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An Example of Verification Analysis for an Eulerian Hydrocode (U)

M. R. Clover, J. R. Kamm, W. J. Rider
Los Alamos National Laboratory

An important activity in the process ofcode development is code verification, by which we mean
detailed examination of and numerical demonstration that the equations are being solved cor­
rectly. This process can entail the comparison of code calculations for problems that possess
analytic or quasi-analytic solutions. In this presentation we provide results of a verification
analysis ofthe RAGE hydrocodefor two particularly challenging problems: (1) the pure hydro­
dynamic problem of an adiabatically compressing region, and (2) the coupled hydrodynam­
ics/conduction problem ofReinicke & Meyer-ter-Vehn. We present comparison of code results
with the analytic solutions and convergence rates for these cases.

Keywords: verification, validation, Eulerian hydrocode

Introduction
The results of hydrocode calculations may "look good", but can be physically questionable

and sometimes inaccurate. A critical step on the path to science-based simulation of complex
phenomena is the verification of the physics in the computer codes that are used. That is, one
must demonstrate quantitatively that one is indeed solving the equations that one purports to be
solving. We approach this daunting task for the Eulerian hydrocode RAGE by examining two
problems: the pure hydrodynamic case of an adiabatically compressing region, and the coupled
hydrodynamics/conduction problem of Reinicke & Meyer-ter-Vehn. The former is a completely
smooth problem consisting of a converging flow, while the latter involves a point source of en­
ergy that expands into a compressible, heat-conducting medium. We first discuss the terminol­
ogy and philosophy of verification and validation (V+V), then tum our attention to applying
those notions to the two problems mentioned. We find that RAGE converges for each of these
problems, although the convergence rates obtained exhibit some curious features.
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Code Verification
The issue of computational quality is a central theme in the credibility of science-based

stockpile stewardship. One of the fundamental pillars upon which this scientific enterprise must
be based is code verification, or, more precisely, code physics verification. We follow the
evolving standard in our definition of code verification being the quantitative demonstration that
a simulation code accurately represents the chosen description of the model. More succinctly,
code verification is the demonstration that the code is solving the equations correctly.

Code verification is related to but distinct from other fundamental aspects of the code
evaluation process (AIAA 1998). More specifically, code verification is not

• code validation, which is the process of determining the degree to which a code provides
an accurate representation of the intended physical phenomena (i.e., that the code is solv­
ing the right equations for the physics of interest) and, as such, requires quantitative com­
parison of code results with experimental data;

• software V+V, which involves methods from Software Quality Assurance (SQA) and
Software Engineering (SE) and, being intrinsic to the software developmem.~ces~de-
pends on an individual code's development practices; R t:'O ce IVED
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• benchmarking, which is another tenn for code-to-code comparison, which, while a criti­
cally important activity in the transition from legacy codes to ASCI codes, is technically
not part of either verification or validation (perhaps "quasi-validation" is appropriate).

Each of these four processes, viz., code verification, code validation, software V+V, and bench­
marking, has unique characteristics and should not be confused with any of the others. Consis­
tent use of nomenclature in this evolving discipline will act to minimize confusion and misunder­
standing among researchers. Additionally, each of these procedures has a role to play in the
process of establishing the credibility of a simulation process, e.g., a computer code.

As we have observed on numerous previous occasions, one highly dubious practice some­
times witnessed within the simulation community is the use of the "viewgraph nonn," which
takes its name from the practice of deftly positioning one viewgraph of computational results
upon another and claiming "convergence." This practice is predicated upon the inability of the
human eye to distinguish between the two results at the scale to which they are plotted. Such a
procedure is both virtually meaningless scientifically and inexplicably widespread; we respect­
fully petition our colleagues to abandon this practice. While we acknowledge the use of "eyeball
comparisons" as providing an imminently useful sanity check, the code verification procedure
we apply herein obviates the need for attaching any misplaced hope of scientific credibility to the
"viewgraph nonn."

This appeals begs the question, "How is code verification done?", The simplest answer to
this question is "Quantify the error in the computed solution"; more specifically, we offer the
following three fundamental approaches, which we describe subsequently in some detail:

1. quantify the solution error with exact or quasi-exact solutions;
2. perfonn convergence analysis;
3. employ the method of manufactured solutions.
By quantification of the solution error for problems with exact or quasi-exact solutions, we

mean compute the difference between the computed and exact solutions. By "quasi-exact solu­
tions" we refer to those obtained under restrictive conditions such that, e.g., the equations reduce
to a quadrature, or a set of PDEs can be reduced to a set of ODEs, etc. In such cases, the exact
solution provides the "gold standard" with which the error in the computed solution can be cal­
culated in a number of meaningful metrics, e.g., the L1, Lz, or maximum (Loo) nonns.

Convergence analysis can be accomplished for problems with or without exact solutions.
The cornerstones of this method are the Anslitze that (1) the problem is pointwise deterministic
(so that a unique, converged solution can be obtained), and (2) the difference between the exact
and computed solutions for a variable ~ can be expanded as a polynomial function of the grid
spacing:

(1)

where ~. is the exact value, ~i is the value computed on the grid of spacing !lXi, A is a con­
stant (the "convergence factor"), and n is the asymptotic convergence rate. In this expression
the notation "o((l!ixit)" represents tenns that approach zero faster than (l!ixit as l!ixi becomes
vanishingly small. The frequently cited "second-order accuracy" corresponds to the case in
which n = 2. By computing the solution on three different (unifonn) grid spacings, subscripted
c for £oarse, m for medium, and f for fine, the following expression for the asymptotic conver­
gence rate can be derived:

(2)

2

UNCLASSIFIED



NECDC UNCLASSIFIED October 2000

Roache (1998) gives a useful overview of this approach, while Kamm and Rider (1998) provide
a detailed discussion of this technique as applied to the RAGE hydrocode.

The "method of manufactured solutions" is a procedure that begins with an assumed analytic
expression being substituted into the governing equations. Since this expression is, in alllikeli­
hood, not a solution to the equations, additional terms are created due to the operation of the left­
hand side of the equations (Le., containing the differential operators). These additional terms are
used to modify the right-hand side (RHS) of the original equations so that the chosen analytic
expression exactly satisfies the modified equation. One must modify the computer code to in­
clude the additional RHS terms. Additionally, care must be taken with respect to initial and
boundary conditions with this method. Salari & Knupp (2000) provide a detailed discussion of
this approach. One restriction of this technique appears to be the inability to capture discontinu­
ous behavior (e.g., shocks) in the manufactured solutions, particularly in more than one dimen­
sion; however, this technique is still evolving and may yet overcome this limitation.

The RAGE Hydrocode
The calculations in this paper were performed with the RAGE hydrocode (Baltrusaitis et al.

1996). This code is a 1-, 2-, or 3-D, Eulerian ~daptive mesh refinement (AMR) code that uses a
high-resolution Godunov method as the hydrodynamics integrator. Additionally, RAGE has
packages for the calculation of conduction, gray-diffusion, as well as many other useful features.
For additional information, the interested reader is referred to the work of Batrusaitis et al.
(1996) or encouraged to contact Michael Clover (mrc@lanl.govl.

In the present study, only I-D, spherically symmetric calculations were performed. The
problems considered can be extended to higher dimensions. The problems considered exercised
the pure hydrodynamics (adiabatic compression) and the hydrodynamics + conduction (Reinicke
& Meyer-ter-Vehn) capabilities of the code.

The Adiabatic Compression Problem
The adiabatic compression problem is one of the many problems catalogued by Coggeshall

(1991) that provide an exact solution to the Euler equations of hydrodynamics. This problem
provides an ideal verification problem because it has an exact solution and is aID, 2D, or 3D
problem that tests the entropy and energy conservation of a code-neither the entropy nor energy
should change.

The initial condition for this problem are those of uniform initial density and uniform initial
specific internal energy (SIB), with an initial inward radial velocity proportional to the radial
distance from the origin:

po(r)=I, eo(r)=I, uo(r)= -r .

The exact solution of the Euler equations for these initial conditions is given by

p(r,t)=1I(I-t)3, e(r,t)=1I(I-t)3c)'-1), u(r,t)= r/(t-l) .

(3)

(4)

It is clear from these expressions that the solution becomes singular as time approaches unity, but
remains smooth up to that time.

The RAGE results at t=0.9 are shown in Fig. 1, which contains plots of the computed radial
velocity (left) and SIB (right). In these plots, the solid lines, plotted against the left axis, denote

3

UNCLASSIFIED



NECDC UNCLASSIFIED October 2000

the computed solution for 100 (red), 200 (green), 400 (blue), and 800 (violet) points on the unit
interval; the dashed lines, plotted against the right axis, denote the absolute difference between
the computed and exact solutions. For both the velocity and SIB the computed solutions appear
to overlay; however, quantitative comparison with the exact solutions reveals mesh-dependent
variation in the computed solution. Indeed, one might qualitatively infer from these results that
the code is performing as expected for this smooth problem, i.e., with ("eyeballed") second order
accurate convergence.

Using the pointwise differences in the computed solution one can determine if this is indeed
the case by computing both the pointwise and mean asymptotic convergence rates according to
Eq. 2. Those results are plotted in Fig. 2 for the velocity (left) and SIB (right). These plots con­
tain the pointwise convergence rates using the 100-200-400 results (red) and the rates using the
200-400-800 (green). The dashed lines in these figures represent the mean convergence rate of
the Lz norm calculated over the unit domain using the 100-200-400 results (blue) and the 200­
400-800 results (violet), the results of which are identical to four significant figures for the ve­
locity. For the velocity, the pointwise rate can be computed over only a limited regime, since the
terms in the convergence rate expression (Eq. 2) yield nonsensical (i.e., infinite, indeterminate,
or imaginary) results otherwise; in the plot, those values are set to a hard zero. Near the origin,
the pointwise rate is as expected, i.e., approximately two. The mean Lz rate is approximately 1.6.
Both of these results are within anticipated values for the code. The question remains, however,
as to why the convergence rate becomes nonsensical away from the origin. For the SIB, the re­
sults unambiguously reveal a convergence rate of approximately one, suggesting that there may
be some discrepancy in the values of the SIB either computed or output by the code. One would
anticipate that these convergence rate values would be comparable to those of the velocity, Le.,
approximately two.
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Figure 1. Computed velocity (left) and SIB (right) at t=0.9 for the
adiabatic compression problem. The solid lines (left axis) are the
calculated values for 100 (red), 200 (green), 400 (blue), and 800
(violet) points on the unit interval. The dashed lines (right axis)
are the differences between the calculated and exact values.
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Figure 2. Asymptotic convergence rates for calculated velocity
(left) and SIB (right) at 1=0.9 for the adiabatic compression prob­
lem. The solid lines are the pointwise convergence rates using the
100-200-400 calculations (red)' and 200-400-800 calculations
(green). The dashed lines are the mean L2 convergence rates for
the 100-200-400 calculations (blue) and 200-400-800 calculations
(violet), which match to four significant figures for the velocity.

1

The Reinicke & Meyer-ter-Vehn Problem
The Reinicke & Meyer-ter-Vehn problem (RMtV) is the 1D, 2D, or 3D spherically symmet­

ric, point-source-of-energy problem, ala Sedov (1959), including compressible hydrodynamics
and heat conduction. The self-similar case considered by Reinicke & Meyer-ter-Vehn (1991)
reduces to a set of ODEs, thereby qualifying this problem as one of the few multiphysics verifi­
cation problems as it has a quasi-exact solution.

A complete explanation of the RMtV problem is given in the publication of Reinicke &
Meyer-ter-Vehn (1991), to which the reader is referred for more information; this problem has
also been considered in some detail by Shestakov (1999). One key assumption in allowing a
self-similar solution is that the heat conductivity Xhas the form

X=Xo {f T, with a:50 and b~l .

The set of ODEs to which the governing equations reduce is given below in Eq. (6).

,
U' + (U -1)(1nH) = 0' - (n +K + O')U

,
(U -l)U' +S(ln H) = u(a-I - U) +S(2Q -K - 0')

,
U' + W(lnH) + W' = Q[,u(U -1) +2W] + ,u(a-I-1)

-nU-(n+K+O')W,
(InS) = -2(1 +Q)

5
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In these equations, the variables U, H, W, and E> are related to the velocity, density, heat flux,
and temperature, respectively. The quantities q, n, 1<, 0; J.l are all parameters related to physical
constants, while Q is a complicated combination of parameters and variables.

The problem we consider is that of an initial energy of approximately 234.2 deposited at
zero-time into a polytropic gas with y =5/4. The second key assumption that is critical to the
existence of a self-similar solution is that the initial density field varies as an inverse power of
the position; for the present case, the initial state is determined by

po(r)=ro1919
, eO(r)=O, UO(r)= 0 . (7)

1

A complete explanation of the present RMtV problem is given in Section 4.4 of the report by
Kamm(200).

The results for the temperature and density at t=0.05125 for this problem are shown in Fig. 3
in the plots on the left and right, respectively. These plots contain the values of these quantities
as calculated by RAGE (blue) as well as the results obtained from the ODEs given in
Eq. 6 (green). Comparison of the calculated and quasi-exact results indicates slight mismatches
in the positions of the shock and the heat front. This discrepancy is related to the slight differ­
ence between calculated and quasi-exact values (red). We speculate that this slight inconsistency
between the two solutions may be related to the initial conditions imposed on the computation
RAGE grid: whereas the quasi-exact solution uses the precise delta-function initial condition
(Le., finite initial energy deposited at r=0 at t=0), the RAGE calculation has the initial energy
deposited in the single near-origin zone at the initial time. This difference, while small, has a
nontrivial effect on the subsequent flow evolution.
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Figure 3. Temperature (left) and density (right) for the strong con­
duction RMtV problem at t=0.0512512. The solid lines (left axis)
are the calculated values (blue) for 3200 points on the unit interval
and the quasi-exact values (green) at the identical positions. The
dashed line (red), plotted against the right axis, is the difference
between the calculated and quasi-exact values.
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As in the adiabatic expansion problem, one can compute the pointwise and mean asymptotic
convergence rates according to Eq. 2 using the calculated solution on three different grids.
Those results are plotted in Fig. 4 for the temperature (left) and density (right). These plots con­
tain the pointwise convergence rates (blue) using results calculated with 800, 1600, and 3200
points on the unit interval. The dashed lines in these figures represent the mean convergence rate
of the ~ norm (red) calculated over the unit domain using the 800-1600-3200 results. For the
temperature (left plot in Fig. 4), the pointwise asymptotic convergence rate is seen to hover
around the value of two near the origin, to vary significantly in the vicinity of the shock, and to
be about one-half near the heat front. For this variable, the mean~ asymptotic convergence rate
is approximately 0040. For the density (right plot in Fig. 4), the pointwise convergence rate var­
ies widely throughout the domain. For this quantity, the zero-values correspond to positions at
which the terms in the convergence rate expression (Eq. 2) yield nonsensical results (i.e., infinite,
indeterminate or imaginary). Between the shock and the heat front, the mean behavior bears
some similarity to that of the temperature, although it is much noisier). The mean ~ rate is ap­
proximately 0.55. One might expect a convergence rate on the order of one-half for this type of
shock-conduction problem, so the results are nor surprising. It remains to be seen, however,
why the difference between the temperature and density convergence rates is so pronounced, and
why the density convergence rate behaves so erratically, particularly between the origin and the
shock.

1
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Figure 4. Asymptotic convergence rates for calculated temperature
(left) and density (right) for the strong conduction RMtV problem
at 1=0.0512512. The solid lines are the pointwise convergence rates
using the 80016003200 calculations (blue). The dashed lines are
the mean L2 convergence rates for the 800-1600-3200 calcula­
tions (red).

Summary

We have defined the notion of code verification, i.e., the demonstration that a code is solving a
set of equations correctly. With this approach, we have quantitatively examined the behavior of
the RAGE hydrocode in one-dimensional, spherically symmetric geometry on the pure hydrody­
namics problem of adiabatic compression, and on the combined hydro-conduction problem of

7

UNCLASSIFIED



NECDC UNCLASSIFIED October 2000

Reinicke & Meyer-ter-Vehn. In the former case, the code was seen to exhibit anticipated second
order convergence in velocity over a limited domain, and inexplicable first-order convergence in
specific internal energy. In the latter case, RAGE exhibited mean ~ convergence of approxi­
matelyone-half; in this case, the pointwise convergence rate was seen to vary widely between
zero and two. Although by no means exhaustive, these two problems cover some of the impor­
tant regimes of application of the code. Further examination of the convergence properties of
RAGE is required, both on different problems and in higher dimensions, to present a compelling
case of code verification.
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