
Preprint
UCRL-JC-141516

Cell Projection Of Meshes
With Non-Planar Faces

N. Max, P. Williams, C. Silva

This article was submitted to
Dagstahl Seminar Number 21 1 : Scientific Visualization
Dag sta h I, Germany
May 21 -26,2002

November 27,2000
US. Department of Energy

Laboratory

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http:/ /apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http:/ /www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.lM.gov/ tid/Library.html

http://www.ntis.gov
http://www.lM.gov

Cell projection of meshes with non-planar faces

1. Introduction
Volume rendering converts a scalar function on a 3D volume into varying

colors and opacities, and creates an image by integrating the color and opacity
effects along viewing rays through each pixel [I] . For data specified on a reg-
ular grid, the ray tracing is straightforward [2, 3, 4, 51, and similar effects can
be obtained with 3D textures [6]. For curvilinear or irregular grids, these
methods are only applicable after the data has been resampled.

An alternative, which works directly on these more general grids, is cell
projection [7, 8, 91. The cells composited onto the image in back to front
sorted order. The projections of the edges of a single cell divide the image
plane into polygons, which can be scan converted and composited by standard
graphics hardware.

In references [9, I O , I I] , we assumed that the cells were polyhedra with
planar faces. A curvilinear grid maps a rectangular grid onto a curved volume,
for example to fit next to an airplane wing or ship hull, and quadrilateral faces
may map to non-planar surfaces. Irregular grids are fitted to complex geome-
tries, for example mechanical parts, and even initially flat faces may become
non-planar as the grid elements deform, for example, in a car crash simula-
tion.

Non-planar faces cause problems in the sorting and compositing when a
viewing ray crosses the same face twice. We call such a face a “problem
face”. For example, the ray may leave cell A through face F, enter cell B , and
then enter cell A again through the same face F. If a viewing ray intersects a
cell like A in two disjoint segments, we call the cell a “problem cell”. This
makes i t impossible to sort cells A and B in back-to-front compositing order.

Our solution is to divide problem cells into tetrahedra, which have planar
faces. A single hexahedron can be projected and composited more quickly
than the five or six tetrahedra into which i t is subdivided, so we subdivide only
the problem cells. In the example above, cell B might not turn out to be a
problem cell, so i t might not be subdivided. However, the face F must still be
subdivided into two triangles when I-endet-ing cell B , in order not to create
gaps in the data volume. The decision whether a face or a cell is a problem
depends on the viewing rays, so the subdivision is view dependent. Therefore
our data structure is designed to efficiently replace faces or cells by their sub-

divisions, and restore them when subdivision is no longer necessary.
A preliminary description of our system appeared in [121, which is a

good introduction to back-to-front sorting algorithms. Here, after sketching
the subdivision and sorting algorithms in sections 2 and 3 respectively, we
give more detail in section 4 on the cell projection and how i t is affected by
non-planar faces. In sections 5 we describe the data structures designed to
handle the view-dependent subdivision, and section 6 gives results.

2. Subdivision
Our HIAC system [1 I] currently renders “zoo” elements, with the topol-

ogy, but not the geometry, of tetrahedra, square pyramids, triangular prisms,
and cubes, as read from files in the SILO format [1.31. The SILO files have an
array of vertex positions, and for each of the four cell types, an array of cells,
each defined by a list of indices into the vertex array. Thus elements are spec-
ified only by their vertex positions, and the cube topology may correspond to
a hexahedron with non-planar quadrilateral faces. There is no information
about the interpolation function used to define the element shape, so we do
not know the shape of the non-planar faces. A natural assumption is that they
are hyperbolic paraboloids, resulting from bilinear interpolation between the
four vertex positions. But volume rendering using such faces would require
tracing rays to intersect the parametrized face surfaces, which is not compati-
ble with hardware-based cell projection.

Instead, we approximate the unknown shapes by piecewise linear inter-
polation. We divide the problem quadrilateral faces into two planar triangles.
and extend this to the problem cells by slicing them into tetrahedra. If a quad-
rilateral face F separates cells A and B, we must make sure that it is divided by
the same diagonal when considered as a face of each. We do this by starting
the diagonal from the quadrilateral vertex which has the lowest index in the
vertex list. In [I21 (and earlier in another context in [141) is a proof that if the
face diagonals are chosen this way, each of the zoo elements can be subdi-
vided into tetrahedra whose edges include the chosen diagonals. You can
probably prove this yourself, starting with the pyramids. which are trivial,
showing that a prism can be sliced into a tetrahedron plus a pyramid. and then
showing that a cube can be sliced either into five tetrahedra or else into two
prisms.

3. Sorting
For a convex voluine filled with convex polyhedral cells, a simple O(ri)

algorithm can sort in back-to-front order, using a directed graph. The graph
has an edge between every pair of cells sharing a common face F, directed
towards the cell on the side of the plane of F containing the viewpoint. A first
pass through the grid counts the incoming directed graph edges for each cell.
Cells with zero incoming edges are put on a queue to be output. While this
queue is non-empty, the next cell from the queue is added to the end of sorted
output list, and its outgoing directed edges are followed to decrement the

incoming counts of the cells to which they point. If such a count decrements
to zero, the corresponding cell is put on the queue. When the queue becomes
empty, all of the cells should have been output. If not, there is a visibility
cycle, with each cell partially occluding of the next one, and no sort is possi-
ble unless one of the cells in the cycle is subdivided.

If the data volume is convex and a viewing ray passes through cell A and
later through cell B, there is a sequence of cells A = C,,, C , , C,, ... , C,, = B
between them along the ray, each sharing a face with the next, so the directed
graph enforces the correct sorting order. This will not be the case if the data
volume has concavities or holes which a viewing ray can cross without pass-
ing through cells. To deal with such gaps in the viewing rays, extra edges in
the directed graph must be added between the cells on the opposite sides of
the gaps. In [121, several methods of doing this or its equivalent are discussed.
Their input consists of a list of the 17 exterior faces which bound only one cell
instead of two, each with a pointer to the single cell i t bounds. If each pair of
exterior faces must be considered, to see if they are visible to each other
across a gap, this could take time 0(h2) .

Our system has been under development for over ten years, and we have
used a variety of sorting techniques, including the topological sort of the
directed graph [9, 151, special sorts for particular application geometries [161,
the Newell sort [IO , 1 1, 171, the XMPVO sort [181, and the BSP-XMPVO sort

A faster MPVONC sort, starts with an O(h log h) sort on the cells with
exterior faces, keyed on the distance to the viewpoint of the cells’ centers of
gravity. For fast rendering, we use this approximate MPVONC sort, instead of
one of the slower correct sorts. None of the correct sorts allow real time inter-
action for large data sets, and we continue to search for better sorting algo-
rithms.

4. Cell projection.
In the discussion below, the opacity T refers to the extinction coefficient,

or differential opacity, as specified by the scalar value at a 3D point, while the
opacity a refers to the total integrated opacity along a ray segment, as used in
the compositing. For T constant on a ray segment of length I, a = 1 - P - ~ ‘ (see
[I l l .

The RGB color and opacity T are determined by “transfer functions”
which specify how they depend on the scalar variable s being visualized. In
this section, we will assume that the transfer functions are linear in s . In fact,
our system supports piecewise linear transfer functions, by slicing cells into
subcells inside which the transfer functions are linear (see [1 I , 121).

The hardware-based method discussed below will be inathematically
equivalent to analytic integration along viewing rays when:

((1 1 The projection is orthogonal rather than perspective.
(h) The faces of the cells are planar.

~ 9 1 .

((2) The scalar s varies linearly across cells, so that R, G, B, and r are linear.
(cl) The color is constant per cell, and only r varies linearly.

Condition ((1) is a specially strict version of condition (c), because the hard-
ware interpolation of colors is not consistent with the analytic integration. As
the discussion proceeds, we will explain the approximations we must make
when one of these conditions is violated.

Figure 1 shows a hexahedral cell, projected onto the image plane. When
we refer to a vertex label like F in this figure, we mean either the 3D vertex
position or its 2D projection, depending on the context. The projected edges
of the cell divide the irnage plane up into several polygons, in this case the
two triangles EIH and BCJ, and five quadrilaterals like FJGC. These polygons
are scan converted and composited into the image by the graphics hardware.

I I I

”
i

/\ \

7

Consider the segment in which the viewing ray through F intersects the
cell. The RGBz values at the front segment endpoint are the ones determined
by the data value s at F, but the values at the back endpoint must be interpo-
lated across the face HDCG. The integrated opacity for the vertex F is a = 1 -
F“ where I is the length of the ray segment, and z is the average of the differ-
ential opacities :,.and TI, at the front and back segment endpoints, respectively.
To compute I , we must interpolate the depth z across the polygon HDCG to
get the back segment endpoint, and then 1 can be found using a square root.
(Similar computations are used at vertex D, with interpolation across polygon
ABFE used for the front segment endpoint.)

After a perspective projection, the zs coordinate in screen space is a func-
tion of the coordinate in eye space. of the form i l , = ci + hlz,,. This transforma-
tion has the important property that planar surfaces i n eye space are
transformed to planar surfaces in screen space. Thus the depth z S for the back
endpoint of the ray segment through F can be determined by screen space
interpolation on the planar polygon HDCG. and then I can be found by revers-
ing the eye to screen coordinate transformation. I n perspective, 1 varies non-
linearly with pixel position. so i t should be computed this way at each pixel in

polygon FJCG, using the z,, values from polygons FBCG and HDCG. This
requires a square root and two divides per pixel. In our implementation, we
approximate this by computing I at each vertex, and interpolating linearly
across the polygon. We similarly interpolate R, G, B, and z linearly across
these polygons in screen space, using the standard Gouraud shading hard-
ware.

The computations for vertices I and J are simpler, because the nece
R. G, B, z. and z values are interpolated linearly along the polygon edges.
Again, we interpolate these values linearly in screen space, instead of in eye
space, but in this case, the correct eye space interpolation is not difficult,
because i t is only done once per crossing of projected edges.

In the original Shirley and Tuchman method [7], the color assigned to a
“thick” vertex like F: D, I, and J in figure I , is the average of the colors at the
front and back endpoints of the viewing ray through F, and the integrated
opacity at F is a = 1 - F” where = (!,+ z,,)/2. The colors at the profile verti-
ces like A come directly from the scalar values s at these vertices, and the inte-
grated opacities are set to zero. The hardware then interpolates the colors and
opacities across the image plane polygons like FJCC, and composites them
onto the image, using

(1)
As pointed out in [I O , 1 I] , linear interpolation of integrated opacity a across
the polygon is not mathematically equivalent to doing the correct calculation,
requiring an exponential, per pixel. This can cause unwanted Mach bands i n
the volume rendered image. Correct values of a can be generated using tex-
ture mapping hardware. In an orthogonal view, zi’ and TI? vary linearly across
the polygon i n screen space, and therefore so does z = (!, + zh)/2. If faces
FCGB and HDCG are planar, 1 will also vary linearly across polygon FJCG.
Thus z and I’ can be specified as texture coordinates, and linearly interpolated
by the hardware. The correct a is then extracted from a 2D texture map,
which is preloaded with the values 1 - e-T‘.

For a perspective view, !,and TI? should actually be interpolated in eye
space. OpenGL can give a correct perspective of a textured surface, with tex-
ture coordinates interpolated in eye space, by using appropriately specified s ,

f, and q texture coordinates [21]. However, T is the average of !/.on the front
face and on the back face, and the perspective distortion is different on
these two faces, so this feature will not help us. In addition, the correct com-
putation of I in perspective would require a square root per pixel. Therefore
our texture mapping technique is only an approximation in perspective. We
similarly make approximations in the perspective case by interpolating the
color components R, G, and B i n screen space.

Regarding requirement (r l) above, the color integrated along the ray is
not the average of the front and back colors, weighted by a, as in equation (I) ,
because the opacity near the front of the ray segment hides more of the back
color. For precise color, the analytic integration described in [1 I . 201 should

RGBncw = (1 - a) x RGB(),d+ a x RGBpolygon.

be performed once per pixel. However, i t requires exponentials, square roots,
and evaluations of special functions (the Error function or the Dawson inte-
gral), and is thus beyond the per-pixel capabilities of current hardware pipe-
lines. Therefore, we instead compute the correct integrated color only at the
thick vertices, and divide by the integrated a value to get the polygon color.
Even this can be slow, so we also provide the option to use simply the average
of the front and back colors, as in [7].

So far we have discussed the approximations resulting when conditions
((I) and ((1) are violated, and we now turn to conditions (h) and (c). They are
related, since (h) concerns the interpolation of z across the faces, and (c) con-
cerns the interpolation of R, G, B, and t across the faces as well as inside the
volume. There are standard “linear” finite element interpolation functions for
the zoo elements, which are linear on edges and triangular faces, bilinear on
quadrilateral faces, and linear (for tetrahedra only) or trilinear inside the vol-
ume. For example, inside a hexahedron, the interpolation is trilinear.

The corresponding interpolation produced by our hardware scheme is
hard to determine, because interpolation across polygons is not completely
determined in the OpenGL specifications [22] . Instead two possibilities are
suggested: (1) divide the polygon into triangles, and interpolate linearly
across the triangles, or (2) divide the polygon into trapezoids by horizontal
lines through the vertices, and interpolate bilinearly in the trapezoids (linearly
in the case the trapezoid degenerates into a triangle). Our hardware approxi-
mation to the integration along the ray segments assumes a further linear
interpolation along the ray segments. Thus i t is equivalent to piecewise bilin-
ear interpolation in case (I) , and piecewise trilinear interpolation in case (2).
This piecewise interpolation is view dependent, since the subdivision into
pieces depends on the subdivision of the view plane into polygons, in addition
to any further subdivision produced by the hardware. Only in very special
viewing situations will it correspond to the interpolation used by the finite ele-
ment interpolation functions.

Now consider the effect of non-planar faces. If we subdivide each quad-
rilateral face by the diagonal from its lowest index vertex, the resulting cell
will have more edges and faces, so polygonal subdivision of the image plane
by the projections of its edges will be more complex, and take longer to com-
pute. For example, figure 2 has 29 polygons, instead of the 7 polygons in fig-
ure I . This will require OpenGL to output more data, and require the
hardware to transform more vertices and set up more polygons. However the
fragment count [21] is the same, because each pixel in the projection still
belongs to exactly one polygon. If the cell were instead subdivided into tetra-
hedra, the fragment count would also increase, because most pixels would lie
inside the projections of several tetrahedra.

If only the problem faces are subdivided, the hardware rendering is
equivalen~ to rendering a cell whose faces are piecewise linear or bilinear.
This interpolation is determined partly by the hardware interpolation of cases

(I) and (2) above, and partly by the depth values interpolated in software at
the other endpoint of a the ray segment through thick vertex like F, which lies
in the interior of a face like DCGH. We currently choose the z , color, and z
values at the back endpoint of this segment by subdividing face DCGH with
the diagonal from its vertex of lowest index, and then interpolating linearly in
screen space across one off the two resulting triangles. Another possibility
would be bilinear interpolation, but doing this correctly would require inter-
secting the viewing ray with the parametrized bilinear surface for the face.
This would still not produce the completely correct results for bilinear faces,
because the hardware interpolation of the texture parameter I is not the same
as doing a ray/surf'ace intersection per pixel.

Similarly, our current method is not consistent with subdividing all the
quadrilateral faces into triangles and rendering the polygons in figure 2,
because a single polygons from figure I will usually overlap several polygons
from figure 2. The projection of an interior grid face will be subdivided differ-
ently by the projected edges of each of the two cells i t bounds, resulting in
two different interpolations of z. This can produce a gap or overlap between
the ray segments for these two adjacent cells, causing errors in the volume
rendering. In most of our applications, the quadrilaterals are almost planar,
and the errors introduced are not large. We also have slower face subdivision
alternative which divides all quadrilaterals into two triangles. and renders all
the polygons of figure 2, eliminating these particular z interpolation inconsis-
tencies.

Data Structures
As mentioned above, the vertices are stored in a large array. The SILO

data has no information on the connectivity of cells across common faces, so
this is added after input. The data structure for each cell is as follows.
struct Newcell {

char subdivided;
char oldsubdivided;
char numbInbound;
char type ;
char actual;
char cycleTestBit;
char notvisited;
char nverts;
int UsedTIndex;
struct Newcell parent;

struct NewFace **face;
int vertex[4];

pointer to a block

/*currently subdivided * /
/*subdivided in last frame * /
/*for directed graph sort * /
/ * z o o element or new tetrahedron * /
/*actual, virtual, or degenerate * /
/*for detecting visibility cycles * /
/*for MPVONC sort * /
/*number of vertices * /
/*into list of cells actually used * /
/*parent of tetrahedron in block or
of tetrahedra for subdivided cell * /
/*head of face list * /
/*vertex pointers * /

}

Extra space for more vertices is allocated if nverts is more than four.
The list of fiice pointers is actually an array stored after the array of vertex
pointers. but because nverts is variable, it must be iiccesses via a pointer.

The f'oilowing data structure for the faces allows either one subfaco. for

triangles, or two subfaces, for quadrilaterals.
struct NewFace

short concave; /*1 if a problem face; 0 if not * /
short nsubfaces; /*1 for quadrilateral; 0 if not * /
struct Subface[ll; /*more space allocated if needed * /

1

Each subface is a triangle, and therefore has a linear plane equation. The
subface points to the two cells that share i t . The first entry points to the cell
with the lowest index; a tetrahedron from a subdivision gets its parent’s index.
For exterior subfaces, the second pointer is - 1 .

struct Subface {
struct Newcell sharedr21;
float A; / * The plane equation is: * /
float B; / * Ax + By + Cz + D = 0. * /
float C;
float D;
char arrow;
1 / * for graph edge direction * /

The arrows direction is with respect to the first shared cell, shared[O]. I t
indicates whether the viewpoint is on the same side of the plane of the triangle
as cell shared[O], on the opposite side, or exactly on the plane. The plane
equation is computed once when the geometry is determined, but the arrows
must be recomputed each time the viewpoint moves.

The plane equations and arrows for the two subfaces of a quadrilateral
face determine whether i t is a problem face (setting concave) and which of
the cells it bounds is a problem cell (setting subdivided). See [121 for details.
I f subdivided is true and oldsubdivided is false, the cell is subdivided by
taking a block from one of four pre-allocated arrays of such blocks, for (I)
pyramids, (2) prisms, (3) hexahedra requiring five tetrahedra, and (4) hexahe-
dra requiring six tetrahedra. Actually, we currently use seven arrays instead of
four, because of an earlier attempt to save time by reusing preset face pointers
that point to interiial faces inside the bock, requiring a separate list for each
block topology. When a cell is subdivided. the shared pointers originally
pointing to the cell must be revised to point to the new tetrahedra. This is the
reason for including the shared pointers in the subfaces; a quadrilateral face
pointing to a single cell may later need to point to two subtetrahedra.

If subdivided iS false, and oldsubdivided is true, the parent pointer in
the NewCell structure is used to restore the pointers to their state prior to sub-
division, and the block is placed on a free list for its topological type. Below is
the data structure for a block of cells.

struct BlockOfCells {
char type ; /*inherited from parent type * /
char used; /*1 if currently in use; else 0 * /
short kind ; /*which block topology * /
struct BlockOfCells *next; /*lists of used & free blocks*/
struct N e w C e l l tets[Zl; /*more space allocated if needed * /
1

The storage for the storage for the internal faces is directly after the end
of the tets array, within the memory allocated for the block, enhancing local-
ity of memory reference.

The XMPVO [I S] and BSP-XMPVO [191 sorting algorithms require a
list of planar exterior triangles, each pointing to the cell they bound. Thus we
divide all exterior quadrilateral faces into triangles, whether or not they are
problem faces. In the BSP-MPVO algorithm, which we are currently using for
our slower correct sort, the required BSP tree is constructed once per new
geometry, independent of the viewpoint position. We modified the algorithm
so that each exterior triangle points to one of our subface structures, instead of
to a cell. Thus we can follow a shared pointer to the correct cell, even after
view dependent subdivision replaces a subdivided cell by tetrahedra.

Results
Figure 3 shows a volume rendering of a curvilinear grid of 19,000 cells

on a half-cylindrical shell, twisted so that its faces are non-planar. The transfer
function is piecewise linear, and the cells containing contours for the break-
points of the rtransfer function are divided into tetrahedra, some of which are
further subdivided into slabs on which the transfer functions are linear. In
addition, 2589 problem cells were subdivided, giving a total of 3 1945 cells to
be projected and rendered. The subdivision took 0.1 1 seconds, and the quick
approximate MPVONV sort took 0. I5 seconds. The total time to project and
render the 31945 cells was 14.7 seconds, using X. The server was an SGI
ONYX with 48 250 MHZ RIOOO processors, of which we only used one. We
are currently parallelizing the time consuming projection, image plane subdi-
vision, and color integration steps, and will report on this separately. The cli-
en t was an SGI Octane with one 250 MHZ RIOOO processor, and an ESI
graphics board with texture option. The total wall clock time, including 1 sec-
ond to position the window, all data transfer, and a 5 second pause before
reading back and closing the image, was 23 seconds.

Acknowledgements
This work was performed under the auspices of the U.S. Department of

Energy by Lawrence Livermore National Laboratory under contract number
W-7405-ENG-48, and specifically supported by the Accelerated Strategic
Computing Initiative. Dan Schikore wrote the routines to reconstruct the face
connectivity for the SILO data.

References
[I I Nelson M a x . Optical Models l'or Direct Volume Rendering. IEEE Transactions on Visual-

[21 Marc Levoy. Disphy of Sur l~~ccs from Volume Data. IEEE Compu(er Graphics und Appli-

[3 I Rohcrl Ilrcbcn. Loi-en Cai-pcntcr. and Piit Hanrah;in. Volume Rendering. Coinptircr Graph-

141 CririF Ilpsoii ani1 Michiicl Kcclcr. V K I K : Visihle Volunrc Rendering. Coiiipiitcr Griiph-

iz;ition ;urd C o m p u k r Cr;rphics. Vol, I , N o . 2. l9%, pp. 99 - I O X .

cat ions. Vol. X. N o . 3 , I q X X , pp. 29 - 37.

ics Vol. 7 2 , No. 4. 1988. 1717. 65 - 74.

Figwe 3. Rendtr-irig of LI fwistid ~ t ~ ~ v i l i ~ ~ ~ ~ ~ i r grid, i n i f i d l y nit11 19,000 hrwihi~rlrrrl c.c~lls.

ics Vol. 22, N o . 4, 19XX. pp. 59 - 64.
151 Hmspetcr Plister and Jan Hardcnhergh and Jim Knittel and Hugh Lauer and Larry SeiIcr.

The VolumePro Real-Time Ray-casting System, Proceedings o f SIGGRAPH 99, Computer
Graphics Proceedings, Annual Conference Series, 1999. pp. 2S 1-260.

161 Hrian Cahral and Nancy Cain and Jim Foran. Accelcl-atcd Volume Rendering and Toino-
graphic Reconstruction Using Texture Mapping Hardware, I994 Symposium o n Volume
Visualization, pp. 9 I -9X.

171 Peter Shirley and Alan Tuchman. A Polygonal Approximation to Direci Scalar Voluine
Rendering, Computer Graphics (San Diego Workshop on Volume Visualization), Vol. 24,

18) Jane Wilhelins and Allen Van Gclder. A coherent projection approach lor direct volume ren-
dering. Computer Graphics (Proceedings of SICGRAPH 91), 25 (4). 1991, pp. 275-284,

191 Nelson Max and Pat Hani-ahan and Roper Crawfis. Area and Volume Coherence for Efli-
cient Visualization of 3D Scalar Functions, Computer Graphics (San Diepo Workshop o n
Volume Visualization), 1990. 24 (5) . pp. 27-33.

ing For Voluine Visualizahn. 1994 Syinposiuin on Volume Visualization, pp. 83-00 (Octo-
her 1994). ACM SIGGRAPH.

1 1 I1 Peter L. Williams and Nelson L. Max and Clillord M. Stein. A High Accuracy Volume
Renderer lor Unstructured Data, IEEE Transactions on Visunlizalion and Computer Graph-
ics, 4(1) q pp. 37-54 (January-March 199%).

[121 Nelson Max, Peter Williams, and Clmdio Silva, Appi,oximate Volume Rendering tor Cur-
vilinear and Unstructured Grids by Hm-dwarc-Assisted Polyhcclron Projcclion. Inlerna-
tiond Journal of Imaging Sysrcins and Technology, Vol. I I , 2000, pp. S3 - 61.

[13 1 Silo [Jscr’s Guide. Revision I , Augtist 2000, Lawrence Livcrmorc National Laboralory,
IJCRL-MA- I I X7S I . l~ tp : / / l~p . I ln l .pov/p i ih /mc~l~~~~/ incs l i tv~ , 1.1 /silo.ps ,

NO. 5 , 1990, pp. 63-70,

I I O] Clifford Stein and Barry Hccker and Nelson Miix. Sorting and Hardware A

I 141 Gregory Nielson and Junwon Sung. Interval Volume Tetraliedralization. Proceedings o f
IEEE Visualization 1997. pp. 221 - 22X.

1 IS 1 Peter L. Williams. Visibility-Ordering Meshed Polyhcdra. ACM Transactions on Graph-
ics, I l (2) . pp. 103-126 (April 1992).

[1 61 Nelson Max, Sorting for Polyhedron Compositing, in Focus on “Scientific Visuali,don,”
H . Hagen. H Muller, and G . Nielson, editors. Springer-Vcrlag, Berlin, 1993, pp, 259 - 26X.

[17) Martin Newell, The Utilizalion of Procedure Models in Digital Image Synthesis, PhD thc-
sis. University of Utah, 1974 (UTEC-CSc-76-21 X and NTlS ADlA 039 OXXILL).

[I X] Claudio Silva, Joseph Mitchell, and Peter Williams, An Exact Interactive Time Visibility
Ordering Algorithm for Polyhedral Cell Complexes. Proceedings of the 1998 Symposium
on Volume Visualization. ACM, 1998, pp. X7 - 94.

[191 JoBo Comba and JainesT. Klosowski and Nelson Max and Joseph S. H. Mitchell and Clau-
dio T. Silva and Peter L. Williams. Fast Polyhedral Cell Sorting for Interactive Rendering
of Unstructured Grids, Coinputcr Graphics Forum, I X(.?), pp. 369-376 (Scpternher lY99).

1201 Peter L. Williams and Nelson Max. A Volume Density Optical Model. I992 Workshop o n
Volume Visualization, pp. 61-68 (1992). ACM.

[2 I I Mason Woo. Jackie Neider, and Toin Davis. OpcnGL Programming Guide, Second Edi-
tion, Addison Wesley, lYY7. p. 372.

122) Mark Segal and Kurt Akcley, The OpenGL Graphics Syatein: A Specitication, http://
www.openg.org/Documentation/Specs.htinl (1 Y XX).

