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Abstract

A numerical methodology to incorporate anisotropic elasticity into three-dimensional

dislocation dynamics codes has been developed, employing theorems derived by Lothe

(1967), Brown (1967), Indenbom and Orlov (1968), and Asaro and Barnett (1976). The

fonnalism is .based on the stress field solution for a straight dislocation segment of

arbitrary orientation in 3-dimensional space. The general solution is given in a

complicated closed integral fonn. To reduce the computation complexity, look-up tables

are used to avoid heavy computations for the evaluation of the angular stress factor (Lij )

and its :first derivative tenn (L~). The computation methodology and error analysis are

discussed in comparison with known closed form solutions for isotropic elasticity. For

the case of Mo single crystals, it is shown that the difference between anisotropic and

isotropic elastic stress fields can be as high as 15% close to the dislocation line, and

decreases significantly far away from it. This suggests that short-range interactions

should be evaluated based on anisotropic elasticity, while long-range interaction can be

approximated using isotropic elasticity.



1. Introduction

Brown [1] developed a two-dimensional theorem to evaluate the stress field of an

arbitrary dislocation configuration, where the field point and the dislocation line are co­

planar. The stress field of a general dislocation in three-dimension was first developed

by Indenbom and Orlov [2]. An alternative derivation with simpler expressions was

given by Asaro and Barnett [3] where the resultant stress field fora given dislocation

segment is expressed in terms of the so called angular stress factor and its derivative term

for an infinite straight dislocation.

3D dislocation dynamics models to date employ isotropic elasticity theory to

investigate the bulk behavior of single crystal composed of many dislocations. For some

materials, using isotropic theory may not be appropriate. For example, in eu the

anisotropic effect is strong and leads to the formation of stacking fault tetrahedron. The

objective of this paper is to provide a generalized approach to incorporate anisotropic

elasticity into dislocation dynamics codes. Asaro and Hirth [4] investigated the

equilibrium configuration of a three-fold node of dislocations in bcc a iron using full

anisotropic elasticity theory and later extended by Stolken [5] to study different types of

possible junction reactions in bcc metals. Recently, Raabe [6] applied anisotropic

elasticity for numerical simulations of 3D dislocation statics where the stress fields for

finite small angle tilt boundaries were investigated by direct evaluations of the integral

equations]. Shenoey et at. [7] employed anisotropic elasticity for their dynamic

simulation to study the behavior of partial junction dislocations in an fcc metal.

However, direct calculation of stress fields using anisotropic elasticity becomes

computationally heavy since the closed integrals, in general, need to be evaluated



numerically. In this paper, we provide a methodology for the purpose of reducing the

computational effort for problems that may require a large number of·dislocation

segments by the use of memory, or look-up tables.

2 Background

The stress field of an infinitely long straight dislocation with an arbitrary Burgers

vector as shown in Figure 1 is given as [1,3]
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U d U , (1)
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where d is the shOliest distance from the field point to the dislocation line, b is the

Burgers vector, t is the line sense vector and Lyare the components of the angular stress

factor matrix for an infinite dislocation. Now consider a finite segment as shown in

Figure 2, the stress field about the segment using the so called integral formalism [1- .

6,9,10] is given by,

ai' =_I_[-cos(r-a)~mn -sin(r-a)~~n!2
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where

and the derivative term is given by
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with Cmn;p being the elastic constants, t and b the line sense vector and the Burgers

vector, respectively. p is the vector from dislocation end point to the field point.

N= t x P is the vector normal defined by the field point and the dislocation segment.

To discuss the terms in Equations (2) and (3), we define a local coordinate system as

shown in Figure 2(a)-(b). In the figure, t is the unit vector along the dislocation line,

and m and Ii are the unit vectors orthogonal to each other, which lie in· the plane

perpendicular to the dislocation line and they are given by

Also,

A at NA
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The term (nn) jk is the Cristoffel stiffness matrix tensor and is given by

(11)



and its inverse

(12)

with &ijk being the pennutation tensor.

The physica1 representation of the stress field of a finite segment is given in tenns

of rational segment representations by Eshelby and Laub [8], giving an analogy ofcurrent

density flux connecting a wire immersed in a conducting liquid. Bacon et al. (9,10)

reviewed the issue in tenns of semi-infinite "hair-pin" ann dislocations which connect

two end points ofa segment. As shown by Asaro and Barnett [3] and Bacon eta/. [9,10J

when the field point is co-planar with an infinite dislocation or with a closed-loop

dislocation configuration, the angular derivative tenn in Equation (2) drops, reducing to a

simpler expression,

1
CFi ; =-[-cos(r-a)~mnt2" 2d Yl

For a general three-dimensional problem, however, Equation (2) must be used.

3. Result and Discussion

-(13)

In this section, we examme several dislocation configurations and perfonn

numerical analysis to verify that the methodology presented in the previous section

produces the correct stress fields. The main interest here is to numerically implement

Equations (1) and (2). Consider a dislocation segment shown in Figure 2(a). To evaluate

the stress field of a finite dislocation, two fundamental parameters are required. The first



being the dislocation line sense vector ; and the second, normal vector N defined by the

two end point ofthe segment and field point as shown in Figures 2-4.

Since no explicit expression for the stress field of a finite segment in an

anisotropic medium is available, we first consider the isotropic case and use the isotropic

elastic constants in equations (2)-(4) and compare the results with known closed form

solutions. Next, comparison between isotropic and anisotropic cases is discussed. For

numerical integration of Equations (6)-(9), a matrix version of Rhomberg integration was

developed. The calculations are performed for the case of Mo single crystal for two

cases, isotropic elasticity with the elastic properties:

.u = 130 GPa, v = 0.309 Cll = .u(1 + _1_), Cn =.u(~) and C44 =.u
1-2v 1-2v

And anisotropic elasticity with

Cn =460,C12 = 176 and C44 =110GPa.

Numerical Example

We consider a closed dislocation loop resembling a hexagon as shown in Figure

5. To avoid symmetry when evaluating the stress field and to generalize the argument,

we stretch the hexagon vertices in an alternating manner along the vertical direction as

shown in the figure. The resultant stress field just above the hexagon is evaluated on 100

x 100 square grid points (spaced by 4 Burgers vectors) using the integral formalism

described in the previous sections. The recently developed dislocation dynamics code

(micro3d) [11-13], which is based on isotropic elasticity is used to calculate the stress

fields and the results are compared to the current method.



The stress field along the lateral direction is given in Figure 6. The percent

difference between the isotropic solutions using the integral formalism, equations (2)-4),

and the closed form solution using mirco3d, is given in Figure 7, showing that the

maximum error is less than 0.015 %. Also in the figure we show the stress field for the

case of anisotropic elasticity using the elastic constants given above. When compared to

the isotropic case, the difference can be as high as 15%, especially close to the loop.

However, the relative difference in the stress magnitude between the two cases decreases

far away from the loop. This suggests that the use of isotropic elasticity for local

dislocation-dislocation interaction (e.g. junction formation) may involve significant

errors, but not for long-range interaction.

The calculati.ons were performed on a 500 MHz DEC Alpha system. CPU time

is measured for three different cases (Dislocation Dynamics, the integral formali.sm with

isotropic elastic constants, and the third with full anisotropic elastic constants) and given

in Table 1. In the table, it is noticeable that the CPU time for the case with anisotropic

elasticity is as close to approximately 500 times higher than just using the dislocation

dynamics code. Most of the time is spent on evaluation of the integrals in Equations (6)­

(9). Therefore, it appears that direct calculations for dislocation dynamics in highly

anisotropic media become computationally massive.

One way to resolve this computational problem as in for many other numerical

simulations is to tabulate the closed integrals involved in the analysis, which requires the

use of more memory. As shown in Figure 4, since only if and p vectors are required



to evaluate the integrals, one can specifY these vectors in spherical coordinates, I.e.

express N and p by three angles as shown in Figure 8, which are given as

(

SinBcos¢J
p= sinBsin¢ ,

cosB

[

COS ¢ cosAcosB- sin ¢ sin AJ
N=Cos(A)·ee +sin(A).eQJ = sin¢cosAcosB+cos¢sinA .

-cosAsinB

(14)

(15)

In the figure, the geometry is defined by only two distinct vectors, the line sense vector i

and field vector p, and if ~i x p. Therefore, the fundamental parameters are only N

and p. In the actual dislocation dynamics, the values of the three angles are determined

by the two vectors. To minimize the cost of evaluating L ii and L~, linear interpolation

method weighted by the volume of the eight rectangles around the interpolation point is

used. Higher order interpolation methods could give better resolution but this aspect is

under investigation.

Using 1 degree look up table as a function of three angles, e, ¢, A and six

components of L ii and L~, we evaluated the stress field of the distorted hexagon in Mo.

The Burgers vector in Equations (3) and (4) can add another degree of freedom. To

avoid this complexity, we decompose the Burgers vector into three components and

superimpose the stress field for each component to obtain the resultant field. Therefore,

instead of having two look-up tables for Iii and I~, there should be total of six tables.

The errors of all the stress components between the direct integral method and the use of

the look-up tables are given in Figure 8(a), yielding an average error of approximately



0.19 %. The memory required for the size of the look up table now becomes of concern

since size ofthe estimated table is close to 3 Gb. This estimate comes from the following

analysis. For 1 degree increment,

(16)

where no =180 is the number of grid points for (), andn¢ =360 and n)., =360 are the

grid points for rjJ and A, respectively. nf = 12 is the total number of stress components

to interpolate for Lij and L~ and nb = 3 is the three components of the Burgers vector.

Therefore, ifwe use single precision in the table, which is 4 bytes per number in memory,

the tota1 memory required becomes approximately 3.4 Gb. If we reduce the incremental

angle by one half, the size becomes 8 times smaller and the error should increase by 8

times also. The plot of error using a 2-degree increment look-up table is given in Figure

8(b), yielding an average error of 0.75 percent. The size required for this case is

approximately 500 Mh. One way to improve the method is by employing the approach by

Bacon et at. [9,10] where they approximated a two-dimensional functional data by fitting

and expressed as a Fourier expansion. In their analysis, they showed that only 5 terms in

the series are required to give accuracy within 0.5 %. This method along with higher

order interpolations that would require coarse mesh is currently under investigation and

will be presented in the forthcoming articles.

Line Tension

Since the net force on a dislocation segment should include line tension force

from the adjacent segments as well as the remote stress fields arising from other



dislocations, line tension in discrete dislocation dynamics models should be included to

avoid any artifacts on dislocation patterning. For isotropic media, the treatment is well

established using a tabular form [14], or explicit evaluation of a continuous dislocation

bend with the same or different Burgers vectors [13]. For an anisotropic medium, we use

the approach by Lothe [15]. The force on a dislocation bend in anisotropic media is

given by

dF = 1-(E(O) _ E(O) + 8E(0»)dl
A sinO tanO 80

(17)

where A is the distance from the bend and 0 is the angle between the two dislocation

segments around the bend. For a straight dislocation, the energy factor and its

derivative terms, E(O) and 8E(0)/ 80 in equation (17), are given by halfof the stress

factor and its derivative in equation (2), respectively [16].

4. Conclusion

A numerical methodology in terms of combination of speed and memory for the

elastic interaction calculation of dislocations in anisotropic media has been discussed.

To validate the methodology, comparisons of direct calculations using the isotropic

elastic constants with a dislocation dynamics model are performed to show that the

deviations from the exact solutions are within desired accuracy. Also, the comparison

between isotropic and anisotropic elasticity shows that the error of the nearby stress field

around a hexagon can be as high as 15 %, suggesting it is important to use anisotropic

elasticity for short-range dislocation-dislocation interactions. We introduced a look-up

table scheme to minimize heavy computational efforts for the integral evaluations within



a reasonable degree of accuracy. Linear Interpolation was used to avoid additional

computational cost and memory. Higher order interpolation methods are currently under

investigation. The result shows that the difference between the isotropic and anisotropic

solutions around the hexagon becomes noticeably small with increasing distance. This

suggests that one can use the explicit integral evaluation for near dislocation-dislocation

interactions and isotropic elasticity for long-range interaction. Finally, although one must

explicitly use the integral fonnalism to numerically calculate the different tables for the

stress factor and its derivative tenns, this has to be done only once for any given material

and set ofelastic constants, the results being stored for subsequent analysis.
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Figure 1 Coordinate system for the stress field of an infinite dislocation.
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Figure 2 Coordinate system used to calculate stress field about a finite segment.
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Figure 3 Illustration ofevaluation of stress field in 3D space
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Figure 4 Schematic details of vectors required for the evaluation of configuration given
in Figure 3.
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Figure 5 Geometry of a distorted hexagon to calculate the stress fields on a 100 x 100
grid points. The hexagon is stretched in the vertical direction to produce non-symmetry
when evaluating the angular stress factor and derivative.
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Figure 6 Stress distribution along horizontal direction about the distorted hexagon using
both isotropic and anisotropic elasticity.
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Figure 7 Relative error between the resultant stresses produced by the integral fOlmalism
with isotropic elastic constants and those by a dislocation dynamics code.
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Figure 9 Absolute error (divided by the mean stress value) between the methods by
direct evaluation of integrals and look-up tables with (a) 1 degree (b) 2 degree increment.



Table 1 CPU Time Comparisons

Method
CPU Time (sec.)

(Dec Alpha 500 MHz)

Dislocation Dynamics Code
0.662(micro3d, WSU)

Integral Formalism Method

Isotropic Contants 349.6

Anisotropic Constants 2540.9


