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Automatic Extraction of Closed Pixel Clusters 
for Target Cueing in Hyperspectral Images1 

David W. Paglieroni and Dwight E. Perkins 
Lawrence Livermore National Laboratory 

P.O. Box 808, Livermore, CA, 94550 

ABSTRACT 

Traditional algorithms for automatic target cueing (ATC) in hyperspectral images, such as the RX algorithm, treat 
anomaly detection as a simple hypothesis testing problem. Each decision threshold gives rise to a different set of anomalous 
pixels. The clustered RX algorithm generates target cues by grouping anomalous pixels into spatial clusters, and retaining 
only those clusters that satisfy target specific spatial constraints. It produces one set of target cues for each of several 

decision thresholds, and conservatively requires O(K2) operations per pixel, where K is the number of spectral bands (which 
varies from hundreds to thousands in hyperspectral images). 

A novel ATC algorithm, known as Pixel Cluster Cueing (PCC), is discussed. PCC groups pixels into clusters based 
on spectral similarity and spatial proximity, and then selects only those clusters that satisfy target-specific spatial constraints 
as target cues. PCC requires only O(K) operations per pixel, and it produces only one set of target cues because it is not an 
anomaly detection algorithm, i.e., it does not use a decision threshold to classify individual pixels as anomalies. PCC is 
compared both computationally and statistically to the RX algorithm. 

KeyWords: automatic target cueing (ATC), anomaly detection, Pixel Cluster Cueing (PCC) algorithm, RX algorithm 

1. INTRODUCTION 

Each pixel in an overhead hyperspectral image contains a wealth of spectral information. By identifying spectral 
signatures of targets of interest, it may be possible to detect targets in overhead hyperspectral images (with hundreds or 
thousands of spectral bands) that cannot be detected in single-band images or even multi-spectral images (with tens of 
spectral bands). Unfortunately, it is not computationally feasible to identify spectral signatures of interest in each pixel 
individually. Automatic target cueing (ATC) algorithms are typically much more computationally efficient than spectral 
identification algorithms, and they can be used to dramatically reduce the number of pixels that must be subjected to spectral 
signature identification. ATC becomes a factor operationally when the volume of hyperspectral imagery becomes too large 
for a team of image analysts to process manually. 

Traditional algorithms for automatic target cueing in hyperspectral images, such as RX [7-8], stochastic expectation 
maximization (SEM) [3] and endmember-based algorithms [1-2], are based on anomaly detection. Anomaly detectors 
classify individual pixels as either of type "anomaly" or "background clutter". They produce one set of anomalies for each of 
several decision thresholds. Target cues can be formed by grouping anomalous pixels into spatial clusters, and retaining only 
those clusters that satisfy target specific spatial constraints. SEM is by far, the most computationally expensive of these 
algorithms (in fact, SEM is not computationally feasible for hyperspectral imagery). The RX algorithm is less expensive, but 

still requires O(K2) operations per pixel (by conservative estimates), where K is the number of spectral bands. Endmember­
based algorithms can be somewhat more efficient. 

A novel algorithm for automatic target cueing in hyperspectral images, known as Pixel Cluster Cueing (PCC) is 
discussed. PCC requires only O(K) operations per pixel. It produces only one set of target cues because it is not an anomaly 
detection algorithm - it does not use a decision threshold to classify individual pixels as anomalies. Instead, PCC groups 
pixels into clusters based on spectral similarity and spatial proximity, and then specifies only those clusters that satisfy target­
specific spatial constraints as target cues. The statistical and computational performance of PCC is compared to that of the 
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benchmark RX algorithm, A brief review of the RX algorithm is given in Section 2. Section 3 describes the two stages of 
the PCC algorithm. Section 4 gives statistical performance metrics for automatic target cueing and compares PCC to RX by 
applying each algorithm to an A VIRIS scene. 

2. OVERVIEW OF THE RX ALGORITHM 

Traditional ATC algorithms treat anomaly detection as a simple hypothesis testing problem. The pixel spectrum x .. 
IJ 

(a Kxl column vector with samples x .. (k), k = O, ... ,K-l) at row i and columnj ofa hyperspectral image with K spectral bands 
IJ 

is classified as either of type "background clutter" or "anomaly". The null hypothesis Ho is the anomaly absent hypothesis 

and the alternative hypothesis H] is the anomaly present hypothesis. Classification is based on a decision rule in which the 

decision threshold can either be specified manually or selected automatically. One can vary the number of pixels classified 
as anomalies by varying the decision threshold. 

A given anomaly detection algorithm is often assessed by comparing its performance to that of the RX algorithm. 
The RX algorithm is a traditional industry standard algorithm developed by Reed, Yu and Stocker in the early 1990's for 
detecting anomalies in hyperspectral images [7-8]. It is motivated by the concept of matched filtering. The decision rule for 
RX anomaly detection is 

(I) 

where y .. is the alarm statistic, x .. is typically x .. minus an image-average pixel spectrum, R is typically the KxK sample 
IJ IJ IJ 

covariance matrix derived from some or all of the hyperspectral image pixels, and Yo is the decision threshold. Since it 

requires 0(K2) operations per pixel to compute R plus 0(1(2) operations per pixel to compute y . . plus 0(K3
) operations per 

IJ 

image to compute R-1 from R, the computational complexity of the RX algorithm can be conservatively assessed as 0(K2) 
operations per pixel. This represents an appreciable computational burden because for hyperspectral images, the number of 
spectral bands (K) typically ranges from several hundred to several thousand. 

Other traditional industry standard algorithms include Stochastic Expectation Maximation (SEM) [3] and 
endmember-based algorithms [1-2]. For SEM, the number of covariance matrix inversions per iteration is equal to the 
number of spatial regions that the image was segmented into, which can be large. SEM is thus likely to be computationally 
feasible for mUlti-spectral images, but not hyperspectral images. Endmember techniques are feasible for anomaly detection 
in hyperspectral images, but due to scope constraints, will not be discussed further here. 

3. PIXEL CLUSTER CUEING (PCC) ALGORITHM 

Pixel Cluster Cueing (PCC) is a novel cluster-based algorithm for automatic target cueing in hyperspectral images 
[6]. Its computational complexity is typically O(K) operations per pixel, so its speed can be expected to vary in direct 
proportion to the number (as opposed to the square of the number) of spectral bands. PCC is not an anomaly detection 
algorithm - it does not apply decision rules and decision thresholds to individual pixels in order to classify them as anomalies. 
Instead, PCC groups pixels into clusters based on spectral similarity and spatial proximity, and then specifies only those 
clusters that satisfy target-specific spatial constraints as target cues. 

3.1 Percentile Spectrum Analysis (PSA) 

In order to assign pixels to clusters based on spectral similarity, it is necessary to establish an appropriate criterion 
for spectral similarity. The test of spectral homogeneity 



(2) I x(k) - xo(k) I < T(k) rtk 

defines two pixels x(k) and x o(k) to be spectrally similar if the magnitude of their difference spectrum is less than some 

similarity threshold spectrum T(k). The Percentile Spectrum Analysis (PSA) algorithm estimates T(k) from the statistics of 
hyperspectral image pixel spectra [5-6]. The first stage of pee involves estimating the threshold of spectral similarity 
between pixels. When the image is large (as in broad area search) PSA is only applied to small representative blocks of 
image pixels. In this case, the computational cost of PSA is small relative to pee as a whole, and can thus be discounted as 
an initialization cost. 

Let X. :(k) be the spectral difference between x .. (k) and its predecessor on the same row or column. The image of 
V ~ 

difference spectra contains spectral bands that are high-pass filtered versions of spectral bands from the original hyperspectra\ 

image (see Fig.l). PSA derives T(k) from statistics of x .. (k). PSA is originally formulated on the basis of a theoretical 
lJ 

statistical model for x .. (k), and is then extended to practical cases for which the model is not completely valid. 
lJ 

(a) (b) 

Fig. I (a) Broadband image (average of spectral bands) for AVrRIS hyperspectral image with 200 bands, 614 columns and 
512 rows. (b) Broadband image for A VIRIS image of difference spectra. 

I X. ·(k)1 is taken to be a sample of some random variable X(k). For spatially uniform scenes, almost all pixels are 
lJ 

spectrally similar (i.e., there is no clutter), so X .. (k) typically represents deviation in spectral band k between pixels that are 
IJ 

spectrally similar. Let us postulate a statistical model for images of difference spectra for spatially uniform scenes in which 
the random variables associated with the different spectral bands are positively scaled versions of one another. 
Mathematically, for any two spectral bands k and /, let us postulate that there exists a scale factor a

kl 
> 0 such that 

(3) 

In this case, the analytical form of the PDF does not vary between bands, but the ratio of the standard deviation between 
bands k and I is equal to akf Note that the statistical model of equation (3) does not assume that the PDF's have any 

particular analytical form. 



Let X (k) be the pth percentile of X(k). x (k) will be referred to as the pth percentile spectrom associated with 
p p 

spectral band k (see Fig.2a for examples). It can be shown that 

(4) 

from which it can be seen that the scale identity for percentile spectra 

(5) x (k) / x (k) = b > 0 
p q pq 

is satisfied [5-6]. These equations establish the scaling property of percentile spectra: 

The random variables associated with the different spectral bands in the magnitude of the image of difference 
spectra for a spatially uniform scene are scaled versions of one another if and only if the percentile spectra 
associated with the different percentiles are scaled versions of one another. 

Thus, if the percentile spectra measured for an image of magnitudes of difference spectra are close to being positively scaled 
versions of one another, then the random variables associated with the different spectral bands are also close to being 
positively scaled versions of one another. 

• Ll· . T . 
Letx = [x (O), ... ,X (K-l)] be the column vector associated with percentile spectrum x (k). The scale factor b of 

p p p p qp 

best linear fit between x and x minimizes II x -b x II and is given by 
p q q qp p 

(6) 

which yields a fractional error of 

(7) 

One can generate the shape deviation profile for percentile spectra, i.e., the plot of E vs. p for p > q and some relatively low 
p 

nominal percentile q (say q = 10). e = 0 for perfect similarity in spectral shape. The postulated statistical model of images 
p 

of difference spectra for spatially uniform scenes (see equation (3» is reasonable to the extent that E is small and relatively 
p 

constant for p > q. 

Suppose that in addition to a hyperspectral image of a spatially cluttered scene, one also has access to a 
hyperspectral image of a spatially uniform scene acquired with the same instrument under similar conditions. In this case, 
one could measure shape deviation profiles e for the spatially cluttered scene and E 0 for the spatially uniform scene. 

P A 
Independent of the precise statistical behavior of the difference spectra (i.e., the precise validity of equation (3», one would 
expect to be able to estimate a Similarity percentile p* > q such that E -E 0"" 0 for q < p 5 p* and E -E 0> 0 for p > p*. 

P p, P p. 

Note that EO"" 0 for p > q if and only if the random variables X(k) are close to being scaled versions of one another. p * is an 
p. 

estimate of the percentage of pairs of adjacent pixel spectra used in computing difference spectra that are appropriately 
deemed similar for the spatially cluttered hyperspectral image of interest. 

Unfortunately, it may often be the case that one has access to a spatially cluttered hyperspectral image, but not to a 
corresponding spatially uniform hyperspectral image. In this case, p* can be estimated by assuming that independent of the 



precise statistical behavior of the difference spectra, ep ~ dejdp can be expected to be relatively small for q < p s p* and 

larger for p > p*. Moreover, for p < p*, one can expect e to be similar to the shape deviation profile associated with the 
p 

spatially uniform hyperspectral image that would have been supplied had it been available. The assumption that e will be 
p 

relatively small for q < p 5 p* and larger for p > p* is certainly valid if the random variables X(k) corresponding to the 

spatially uniform hyperspectral image are roughly scaled versions of one another, in which case e "" 0 for q < p 5 p*. More 
p 

generally, this assumption will be valid to the extent that scene clutter disrupts the scale relationship between percentile 
spectra to a larger degree than the noise present in the spectral bands (i.e., the spatially cluttered hyperspectral image is not 
noise limited). See Fig.2b for an example. 

The foregoing discussion suggests that for spatially cluttered scenes, one may choose to estimate the similarity 
percentile p * by determining the percentile at which e begins to increase at an accelerated rate. The similarity percentile 

p 

might, for example, correspond to a knee in the plot of e vs. p. One way to estimate p* is to use the rule 
p 

(8) p* = smal1estp: e > 2i 
p p 

where e is the mean of e values for percentiles ranging from q to p (see Fig.2b). 
p p 

Since the shape of the similarity percentile spectrum x .(k) mimics the shape of the noise spectrum, it is reasonable 
p 

to represent T(k) as 

(9) T(k) = a' x .(k) 
p 

The parameter a> 0 will be referred to as the similarity threshold scale factor. a> 0 may be chosen such that exactly p* 

percent of all difference spectra satisfy the relation Ix .. (k)1 < T(k), for all k of interest. This ensures that exactly p* percent of 
IJ 

all difference spectra pass the test of spectral homogeneity (equation (2». To accomplish this, for all pixels (iJ) and over all 
spectral bands k, compute 

(lO) 
L1. • 

(e . .) = max (e .. (k) = 1 x. ·(k)llx ik) ~ O} 
l,j max l,j IJ P 

k=O .... .K-l 

Now let e* be the p * percentile of (e. J over all pixels. Also, define n to be the set consisting of all ordered pairs (i,j) 
lJmax 

such that (e. J < e* (this set contains p* percent of all pixels). Then there exists a similarity threshold scale factor a in 
l,f max 

equation (9), namely 

(11) a = e* 

such that I X. ·(k)1 < T(k) for all (i,j) E n and I X. ·(k)1 ~ T(k) for all (i,j) rt n (see Fig.2c for an example). 
IJ IJ 
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Fig.2 (a) Percentile spectra (p=20, 40, 60 and 80) and (b) shape deviation profile with p*=50 (dashed line) and (c) similarity 
threshold spectrum for the image in Fig.l. 

3.2 Pixel Clusters 

PCC is based on the premise that targets of interest (such as military vehicles scattered across a broad area of 
interest) can often be modeled as clusters of spatially connected pixels that differ spectrally from background pixels, and that 
for a given type of target, these clusters have characteristic spatial properties. The second stage of PCC involves pixel 
clustering. PCC perfonns clustering in two steps. In the first step, selected primary clusters (clusters of individual pixel 
spectra) are extracted from the original hyperspectral image. In the second step, cued secondary clusters (clusters of selected 
primary clusters) are extracted from the binary image of selected primary clusters. Both types of clusters are obtained by 
region growing based on local search [4,9]. The local search operation for primary clustering is 

(12) n/i,}) ~ ((m,n): (m,n) has not yet been assigned to a cluster 

and I x (k) - x .. (k) 1< T(k) Vk 
m,n IJ 

and 1m - ii, In - jl ::; w } 

w (typically 1 or 2) is a connectivity relaxation parameter which specifies the maximum allowed spatial separation between 
nearest neighbors in a cluster. The local search operation for primary clustering requires O(nK) operations per pixel, where 

the number of spectral comparisons (n) varies from 0 to (2w+ 1/-1. For small w, this translates to O(K) operations per pixel. 

Note that it is not necessary to continue evaluating the spectral difference between two pixels once a spectral band k has been 
found for which the magnitude of the spectral difference exceeds T(k). The local search operation for secondary clustering is 

(13) n
2
(i,j) ~ {(m,n): y = 1 and 1m - ii, In -jl ::; w} 

m,n 

where y . . is initially the binary image of selected primary cluster pixels (i.e., y . . = 1 for selected primary cluster pixels, and 
~ ~ 

y . . ~ 0 once pixel (i,}) has been added to a secondary cluster). The cost of secondary clustering is negligible relative to 
l.j 

primary clustering. 

A pixel cluster is said to be complete, full-grown or closed when it is closed under the mathematical operation of 
local search. Closed clusters are distinct (each pixel belongs to exactly one closed cluster), disjoint (non-overlapping) and 
unique (for a given image and T(k), there is one and only one set of closed clusters). A pixel cluster is spectrally 
homogeneous if no two cluster pixels are separated by more than 2T(k) (Le., they are all within T(k) of some spectrum). The 
spectral homogeneity of a pixel cluster can be quickly ascertained as the cluster is grown. 

The spatial properties of a pixel cluster can be measured by computing the values of certain spatial features, such as 
size (the number of pixels in a cluster) and spatial cohesion. The spatial cohesion K"of a cluster is a number that varies from 
o to 1 (K"= 1 for clusters that are as spatially cohesive as possible, i.e. circles). The spatial cohesion of a cluster C of size m 



can be computed as the ratio of the spatial variance of the cluster of size m that is as cohesive as possible and the spatial 
variance of C. 

The selected primary clusters are closed and must satisfy primary target specific spatial constraints. Spectral 
homogeneity can be enforced if so desired. Since selected primary clusters may correspond to complete targets or to pieces 
of targets, it is important for the primary constraints to be consistent with the spatial properties not only of complete targets, 
but also pieces of targets. Primary target specific spatial constraints thus tend to be relaxed. In particular, since pieces of 
targets can be very small, it may often be appropriate to choose a lower bound of 1 on the primary size constraint, even if a 
complete target covers a much larger number of pixels (the upper bound should still be close to the target size). 

The cued secondary clusters are closed and must satisfy secondary target specific spatial constraints. Cued 
secondary clusters may correspond to complete targets, but not to pieces of targets. Secondary constraints are thus typically 
more restrictive than primary constraints. For example, both the lower and upper bounds on secondary cluster size should be 
close to the size of the target. This combination of primary and secondary constraints allows pieces of spectrally non­
homogeneous targets to be assimilated into a single cluster, while allowing for the possibility that the target might actually be 
spectrally homogeneous. 

It is important to note that the idea of using clusters to assist in automatic target cueing is not unique to pce. For 
example, the basic RX algorithm treats target cues as individual anomalous pixels (see section 2). However, the clustered RX 
algorithm forms spatial clusters of anomalous pixels from basic RX, and then selects only those clusters that satisfy the 
secondary target specific spatial constraints from pee. 

4. PERFORMANCE METRICS AND EXPERIMENTAL RESULTS 

Performance metrics for automatic target cueing are designed to reflect how weIl the ATe algorithm facilitates 
target detection. They have historicaIly been based on the probability of target detection (P J and the number of false alarms 

(N
F
). To estimate these quantities, one must first provide appropriate definitions for "alarm" and "target" in the context of 

hyperspectral images. 

In the context of hyper spectral images, a target is a cluster of pixel spectra that corresponds to the spatial location of 
an object of interest. An alarm (or target cue) is a cluster of pixel spectra that satisfies certain spectral constraints and target 
specific spatial constraints. The pixels in an alarm must be aggregated into one or more spectra, which are then subjected to 
detailed analysis so that the spectral signature of the target of interest can be identified. 

One way to measure NFA is to addfalse alarm scores (SF); E [O,IJ computed independently for each of NA alarms 

i = 1, ... ,N
A

, i.e., 

NA 

(14) NFA = L (SF)i 
i=1 

This generalized definition of false alarm rate is not necessarily integer-valued. Each alarm, regardless of the size of the 
pixel cluster, is weighted the same. The false alarm score is the fraction of alarm pixels that are also target pixels, i.e., 

(15) 
L1 number ofpixels from alarm i that are not pixels from any target 

(SF),. = number of pixels from alarm i 

When an alarm is defined to be an individual pixel (as in basic RX), (SF),. will be 0 if pixel i is a target pixel, and 1 

otherwise. In this case, N FA as defined in equation (14) degenerates to the number of alarm pixels that are not target pixels, 

which is the usual definition. 

- -- - --
~-



An analogous way to measure P D is to average target detection scores (S diE [0,1 J computed indep,endently for 

each of NT targets i = 1, ... ,N r i.e., 

(16) 

Each target, regardless of the size ofthe pixel cluster, is weighted the same. In order to provide an appropriate definition for 
target detection score, it is helpful to distinguish between alarm clusters and alarm spectra: 

1. A/ann clusters are target cues. For basic RX, alarm clusters are individual pixels of type "anomaly". For clustered 
RX, alarm clusters are clusters of pixels of type "anomaly" from basic RX that satisfy target specific spatial 
constraints. For PCC, alarm clusters are cued secondary clusters. For consistency in computing the false alarm rate, 
alarm clusters for PCC and clustered RX are chosen to satisfy the same set of target specific spatial constraints. 

2. Alarm spectra are the spectra subjected to detailed analysis, subsequent to target cueing, for identification of the 
target spectral signature. For basic RX, alarm spectra are the spectra associated with individual pixels of type 
"anomaly". For clustered RX, alarm spectra are typically non-uniform aggregations of spectra associated with 
pixels from the same alarm cluster. For clustered RX, an alarm cluster thus has exactly one alarm spectrum. For 
PCC, alarm spectra are uniform aggregations of spectra associated with pixels from the same cued primary cluster 
(i.e., a selected primary cluster contained within a cued secondary cluster). For PCC, an alarm cluster may thus 
have more than one alarm spectrum. 

One could choose to assign a target detection score of I to a target only if there is at least one alarm spectrum whose 
constituent pixels all belong to the target cluster. On the other extreme, one would assign a target detection score of 0 to a 
target only when there is no overlapping alarm cluster. In general, one could choose the target detection score to be the 
fraction of alarm pixels that are also target pixels, for the alarm spectrum whose constituent pixels afford the largest 
fractional overlap with the target cluster: 

(17) 
(S J ~ max number of pixels from alarm spectrum j that are pixels from target i 

IY i ' number of pixels from alarm spectrum j 
j=I ..... NA 

where NA is the number of alarm spectra. When an alarm is defined to be an individual pixel (as in basic RX), (Sd,. will be I 

if pixel i is a targe~ pixel, and 0 otherwise. In this case, P D as defined in equation (16) degenerates to the number of anomaly 

pixels that are also target pixels divided by the number of target pixels, which is the usual definition. 

The statistical performance of basic RX is captured in its receiver operating characteristic (ROC) curve (a plot of 
P D vs. N

F
)· P D and NFA are both non-increasing functions of the RX decision threshold (yo in equation (1». For clustered 

RX, P
D 

will not necessarily be a non-decreasing function of N
FA

, so for clustered RX, (P
D

, N
F

) vs. Yo is perhaps more 

appropriately presented as a ROC scatter plot. For PCC, there is only one ROC point (P D' N
FA

) because there is no decision 

threshold. 

A target cueing experiment was conducted using the AVIRIS image in Fig.la and the target mask in Fig.3. The 
target mask was created to capture large buildings that are nearly square, ranging in size from 4x4 to 16x16 pixels. PCC was 
compared to both basic and clustered RX. Computationally, PCC was found to run roughly 80 times faster than RX (8 
seconds for PCC vs. 628 seconds for RX on the same 450MHz Pentium II processor). The primary constraints for PCC 
included a size range from 1 to 256 pixels, and" a cohesion range from 0.5 to 1.0. The secondary constraints for PCC included 
a size range from 16 to 256 pixels, and a cohesion range from 0.8 to 1.0. Fig. 4 shows the alarm mask for PCC. Fig. 5 shows 
the alarm masks for basic RX and decision thresholds corresponding to signal-to-c1utter ratios (SCR's) of 1, 3 and 5 (see 
equation (2». Fig. 6 shows the alarm masks for clustered RX obtained by applying the secondary constraints of PCC to the 
alarm masks for basic RX in Fig. 5. Fig.7 shows plots of the number of targets detected vs. the number of false alarms for 



each of the 3 methods. None of the anomaly detectors cued on more than about half of the targets. The detection rate for 
PCC was comparable to the basic and clustered RX detection rates associated with the most favorable decision thresholds. 
The false alarm rate for clustered RX was much lower than for basic RX. The false alarm rate for PCC was much lower than 
for basic RX, but modestly higher than for clustered RX. However, PCC ran almost two orders of magnitude faster than RX, 
and the alarm mask for PCC is unambiguous (i.e., there is only one PCC alarm mask). 

Fig.3 Target mask corresponding to the image in Fig.la. FigA Alarm mask for PCe. 

5. CONCLUSIONS AND FUTURE DIRECTIONS 

By viewing alarms as clusters of pixels, rather than individual pixels, it is possible to significantly reduce the false 
alarm rate of an ATC algorithm. In particular, the false alarm rate can be much lower for clustered RX than for basic RX. 

However, both versions of RX conservatively require O(K2) operations per pixel, where K is the number of bands in the 
hyperspectral image (typically ranging from several hundred to several thousand). The statistical performance of PCC can be 
competitive with that of clustered RX, but PCC typically runs orders of magnitude faster because its computational cost is 
only O(K) operations per pixel. Furthermore, unlike RX, which produces one alarm mask for each of several decision 
thresholds, PCC produces only one alarm mask. 

One problem with PCC, as currently specified, is that it sometimes misses targets that one would expect to detect. 
The authors have concluded that this can be partially attributed to two things. First, PCC needs to be slightly modified such 
that primary clusters satisfying secondary target specific spatial constraints are always selected as target cues, even if they 
belong to secondary clusters that do not satisfy those secondary constraints. Second, the primary target specific spatial 
constraints need to be specified more rigorously. For example, for the targets in Fig.3, the cohesion constraint should be 
made less restrictive as the primary clusters decrease in size from 256 down to I. 
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Fig.5 Alann masks for basic RX corresponding to SCR's of 
1,3 and 5 (top to bottom). 

Fig.6 Alann masks for clustered RX corresponding to 
the basic RX alann masks in Fig.5. 
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Fig.7 Number of targets detected vs. :number offalse alarms for basic RX (line), clustered RX (pluses) and pee (triangle). 
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