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Parallel evolution ,of image processing tools for multispectral 
imagery 

Neal R. Harvey, Steven P. Brumby, Simon J. Perkins, Reid B. Porter, James Theiler, 
A. Cody Young, Jo1;m. J. Szymalli?ki, and Jeffrey J. Bloch 

Space and Remote Sensing Sciences Group 
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Los Alamos, New Mexico 87545 

ABSTRACT 

We describe the implementation and performance of a parallel, hybrid evolutionary-algorit~-based system, which 
optimizes image processing tools for feature-finding tasks in multi-spectral imagery (MSI) data sets. Our system uses 
an integrated spatia-spectral approach and is capable of combiniIig suitably-registered data from different sensors. We 
investigate the speed-up obtained by parallelization of the evolutionary process via multiple processors (a workstation 
cluster) and develop a model for prediction of run-times for different numbers of processors. We demonstrate our 
system on Landsat Thematic Mapper MSI , covering the recent Cerro Grande fire at Los Alamos, NM, USA. 

Keywords: multi-spectral, image processing, evolutionary computation, parallelization 

1. INTRODUCTION 

Vast quantities of remotely-sensed data are becoming available, from an increasing number of sensors. Feature 
extraction is a poweful and important technique for the exploitation of the information within such data. In order 
to perform feature extraction tasks, one requires suitable analysis tools. The creation of such tools is important, yet 
can prove extremely expensive. In order to address this problem, we have been developing an automated system for 
the generation of feature detection tools, which utilizes an evolutionary approach. 

This evolutionary approach is attractive for its flexibility: if a fitness measure can be derived for a problem, then 
it may be possible to find a solution to the problem. Taking an evolutionary approach has helped in the solution of 
many problems, such as designing protein sequences with desired structures, l optimization of dynamic routing in 
telecommunications networks2 and optimizing image processing filter parameters for archive film restoration.3 

In adopting an evolutionary approach to solving a problem, the representation of candidate solutions in such a 
manner that they may be effectively manipulated is a critical issue. ·We employ a genetic programming (GP) method 
for candidate solution representation, because each candidate solution represents .an image processing algorithm. 
Previous applications of GP to image processing have included feature extractiori.: e.g. Daida et al.,4 Brumbyet 
al.,s Theiler et al.,6 and Brumby et al.,7 where it has been demonstrated that real problems in remote-sensing can 
be successfully addressed using GP techniques. 

The nature of an evolutionary algorithm is that a number of candidate solutions is maintained (a population of 
individuals) and each of these individuals is tested on some representative problem. Maintaining a large population 
leads to robust solutions in many problem domains but also leads to large computation times. However, one attraction 
of evolutionary approaches is that they lend themselves extremely well to parallelisation: where the assessment of 
·individuals can be done on several computers simultaneously. In this manner, substantial speed-~p can be achieved. 
A primary motivation of this paper is to investigate the effectiveness of parallelisation in our system. 

Increased speed in algorithm development is often as much of a necessity as a desire, as made evident by the 
recent wild fires in Los Alamos, NM, USA. With monsoon rainfall imminent, and with fire-ravaged terrain providing 
a flood threat for town residents and the nearby national laboratory, there is an immediate need for information 
regarding location of heavy fire damage, in order to determine areas most at risk. It seemed an ideal (and very real) 
problem on which to demonstrate the flexibili ~ speed of our feature extraction tool. 
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Figure 1. GUI for training data mark-up. Note that ALADDIN relies heavily on color, which does not show up 
well in this image. The light colored patches in the center-right and upper-right parts of the image are two golf 
courses that have been marked up as "true". Most of the rest of the image has been marked up as "false", except 
for a small region around the golf courses which has been left as "unknown". 

2. OUR SYSTEM: "GENIE" 

Our feature detection system, "GENIE" (GENetic Image Exploitation),5,6,8 employs a classic evolutionary paradigm: 
a population of individuals is maintained and each individual is assessed and assigned a fitness value. The fitness of 
an individual is based on an objective measure of its performance in its environment. After fitness determination, 
the evolutionary operators of selection, crossover and mutation are applied to the population and the entire process 
of fitness evaluation, selection, crossover and mutation is iterated until some stopping condition is satisfied. 

2.1. Training Data 

The environment for each individual in the population consists of data planes, each plane corresponding to data in 
a specific spectral channel, together with a weight plane and a truth plane. The weight plane identifies those pixels 
which are to be used in the training process, and the truth plane identifies the particular features of interest within 
the training data. The data in the weight and truth planes may be derived from actual ground truth (collected on 
the ground, at the time the image was taken) or from the reasoned judgement of an analyst looking at the data. 
Obtaining true ground truth can be very expensive. Therefore, we provide/use a Java-based tool called ALADDIN 
to assist the analyst in making judgements about and marking up the data. Using ALADDIN, the analyst/user can 
view a multi-spectral image in a number of different ways, and can mark up training data by painting directly on the 
image using a mouse. Currently, training data is ternary-valued with the possible values being "true", "false", and 
"unknown". 1hLe defines regions where the analyst is confident that the feature of interest does exist. False defines 
regions where the analyst is confident that the feature of interest does not exist. Fig. 1 shows a screen capture of 
an example session. In this partciular example the analyst has marked out golf courses as of interest. 

2.2. Encoding Individuals 

Each individual chromosome in the population consists of a fixed-length string of genes. Each gene in GENIE 
corresponds to a primitive image processing operation, and hence the entire chromosome describes a more complex 
algorithm consisting of a sequence of primitive image processing operations. 
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2.2.1. Genes and Chromosomes 

A single gene consists of an operator name, plus a variable number of input arguments, specifying from where input 
is to come; output arguments, specifying to where output is to be written; and operator parameters, modifying the 
operator's function. Different numbers of parameters are required for different operators. .The operators used in 
GENIE take one or more distinct data planes as input, and generally (but not always) produce a single data plane 
as output. Input can be taken from any data plane in the training data image cube. Output is written to one of a 
small nUmber of scratch planes, which are simply temporary workspaces where a data plane can be stored. Genes 
can also take their input from these scratch planes, but only if that scratch plap.e has previously been written to by 
another gene positioned earlier in the chromosome sequence. 

The overall algorithm that a given chromosome represents can be thought of as a directed acyclic graph, where 
the non-terminal nodes are primitive image processing operations, and the terminal nodes are individual data planes 
extracted from the multi-spectral data used as input. The scratch planes are the 'adhesive' that binds together 
primitive operations into image processing pipelines. Traditional Gp9 uses a variable sized tree representation for 
algorithms. Our representation differs in that it allows the reuse of values computed by sub-trees, since many nodes 
can access the same scratch plane, i.e. the reSulting algorithm is a graph rather than a tree. Another way it differs 
is that the total number of nodes is fixed (although not all of these may be actually used in the final graph), and 
crossover is carried out directly on the linear representation. 

We have restricted our "gene pool" to a set of what we consider useful primitive image processing operators. 
These include spectral, spatial, logical and thresholding operators. 

The notation we use for genes is most easily illustrated using an example: the gene [DIVP rDO rS1 wS2] applies 
pixel-by-pixel division to two input planes, read from data plane a and from scratch plane 1, and writes its output 
to scratch plane 2. If a gene requires additional operator parameters, they are listed after the input and output 
arguments. 

It should be noted that, even though all chromosomes have the same fixed number of genes, the effective length 
of the resulting algorithm graph may be less than this. For example, an operator may write to a scratch plane 
that is subsequently overwritten by another gene before anything reads from it. GENIE performs an analysis of 
chromosome graphs when they are created and only carries out those processing steps that actually affect the final . 
result. Hence, the chromosome's fixed length acts as a maximum effective length. 

2.3. Backends 

Complete classification requires that our algorithm's final output be a single binary-valued output plane .. It wo.uld 
be possible, after running the chromosome algorithm, to treat, for example, the contents of the first scratch plane as 
the final output from the algorithm (obviously, thresholding would be necessary to obtain a binary result). However, 
we have found it to be advantageous to perform final classification using a non-evolutionary algorithm. 

In order to do this, a' subset of the scratch 'planes and data planes is selected to be answer planes. In our 
experiments this subset typically consists of only the scratch planes. We then use the provided training data and 
the contents of the N answer planes to derive the Fisher Discriminant: the linear combination of the answer planes 
that maximizes the mean separation, in N dimensions, between those pixels marked up as ''true'' and those pixels 
marked up as "false", normalized by the "total variance" in the projection defined by the linear combination. See 
Ref. [9J for details of this discriminant. 

The discriminant-finding phase outputs a gray-scale image, which is then reduced to a binary image by using 
Brent's methodll to find the threshold value which minimizes the total number of misclassifications (false positives 
plus false negatives) on the training data. 

2.4. Fitness Evaluation 

Th.e fitness of a candidate solution is given by the degree of agreement between the final binary output plane and 
the training data. This degree of agreement is determined by the Hamming distance between the final binary output 
and the training data, with only those pixels marked as true or false contributing towards the metric. The Hamming 
distance is then normalized so that a perfect score is 1000. Put in a more formal context: Let H be the Hamming 
distance between the final binary output of the algorithm and the training data, with only pixels marked as true 



Figure 2. Software architecture of the serial system described. Note that the feature depicted on the right of this 
diagram represents the input data, training data and scratch planes 

or false contributing towards the metric, let N be the number of classified pixels in" the training image (i.e. pixels 
marked as either "true" or "false") and let F be the fitness of the candidate solution. 

F = (1 - (HIN)) x 1000 (1) 

2.5. Basic Software Implementation 

The genetic algorithm code has been implemented in object-oriented Perl. This provides a convenient environment 
for the string manipulations required by the evolutionary operations and simple access to the underlying operating 
system (Linux/Solaris). Evaluation of chromosomes' fitness is the computationally intensive part of the evolutionary 
process and, for that reason, we currently use RSI's IDL language and image processing environment. Within IDL, 
individual genes correspond to single primitive image operators, which are coded as IDL procedures, with a complete 
chromosome representation being coded as an IDL batch executable. In the serial implementation, a single IDL 
session is opened at the start of a run and communicates with the Perl code via a two-way unix pipe. This pipe 
is a low-bandwidth connection. It is only the IDL session itself that needs access to the input and training data, 
which requires a high-bandwidth connection. The ALADDIN tool was written in Java. Fig. 2 shows the software 
architecture of the system. 

2.6. Parallel Software Implementation 

Fitness evaluation makes up the bulk of the computation, particularly for large training sets and therefore we 
concentrated our efforts on parallelization in that area. To this end, the software was set up so that, instead of a 
single IDL session being opened up at the start of a run, multiple IDL sessions can be opened up on a number of 
different, networked machines. Only the fitness evaluation part of the evolutionary process was parallelized. All other 
evolutionary processes are performed on the host computer. The initialisation phase is conducted serially, with each 
IDL session in turn loading the training data. Once the initialization phase is completed the Perl genetic algorithm 
(GA) then farms out a chromosome to be evaluated to an idle IDL session. If no sessions are known to be idle, then 
the Perl begins checking the sessions' output pipes, one at a time, to see if any have finished. If one is finished, then 
its pipe is read, the results are noted, and the session is marked idle. Fig. 3 shows the software architecture of the 
parallelized system. 



Figure 3. Software architecture pf the parallelized system described, showing the multiple IDL sessions 

3. PARALLELIZATION EXPERIMENTS 
In order to determine the benefits of parallelization, experiments were run to compare the performance of GENIE, 
using a variable number of processors, on a test problem. GENIE was run on the same test problem, with the same 
parameters, for 20 runs. This process was repeated, varying the number of processors used for fitness evaluation 
from 1 to 10. Each processor in the experiment was a 466 MHz Intel Celeron processor having 256 :ME of RAM, and 
running the Linux operating system. Each individual GENIE run involved evaluating 1000 chromosomes. Several 
timing measurements were taken: these included initialisation wall-clock time, total Perl CPU time, total IDL CPU 
time and total wall.:clock time for the run. The average times for the 20 runs, with each processor configuration was 
determined and compared. 

The test problem involved trying to find a golf courses in 10-channel simulated MTI12 data, produced from 224-
channel AVIRlS data. This problem seemed a good test case as golf courses, due to their nature and characteristics 
in remotely-sensed data, possess distinctive spatial and spectral characteristics. Therefore, a good golf course-finding 
algorithm has to be able to utilize both the spectral and spatial information in the image. 

Fig. 4(a) shows the variation of initialization time with number of processors. It can be seen that total 
initialization time varies linearly with the number of processors. This is expected in our implementation, since the 
processors are initialized one at a time, 

Fig. 4(b) shows the variation of total Perl CPU time with number of processors. It can be seen that there is no 
significant difference in total Perl CPU time for different numbers of processors. This matches with what one might 
expect. The Perl code has to process the same number of chromosomes, regardless of the number of processors used 
for fitness evaluation. 

Fig. 5(a) shows the variation of total IDL evaluation CPU time with number of processors. As with total Perl 
CPU time, it can be seen that there is no significant difference in total IDL evaluation time for different number of 
processors. Once again, this matches with what might be expected. On average, 1000 chromosome evaluations will 
take the same total amount of CPU time, regardless of the number of processors. 
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Figure 4. (a) Variation of initialization time with number of processors (b) Variation of total Perl CPU time with 
number of processors 

Fig. 5(b) shows the variation of total wall-clock time with number of processors. It can be seen that there is 
a rapid decrease in time taken to perform a run, with increase in number of processors, up to about 5 processors, 
which appears to be the point of diminishing returns. 

We can create a simple model for the variation of wall clock time with number of processors. We initially assume 
zero communication overhead. Let Wt be the wall clock time for the run, N be the number of processors used for 
fitness evaluation, I be the rate at which the initialization time increases with number of processors (Le. the gradient 
of the initialization-processor graph), P be the total Perl process time for the run (which is proportional to the 
number of chromosomes to be evaluated) and E be the total IDL evaluation time (again, proportional to the number 
of chromosomes to be evaluated). Therefore we can estimate the total wall clock time for a run as: 

Wt = (N x I) + P + (E/N) (2) 

If we examine the plot of initialization time against processor number we see that the line does not actually pass 
through the origin, so we include a small offset term (system overhead?), 8, giving us: 

Wt = «N x I) + 8) + P + (E/N) (3) 

We can estimate the value of I and 8 by determining the best fit straight line through the plot of initialization 
time against processor number. We can estimate the values P as the mean of the total Perl CPU times for all runs. 
Likewise we can estimate the value of E as the mean of the total IDL evaluation times for all runs. This gives us the 
following: 

Wt = «21.48 x N) + 10.52) + 111.29 + (4242.49/N) (4) 
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Figure 5. (a) Variation of total IDL evaluation CPU time with number of processors (b) Variation of total wall 
clock time with number of processors 

Thus, we have an initialization time per processor of 21.5 secs., a total Perl process time of 111 secs., and a total 
IDL evaluation process time of 4242 secs. (70 minutes). 

We can plot this function and compare it to the measured wall clock time. Fig. 6(a) shows this comparison. 

It can be seen that the measured wall clock time correlates extremely well with the predicted. The slight difference 
in the two plots could be attributed to the fact that no account was taken for communication time. This would be 
an additional constant term in the predictive equ~tion and would provide a vertical offset which could bring the two 
plots closer together. By including the communication time offset, (let this be denoted as 0) in the model, we get: 

Wt = «N x I) +8) +P+ (E/N) +0 (5) 

We can estimate this offset, by simply taking the mean of the differences between the two. Doing this gives: 

Wt = «21.48 x N) + 10.52) + 111.29 + (4242.49/N) + 432.88 (6) 

The measured run time and predicted run time now have a much better correlation, as can be seen in Fig. 6(b): 

With the above model we can predict the number of processors necessary to attain the minimum total run time. 
If we differentiate equation 4 with respect to N, we can determine that for a minimum wall clock time, we would 
require 14 processors. . 

We can also look at the parameters that affect the number of processors that produce the minimal wall clock 
time. Let C be the total number of chromosomes evaluated, D be the size of data to be processed (i.e. size of 
the problem). We can further parameterize equation 5. With reference to equation 5, in the following equation, 
I = (<Ii x D), P = (A x C), E = ('11 x C) and 0 = (r x C): 



~ 4000 
a 
~ 
1= 

I 
§ 
a: 
w 

G5 
(!) 

il 2000 
I-

~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

"-I 
0, , 

, + , 
, 

<It 
+ 

+ 

-.. 
+ + 

+ + 

- - <&- - ~- - -0- --0 

O~~~~I~~I~~~I~~~~I~~IJ-~~ 
o 2 4 6 8 10 12 

Number of Processors 

(a) 

+ 

~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0, 

+\ , 

-" + + --:--,t--~-_-9 

O~~~~I~~I~~~I-L~_~I~~~I~~ 
o 2 4 6 10 12 

Number of Processors 

(b) 

Figure 6. (a) Comparison of predicted wall clock time with measured wall clock time, (b) Comparison of measured 
run-time with predicted run-time, including communication time. (Note: crosses represent the measured wall-clock 
run-time, diamonds the predicted wall-clock run-time) 

Wt = «N x 9? x D) + 8) + (A x G) + «w x G)/N) + (f x G) (7) 

Differentiating with respect to N and looking for a minimum, we get the following relationship for N: 

N = J(w/9?) x (G/D) (8) 

So, we can see that the number of processors required for minimum run-time is proportional to the square root 
of the ratio of the number of chromosomes to be evaluated to the size of the data to be processed (i.e. the size of 
the problem). 

4. APPLICATION 

For a real-world application, GENIE was applied to the problem of finding burned regions around Los Alamos, 
resulting from the Cerro Grande fire. The input data to genie was actually two Landsat data collections, from 
different times: one collected on May 9th 2000 and one collected on June 1st 2000. These data sets were stacked 
together so that, instead of having two single 6-band landsat data cubes, we had one single 12-band data cube. With 
this data GENIE could make use of the temporal information, in addition to spectral and spatial information. Fig. 
7(a) shows some of the data from the may 9th collection. 

Training data was marked up using ALADDIN by an analyst, using knowledge of official burned-area data. Fig. 
7(b) shows the training data, where white indicates pixels markes as "'True", grey indicated pixels marked as "False" 
and black indicates pixels markes as "Unknown". 



GENIE was run for 150 generations, with a population size of 50 chromosomes, and the resulting best algorithm 
had a fitness of 922, with respect to the training data. This fitness score translates into a detection rate of 99.1 % 
and a false alarm rate of 0.6 %. The results of the resultant burn-mask, overlaid on the Landsat data again, are 
shown in Fig. 8{b). 

Subjectively, these results can be seen to provide an accurate map of the burned areas. Objectively, these results 
have had their accuracy confirmed by officials involved in the recovery operation and have been corroborated by 
actual ground-truth observations. 

5. CONCLUSIONS 

We have demonstrated the ability to significantly decrease run-times for GENIE runs, by employing a simple 
technique of farming out chromosome evaluations to a group of processors. We have investigated the effect of number 
of processors on run times and developed a mathematical model to predict process run times. We have shown that 
the mathematical model compares very well with the measured results. We have also shown the application of our 
GENIE software to a real-world problem, and confirmed the accuracy of the results with actual ground-truth. 
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Figure 7. (a) Landsat data of Los Alamos, May 9th 2000, (b) Training data (white: true, grey: false, black: 
unJ..--nown 
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Figure 8. (a) Landsat data of Los Alamos, May 9th 2000, (b) Results from GENIE. run 


