of the boundary layer current (Eq. 43) to lowest

order can be written

B · ∂x
∂ζ

∣∣∣∣
θ

= −εψmax
κ

[
−ε−γ3 ∂Ψ

∂t
+ εγ2mB(Ψ) cos ζ

]
. (56)

It follows from γ3 > 0 that the boundary layer current is too large to be balanced by the

current in the core. To achieve zero net current, the two terms contributing to the boundary

layer current in Eq. 56 must balance, requiring γ2 = −γ3. Using Eq. 55, this leads to

γ1 ≥ 1. Therefore, the net current in these types of equilibria cannot vanish for γ1 < 1, that

is, for β/εÀ 1. We conclude that a helical equilibrium of the type we are studying cannot

have zero net current if εβ̄h À 1 and β/εÀ 1.

The magnitude of the normalized net current in the boundary layer is determined by γ3.

Eqs. 53 and 55 imply that γ3 > 0. γ3 can approach 0, consistent with these constraints, if

γ1 + 2γ2 approaches 1.

We note that Ref. 5 has established the existence (and MHD stability) of zero net

current, loosely wound, helical axis stellarators with values of beta approaching O(1). (i.e.

〈β〉 approaching 30%) These stellarators have helical aspect ratio of order one, and they do

not have β/εÀ 1. The analysis of this paper has been done in the tightly wound limit, and

does not address the existence of zero net current equilibria in loosely wound, helical axis

stellarators having β = O(1) and larger helical aspect ratio.

V. DISCUSSION

In this paper we have studied a class of helical axis configurations having large helical

aspect ratio, with the helix assumed to be tightly wound. In Section 4 we defined an average
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helical beta by analogy with the poloidal beta for an axisymmetric equilibrium. When

εβ̄h À 1, the equilibrium solutions for these configurations develop a narrow boundary layer

of strongly compressed flux, similar to that which develops in large aspect ratio tokamaks

when εβp À 1. The boundary layer is associated with a strong localized current.

In Section 3, we focused on the special case where β = O(1) and qh = O(1), obtaining an

analytic solution for the equilibrium by a boundary layer analysis. In the core of the plasma

(outer region) the flux surfaces collapse to cylindrical geometry. The boundary layer allows

the flux surface shape to transition to that of the plasma boundary near the edge.

For conventional stellarator equilibrium solutions, the case of zero net current is of par-

ticular interest. The current density is given by Eq. 4. It might appear that, for m 6= 0,

we should always be able to increase the magnitude of Bh and adjust its profile to make the

net current on each flux surface vanish. However, at high β, as we increase the magnitude

of Bh relative to that of ψ, the boundary layer becomes increasingly compressed, causing

L(ψ) to increase correspondingly. At these high values of β, the L(ψ) contribution to the

current always dominates.

We find that configurations of the type studied here cannot have zero net current when

εβ̄h À 1 and β/εÀ 1.
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Figure Captions

Figure 1: Geometry of the helical configuration with large helical aspect ratio.
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