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ABSTRACT: 
We have previously described our methodology for 
quantification of risk and risk reduction, and the use of 
risk, quantified as a dollar value, in the Value 
Engineering and decision tradeoff process. In this work 
we extend our example theme of the safety of reactive 
materials during accidental impacts. We have begun to 
place the validation of our impact safety model into a 
systems engineering context. In that sense, we have 
made connections between the data and the trends in 
the data, our models of the impact safety process, and 
the implications regarding confidence levels and 
reliability based on given impact safety requirements. 
We have folded this information into a quantitative risk 
assessment, and shown the assessed risk reduction 
value of developing an even better model, with more 
model work or more experimental data or both. Since 
there is a cost incurred for either model improvement 
or testing, we have used a Benefit / Cost Ratio metric 
to quantify this, where Benefit is our quantification of 
assessed risk reduction, and cost is the cost of the new 
test data, code development, and model validation. 
This has left us with further questions posed for our 
evolving system engineering representation for impact 
safety and its implications. We had concluded that the 
Benefit / Cost Ratio for more model validation was 
high, but such improvement could take several paths. 
We show our progress along two such paths; simple 
and high fidelity modeling of the impact safety 
process, and the implications of our knowledge and 
assumptions of the probability distribution functions 
involved. At the other end of the systems engineering 
scale, we discuss the implications of our linkage from 
model validation to risk on our production plant 
operations.  Naturally, the nature of most such 
methodologies is still evolving, and this work 
represents the views of the authors and not necessarily 
the views of Lawrence Livermore National Laboratory. 
 

INTRODUCTION: 
Continuous assessment of safety processes must be 
made and accommodated in our production operations, 
especially those involving hazardous materials such as 
explosives with respect to their potential to react when 
handled in different manufacturing or functional 
environments. Over-conservatism hampers 
productivity, and yet under-conservatism leads to 

safety risks.  Previously1, we discussed a process from 
Requirements to Model Verification & Validation 
(V&V) and eventually to the investment strategy 
shown in Figure 1. The V&V process leads to models 
with Confidence [C] bounds on Uncertainty [U]. We 
then obtain margins [M] and reliability [R] equivalents, 
and Quantified Reliability at Confidence (QRC)2.  The 
assessed lower-bound QRC value converts to 
Likelihood and forms one axis of our Risk Diagram. 
With a model, V&V, and linkages to reliability and 
risk, we have begun to realize that we have most of the 
ingredients to view our problem in a systems 
engineering context, and to show how model V&V fits 
within that context. 
 
Developing our impact model in a systems engineering 
context will enable us to balance both of these ends of 
the scale, and defend our determination of this balance. 
However, as we show in the analysis, the balancing 
point depends on the details and fidelity of the data and 
model validation status.  
 
The key to closure of our system engineering cycle is 
an investment strategy process linked back to V&V. 
Our metric for continued investment or closure of the 
issue is the Benefit/Cost Ratio (BCR):  
 
 Net BCR = ($B-$C)/$C   [1] 
 
Benefit ($B) is taken to be proportional to assessed 
Risk Reduction, expressed as Likelihood (a term 
proportional to reliability and confidence from our 
V&V assessments) times Consequence. For simplicity 
we will restrict the current discussion from nonlinear 
risk-consequence relationships. Then the net “BCR” is 
(Benefit-Cost)/Cost. The BCR is well accepted as a 
key to the investment strategy process3; its linkage 
back to V&V is provided by the QRC analysis.  

The dollar benefit of V&V as assessed risk mitigation 
can be explained using a 
Risk=Likelihood*Consequence Matrix as shown in 
Figure 2. V&V plays a quantified role, one that is now 
directly proportional to Risk Reduction and Value 
Engineering quantities. Previously, we discussed each 
aspect of Figure 1 and Figure 2 in turn, relating them to 
an example of impact testing of explosives to quantify 

 

   

 

1



11/1/2004 7:36 AM  UCRL-TR-im313301 
2005 x  

and bound the reaction thresholds1. 
 
We can relate our goals and V&V quantification 
process for the impact safety example to the following 
system engineering attributes as described by Hsu4: 
 

• Requirements Management 
o (Handling the explosive safely) 

• Functional Analysis and Allocation 
o (In this paper we will focus on the 

role of V&V in quantifying impact 
safety) 

• Functional and System Architecture 
o (We consider the system as the 

physical plant where the explosive 
material operations take place, the 
operations sequence and risk 
mitigation measures, and in this case 
focus on the impact safety models 
and V&V that quantify our assessed 
risks for tradeoff and benefit/cost) 

• Integrated Master Plan and Schedule 
o (Beyond the scope of this paper, but 

our BCR for “what to do next” is part 
of the basis for developing and 
revising the plan and schedule) 

• Risk Management 
o (During each iteration of this cycle, 

the V&V assessment of reliability 
and confidence quantifies our 
assessed risk and risk mitigation 
potential) 

• Decision Analysis (Trade Study) 
o (Potential for further risk mitigation 

is balanced against cost via the BCR. 
This determines the next iteration of 
system engineering, if any). 

• Technical Performance Measurement, TPM 
o (In general, our TPM is process flow 

at the production plant with minimal 
risk. Here, we will focus on the TPM 
for our model V&V, which enables 
lower assessed risk, in turn enabling 
us to meet the production plant 
TPM). 

• Interface Management 
o (We view this as the feedback loop 

between the requirement for safety, 
risk level, impact test data, model 
development, model V&V, and the 
cost of improving each of these) 

• Verification and Validation (V&V) 
o (System Verification here would be 

viewed as, “did you address the 

safety problem correctly?” and 
System Validation would be “did you 
address the right safety problem?” In 
this work we will focus on Model 
V&V as it feeds into assessed risk; 
that is, “did we code and run the 
impact model right”, and “is this the 
right impact model, compared to 
experimental data”. It is important to 
distinguish System V&V from Model 
V&V.) 

 
Before we proceed with the V&V process, we have to 
know the requirements our product or system will have 
to meet, and which of these our model is to address. 
After that, depending on both the fiscal and scientific 
ability to perform a certain level of V&V assessment, 
we proceed with various degrees of qualitative and 
(ideally) quantitative validation. In our previous work1, 
our focus was on the quantitative validation of our 
model for impact safety. The model we used was a 
simple zero-dimensional (0D) regression model.  We 
concluded by showing that our model validation had 
enabled a quantification of risk and potential risk 
reduction. Further model development, 
experimentation, and model validation was warranted 
and we estimated a high BCR for doing so.  However, 
given the simple regression nature of our simple “0D” 
impact model, our first step toward improvement was 
to develop a finite-element model with the potential for 
physics-based improvements in V&V.   
 
In this work, we show how the development and 
quantitative validation of a 3D finite-element model for 
impact safety has enabled us to lower our assessed risk 
based on model V&V. We also show that given the 
issues and implications of plant operation, further 
development and hierarchical validation of our model 
are warranted, and we estimate a good BCR or return 
on investment for this further impact model 
development and validation. 
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Figure 1. Flow diagram from system Requirements through V&V, through uncertainty quantification and  
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margins; onward through reliability at confidence, then Value Engineering, and Risk Management via Benefit/Cost 
Ratio BCR. This process is described in detail by Nitta and Logan2.  

Figure 2. Dollar Benefit of V&V and Quantitative 
Certification, expressed as a standard 
Risk=Likelihood*Consequence Matrix. For the sake 
of simplicity of analysis demonstration we use a 
symmetric risk matrix. Likelihood becomes 
analogous to assessed (1-QRC); Consequence is 
typically expressed in dollar terms. 
 
 
 
QUANTITATIVE VALIDATION STATEMENT: 
In the V&V portion of this work, we will focus on a 
quantitative validation process, using 4 steps 
“ABCD” as described previously. These four steps 
are, briefly: 

A. Planning and Assessment: Assess the 
problem to be modeled, the product and 
model requirements, available validation 
data (the referent) and codes. See how well 
a fit to the data can be obtained with the 
model. (Note that this last step is calibration, 
not validation; it shows only that the model 
has the ability to generate a high fidelity 
match to the available dat. However, since 
we have not yet generated confidence or 
prediction intervals on the model to 
distinguish model validation from model 
calibration, Step “A” tells us nothing about 
confidence, reliability, or predictive 
capability. 
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B. Solution Verification: For models that are 
discretized in the spatial, temporal, and/or 
iterative domains, discretization studies 
must be done to assess convergence. 
Solution Verification should quantify 
uncertainty and error estimates due to the 
use of models that are not fully converged.  

C. Validation to the Referent: This is the 
quantitative comparison of the model with 
the referent data. The comparison must be 
done with a statistical or other quantitative 
uncertainty method that enables a quantified 
confidence bound to be established. 

D. Predictive Capability and Adequacy: An 
assessment of the predictive capability, or 
confidence bound, outside the domain of the 
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referent is assessed. It is rare that we would 
take the time to develop a model if we did 
not intend to extrapolate from the referent 
data in one or more dimensions of 
application space. The rigor of the 
validation methods used in Step C, plus the 
maximum employment of expert 
knowledge, determine the credibility of the 
extrapolation confidence bound estimates 
from Step D. 

 
The “ABCD” process for Quantitative V&V should 
lead to a Quantitative Validation Statement 
supporting the definition of Validation given by 
Cafeo and Roache5: 

‘Validated Model: A model that has 
confidence bounds on the output. A validated 
model output has the following characteristics: 

1. The quantity of interest  
2. An estimate of the bias (i.e. confidence 

bounds are not necessarily centered 
around the model output) 

3. A set of confidence bounds drawn at an 
assessed confidence level’ 

A validated model is one where evidence supports a 
Quantitative Validation Statement such as5:  

“I am 90% confident that if I build and 
measure the quantity of interest, that it will fall 
within the confidence bands (of uncertainty) 
shown around the model output.” 

 
Quantitative V&V in Systems Engineering 
In previous work1, we showed a validation study 
example from a design safety study of velocity 
reaction thresholds for heated explosives impacted by 
steel projectiles6. We now describe some of the 
details of the experiments, and then proceed to the 
validation of the model used to characterize them, 
including an assessment of its predictive capability.  

In the experiments, impact tests were performed on 
heated energetic material samples to help us develop 
and validate accident scenario models involving 
combined thermal and impact conditions. To 
determine heated thresholds, Steven Test targets 
(Figure 3) containing explosives PBX 9404 or LX-04 
were heated to the range of 150-170 C and impacted 
at velocities up to 150 m/s by two different projectile 
heads fired from a gas gun. The projectiles had 
masses of 1.2 kg and 1.6 kg, and spherical radius 
heads of 30mm and 6.4mm, respectively.  

For the impact tests using the apparatus in Figure 3, 
the measured and ambient threshold velocities for 
explosive reaction are shown in Table I and Table II. 
The following trends were observed: 

1. Threshold velocity increases with 
temperature 

2. Threshold increase with temperature is more 
pronounced for LX-04 (higher binder and 
lesser explosive content) than for PBX 
9404.  

3. Threshold velocity increases with projectile 
head radius. 

4. The threshold increase with radius is more 
pronounced for LX-04, and barely 
noticeable for PBX 9404. 

Figure 3. Steven Impact Test: 30mm (Steven, Head 
#1, shown) and 6mm (Duff R/T, Head #2, not 
shown) projectiles. 

A predictive model for this thermal + impact accident 
scenario must, as a minimum, capture the four 
phenomena observed in the data within adequate 
confidence bounds. In order to avoid undue physics 
“surprises”, the model should also be physically and 
geometrically based so as to capture the physical and 
geometric phenomena during the impact. We had 
previously used a simple regression “model” for 
predictive capability, and concluded that we did not 
meet the system requirements; our benefit / cost ratio 
analysis supported development of a more physics-
based finite element model (FEM) of the impact. The 
0D Regression model results are shown in the next to 
last column of Table I and Table II. The 3D FEM 
results are shown in the last columns. We can 
compare the raw values of threshold velocity 
(meter/second) from the test referent, the 0D model, 
and the 3D model, in Table I and Table II. However, 
that is only a comparison that addressed model 
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fidelity, not model validation. In this work, we will 
compare the quantitative validation process for both 
the simple 0D Regression Model and the 3D LS-
DYNA7 Finite Element model (Figure 4), with the 
validation referent being the impact test data in Table 
I and Table II. 

Figure 4. Quarter-symmetry 3D Deformed mesh of 
the LS-DYNA finite element model of the Steven 
Test impact. Chemical reaction begins in zones under 
projectile nose. 

 

Of course, any realistic model validation statement 
contains caveats and assumptions. Such is obviously 
the case with a regression-based model, but is also 
true for the finite element model because its material 
behavior and kinetics still involve empirical 
approximations. As stressed in any standard statistics 
text, extrapolation of empirically based models can 
be particularly dangerous.  Furthermore, several 
physical and chemical variables discussed in Switzer 
et al6 are ignored for this model validation; we plan 
to account for these eventually in our mechanical-
thermal-chemical finite element model. Nevertheless, 
the empirical models used here, comparing to 
nominal and even truncated threshold values, will 
serve our purpose in demonstrating the method and 
results of our quantitative validation process, and 
allow us to carry those results into risk management 
to quantify the iterations in our systems engineering 
construct. 

We will use these experimental results, and a 
statistical validation method that does not preclude 
“tuning dials”, but accounts for them explicitly, to 
generate validated confidence bounds on our 0D 
simple regression and 3D finite element models for 
impacts over the regime of these experimental 
(validation referent) data.

TABLE I. DATA FOR STEVEN/DUFF Tests: 
Head#1, R=30mm (*caveats in Switzer et al6) 

Test 
# 

HE type %Ex
plosi
ve 

Test 
Tem
p C 

Nom. 
m/s 
Thres.
Vel 

0D 

Regre
ss. 
Model 

3D 
LS-
DYNA 
Model 

1-1 PBX 9404 94 20 34.0 33 34 

1-2 PBX 9404 94 20 36.0 33 34 

1-3 PBX 9404 94 20 35.7 33 34 

1-4 PBX 9404 94 150 50.5 50 49 

1-5 PBX 9404 94 *165 47.2 52 49 

1-6 LX-04 85 20 45.0 44 42 

1-7 LX-04 85 20 43.0 44 42 

1-8 LX-04 85 150 *125.7 134 72 

1-9 LX-04 85 170 *153.2 148 80 

1-10 PBX 9501 95 20 46.4 33 46 

 

TABLE II. DATA FOR STEVEN/DUFF Tests: 
Head#2, R=6.4mm (*caveats in Switzer et al6) 

Test 
# 

HE type %Ex
plosi
ve 

Test 
Temp 
C 

Nom. 
m/s 
Thres
, Vel 

0D 

Regre
ss. 
Model 

3D 
LS-
DYNA 
Model 

2-1 PBX 9404 94 20 29.1 32  

2-2 PBX 9404 94 150 48.8 47  

2-3 PBX 9404 94 *165 48.2 49  

2-4 LX-04 85 20 30.7 34 30 

2-5 LX-04 85 20 30.5 34 30 

2-6 LX-04 85 150 64.8 63  

2-7 LX-04 85 170 64.7 67  

2-8 PBX 9501 95 20 28.6 32 31 

 
 

The plot in Figure 5 is actually the end result of 
completing the “ABCD” validation process described 
previously1 and summarized above. The plot shows 
numerous small squares of experimental data 
(N=10+8=18 data points) for this Steven Impact 
scenario. The scatter depicts the variation in Head 
Radius, Explosive Type, and Test Temperature.  If 
our intended application of the impact model 
involves thermal conditions, we wish to quantify 
reliability and confidence during an impact scenario 
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where impacts of a known velocity must be tolerated 
without reaction.  We develop a model, providing the 
middle solid line, to answer this question. 
Quantitative Validation requires a quantitative 
assessment of the confidence bounds on this model. 
This is determined by comparison to a known 
number of data points (N) as shown in the plot. The 
model error between the measured output and model 
output is sometimes too small to be shown in a plot 
such as Figure 5, but is used, along with experimental 
error, variability, and assumed probability 
distribution functions (PDFs) to construct a 
confidence bound (the outer dotted lines in Figure 5) 
on our analysis. Any adjustable (calibration) 
parameters used in the model must be counted as 
model degrees of freedom (K), so our effective 
number of data points becomes (N-K). Fewer data 
points (N) or more model adjustables (K) will result 
in wider confidence bound lines in the plot. Model 
adjustables are a fact of life; there is neither the time 
nor funds to avoid them all. It is simply important to 
quantitatively account for them in the validation 
assessment.  

 
FROM VALIDATION TO ADEQUACY 

The quantitative V&V process provides us with 
confidence-bounded uncertainties over the domain of 
the validation referent data. Since a given application 
of the model may involve excursions away from 
some or all of the referent data in one or more 
parametric dimensions, we must use the validation 
information to construct a performance chart (Figure 
5) for the quantity of interest and over the domain of 
interest. In the case of Figure 5, the quantity of 
interest is velocity of the reaction threshold. The 
domain of interest is the HE temperature on impact; 
given that the HE is in this case PBX 9404, and that 
the impact is with Head #1 (Steven Projectile).  
 
The model fidelity of the fit to the referent data is 
seen by comparing how close the model predicted 
threshold velocity (dots) are to the referent data 
(squares indicating approximate experimental 
uncertainty). The fidelity of the fit, good or bad, does 
not necessarily have anything to do with validation. 
A high fidelity fit can be obtained with excessive 
calibration of a model. The validation process should 
trap instances of excessive calibration, and reward, 
with a tight confidence bound as shown in Figure 5, 
only the combination of a high fidelity fit with 
minimal calibration parameters.  
 
Once we have performed the quantitative “ABCD” 
process for V&V (including uncertainty 

quantification), and obtained the model mean, bias 
corrected mean, and confidence intervals on the 
mean as shown in Figure 5, we have all the 
information that V&V can provide to feed back into 
the System Engineering loop. 
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Figure 5. “D” of “ABCD”: Model Validation plot for 
PBX 9404 impact threshold, using 0D Regression 
model. 
 
 
Next, we have to compare our validated assessment 
of the model for HE impact with the requirement for 
the system. For this study, we will assume an 
example requirement that impacts of 20 m/sec or less 
be endured, at temperatures of 20 oC or above, 
without encountering the reaction threshold. This is 
drawn as the “requirement” line on Figure 5.  The 
Margin “M” between the mean bias-corrected model 
and the requirement line is an interesting quantity to 
follow, although we will not use it directly in our 
reliability or risk analyses. Depending on the level of 
Confidence “C” we choose, we can calculate the 
model assessed Reliability “R” and maximum 
product “QRC”, where QRC=1000*R*C as 
discussed previously1. With a perfect model and 
abundant referent data, and the only uncertainty 
remaining was in fact the test-to-test variability in the 
data, then the quantity (1-QRC/1000) would in fact 
be a good approximation to the system failure 
likelihood, given the scenario and requirement 
imposed.  Since our referent data is usually not 
abundant but sparse, and our models usually have a 
quantifiable but far from perfect validation 
confidence bound, we can only say that the quantity 
(1-QRC/1000) is our assessed upper bound 
likelihood of failure of the model of the system, not 
the system itself.  We might be able to infer higher 
system reliability (lower failure likelihood) for 
specific application points, but not by using our 
model applicable over the referent domain. Hence, 

0Requirement
(For Notional Example)
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we will base our risk assessment and system 
engineering on the lower bound QRC. Since our 
definition of assessed failure likelihood of the model 
of the system is the quantity (1-QRC/1000), the use 
of the lower bound assessed QRC number is 
equivalent to use of upper bound failure likelihood. 
 
In Table III, the first column of results shows the 
validated quantities for the impact into PBX 9404 
with impact  head #1 at 20 C. The peak QRC of 
QRC=748 implies a likelihood of failure for the 
model of the system of Pfail=1.-748/1000=0.252. 
Although this is not to be interpreted as the system 
failure rate, it is not a very comforting value for 
likelihood of failure. The margin “M” of 13.9 m/sec 
looks adequate enough, but with an uncertainty “U” 
(at 1σ) of 10.5, it is the model confidence bounds 
that are keeping our validated QRC value so low. 
And yet, we have gone about as far as we can go 
with our simple regression model. 
 
SYSTEM ENGINEERING: NEXT ITERATION 
The next iteration, as justified by our Benefit / Cost 
Ratio BCR analysis in our previous work1, was to 
develop a more physics-based finite-element model 
of the Steven Test impact.  We applied the LS-
DYNA model of DePiero8 to this impact condition 
and geometry. This 3D LS-DYNA finite element 
model still contains 5 major tunable parameters 
(K=5) which have a large effect and have an 
unknown probability distribution.  None of these 
parameters or dials “K” have a large effect on the 
model on their own. For example, consider the LS-
DYNA model fit to the PBX 9404 impact data shown 
in Figure 6. The mean LS-DYNA model (middle 
line) is a good fit to the 3 data points shown at 
exactly the conditions modeled. The upper and lower 
uncertainty bounds are actually 3σ values; that is, the 
PDF for this parameter (friction coefficient) was 
actually estimated based on material level tests, and 
varied +3σ and –3σ from its mean value in the 
model. The effect is quite small. However, these 
dotted lines in Figure 6 are not 3σ confidence bounds 
on the LS-DYNA model. They only represent 
confidence bounds if this single parameter were the 
only free parameter. Confidence bounds on a model 
can only be generated by considering all the free 
parameters in a model and the effect they might have.  
 
This last point is brought home by observing Figure 
7. Having applied the 3D FEM model to the PBX 
9404 situation of Figure 6, the resulting comparison 
was encouraging. However, when we applied the 
model to the LX-04 type HE, the data and 3D FEM 
model comparison was as shown in Figure 7. There 

is a much greater increase in threshold as temperature 
increases. This is captured by the model qualitatively, 
but quantitative agreement is poor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. “A” of “ABCD”: Model planning and 
calibration plot for PBX 9404 impact threshold, using 
3D LS-DYNA with simple binder material model. 
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Figure 7. “A” of “ABCD”: Model planning and 
calibration plot for LX-04 impact threshold, using 
3D LS-DYNA with simple binder material model. 
 
If we considered the +3σ to –3σ effect of the dial 
“K” for friction alone, and mistakenly called the 
resulting dotted lines in Figure 7 “confidence 
bounds”, it would make the comparison, albeit a 
small sample comparison, very suspect; 2 of the 6 
total data points in Figure 6-7 would lie outside our 
“3σ” limits.   
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To construct a meaningful confidence bound for a 
given model of the impact system problem, we must 
consider all the free parameters in the model, not just 
one of them. This model uncertainty contribution is 
often the largest source of uncertainty in V&V and in 
a system engineering sense. For nonlinear complex 
physics problems, model uncertainty due to 
epistemics or free parameters can overwhelm the 
separate contributions of test variability, 
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measurement uncertainty, manufacturing or aging 
variations, or mesh resolution (solution verification) 
uncertainty. When we have several free parameters 
(K=5 in this FEM model) and we still do not have a 
high fidelity fit to the data, the resulting confidence 
bounds can be alarmingly wide. We show such an 
example in Figure 8. This figure is our first 
assessment of confidence bounds on our newly built 
3D FEM model for the Steven impact test. Figure 8 
shows the raw FEM model output for PBX 9404 
impact (the solid line), a large bias correction that 
attempts to correct the model for temperature 
dependence of threshold (the dashed center line), and 
1s (not 3s) confidence bounds on the output of the 
model.  On visual examination, these 1s confidence 
bounds are now certainly wide enough to account for 
the discrepancy between our model and the data in 
Figure 7. Since the 3D FEM model cannot discern 
between PBX 9404 and LX-04 except by what we 
enter into the model input deck over the continuum 
of the domain of application, we must consider the fit 
(or rather lack thereof) to the LX-04 points, and not 
just the good fidelity fit we obtained to the PBX 9404 
points. It is this latter fact that makes the bias and 
confidence bounds in Figure 8 so wide. Even though 
the bias-corrected margin “M”=38.4, is much larger 
than the 0D model, the uncertainty U|1σ=50.5, is also 
much larger than the 0D model. The result is lower 
reliability and lower confidence at the peak 
QRC=581 at C=0.5σ (compared to the 0D model 
QRC=748).  This comparison of quantities is shown 
in Table III, providing the input for subsequent 
system engineering activities of risk assessment and 
benefit / cost ratio decision trade analysis.  
 
Since the 3D FEM model only permits an assessed 
QRC=581 out of 1000, a value lower than the 
assessed QRC=748 for the 0D model, we should be 
asking right about now, if it was worth developing 
the 3D FEM model at all. Our reasoning is yes, from 
a system engineering point of view. An assessed 
QRC=748 from the 0D model is not high enough to 
meet system requirements; the model assessed 
likelihood of exceeding reaction threshold will still 
be too high and will support a high benefit / cost ratio 
BCR to do more model development, more testing, 
and more V&V. However, the 0D model had reached 
its predictive capability limit; we had no means to 
obtain more data and constrain or eliminate the free 
parameters in this simple regression model. With the 
3D FEM model, we now have the hope of improving 
the physics in the model, and obtaining material data 
to constrain some or all of the free parameters.  
 
For example, our 3D FEM model shows a good fit to 

all of the data for the PBX 9404 and PBX 9501 HE8 
types, and a poor fit only to the LX-04 HE type at 
high temperature. One of the most significant 
differences in these HE types is the Viton binder used 
in the LX-04. We suspect (and hope) that the use of a 
better temperature and rate dependent model for LX-
04 will greatly improve the fit at high temperatures. 
We also suspect (and hope) that we can obtain these 
model improvements without tuning the model or 
adding free parameters, but rather by simply 
characterizing the actual mechanical behavior of the 
Viton binder and incorporating this into the 3D FEM 
model.  
 
What could we hope to obtain from an improved 
model, with newly obtained data on the Viton 
binder? As we noted, we would expect the major 
improvements to the data fit for the LX-04 at high 
temperatures, the conditions with the notably poor fit 
as shown in Table II. If we could improve the fit at 
just these two points, and make the 3D FEM model 
fit those two data points as closely as the 0D model, 
and yet retain our limit of K=5 tunable model 
parameters, we could obtain V&V confidence 
bounds shown in Figure 9 instead of those in Figure 
8. The quantitative validation plot in Figure 9 is 
based on the same information and data vs. model fit 
as Figure 8, except for our hope of improving the 
model fit to the two shaded points in Table II from 
our improved Viton mechanical model. We now have 
quantities (see Table III) of Margin “M”=15.6 m/s, 
uncertainty U|1σ=7.9, a remarkable improvement 
over our first cut 3D FEM model of Figure 8. This 
results in a peak QRC=848, an improvement of 
∆QRC=+267 over the FEM model we have now, and 
an improvement of ∆QRC=+100 over the 0D 
regression model.   
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Figure 8. “D” of “ABCD”: Model Validation plot for 
PBX 9404 impact threshold, using 3D LS-DYNA 
with simple binder model. 
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Figure 9. “D” of “ABCD”: Model Validation plot for 
PBX 9404 impact threshold, using 3D LS-DYNA 
with representation of enhanced binder model. 
 

 
Better still, we can hope for even more improvement 
with further V&V, because we now have a 3D FEM 
model where we can hope to relate remaining 
discrepancies and free parameter settings to physical 
quantities and phenomena. Hence, we have a path to 
improve the model in the future. 
 
 
 
TABLE III. Effect of Model Choice (Tuning dials 
“K”) on Margin, Uncertainty, and peak QRC for 
tested conditions 
 
Test Condition 0D 

Regress 
Model, 
N=18 K=8 

3D 
FEM, 
N=13 
K=5 

3D FEM, 
est. w/ new 
Viton Model 

Margin M, m/s 13.9 38.4 15.6 
Uncertainty U, 
1σ, m/s 

10.5 50.5 7.9 

Peak QRC 
(QRC=1000 
at R=1 and 
C=1 

748 581 848 

Confidence C 
at Peak QRC, 
X σ 

0.8 0.5 1.1 

 
.  
V&V Results in Systems Engineering Context 
We can use the quantities assessed above for decision 
trade studies based on inputs from V&V and QRC. 
We will use a simple Risk=Likelihood*Consequence 

construct, with Likelihood=1-QRC/1000 as our 
model assessed value. Risk reduction can be obtained 
not only by changing physical scenarios for physical 
risk mitigation, but also by improving the model, 
with more integral or hierarchical data, better 
physics, leading to improved V&V resulting in a 
higher value of our lower bound model assessed 
QRC value.  The latter is important because it allows 
us to attach a direct dollar benefit ∆$B=Assessed 
Risk Reduction to the V&V process. Of course either 
improving the physical product (tighter 
manufacturing tolerances, etc.) or improving the 
model (V&V, model or code improvements, etc.) will 
cost a dollar amount “∆$C”. We can use a 
Benefit/Cost Ratio: 
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BCR = (∆$B-∆$C)/∆$C  [1] 
 
The BCR, computed here for product (or model) 
improvement, gives us a quantity to help answer the 
question, “was our product or model improvement 
process worth the cost?” We link the V&V level for 
particular simulation capabilities (including 
validation experiments) to the value of products and 
product decisions made under budget and schedule 
constraints.  
 
 
Higher QRC, lower assessed Risk,  and the BCR 
 
If QRC is “too low” for predictive adequacy, we are 
implicitly saying there would be a large Benefit “B” 
from raising QRC (i.e., a tighter Validation Bound). 
Since 1-QRC/1000 corresponds to our assessed upper 
bound model+system failure likelihood, the increased 
benefit ∆$B of raising QRC can be quantified for 
example in terms of product liability avoidance or 
increased value to the customer. 
 
Once we know the ∆$B we could achieve for a given 
∆QRC, we can look for the increased cost ∆$C 
needed to achieve this. We have to examine what we 
need to do to achieve the ∆QRC. This might include: 

• More V&V Analysis 
• More system tests (if possible) 
• More data (higher “N” for more confidence) 
• More accurate data measurements 
• Better physics (less tuning dials “K”)  
• Better production tolerances 
• Bigger computing platform (reduced 

convergence uncertainty from “B” of 
“ABCD”; in this analysis, mesh 
convergence for the 3D FEM model was 
well established by DePiero8, so we expect 
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minimal gains from better compute 
platforms in this case) 

 
As an example of this BCR process, let us reconsider 
the model assessed QRC Numbers of Table III. One 
of our future goals is to develop a more physics 
based  Viton binder behavior for our 3D finite-
element model (FEM) of these impact events and 
predict threshold velocity. We showed that we could 
hope to gain increased QRC with an improved binder 
model in Table III.  Now we ask whether this further 
3D FEM model development and testing would be 
worthwhile in terms of benefit / cost.  
 
In Table IV, we reiterate the QRC Numbers from our 
best 0D regression empirical model (PBX 9404 
impact at 20 oC). We then show the new QRC 
Number in the 2nd row of Table IV; as we noted 
above, the QRC is not as good as the existing 0D 
model so the model is not yet ready for use in the risk 
reduction component of our systems engineering 
context. However, assuming that our improved 
hierarchical developments and data for a physics-
based Viton binder in the  finite-element model of the 
impact could achieve the same fit of model to data as 
the 0D model for the two anomalous points shaded in 
Table 1, we could achieve  the model assessed 
QRC=827 of the 3rd row of Table IV with the 3D 
FEM model. We estimate the cost of obtaining the 
Viton data, building this into the 3D FEM model, and 
redoing the V&V, would bring our investment to a 
total of ∆$C=$2.0M in the 3D FEM impact model 
(the 5th column of Table IV). Was the increase a 
good investment, considering just the impact scenario 
shown? If we assume a notional Risk Consequence 
value of $200 Million for even a mild unplanned 
explosive reaction accident, we can calculate the 
Benefit of our model investment as reduction in the 
risk due from the model+system assessed QRC 
increase as (in our simplified example), 
∆B=(∆QRC/1000)*$200Million.  This value is 
shown in the 4th column of Table IV. We can then 
calculate the BCR=(∆$B-∆$C)/∆$C of developing 
such an improved 3D FEM model. The BCR=6.9 
value, one for improvement in the Model V&V 
process, is shown in the final column of Table IV.  
 

TABLE IV. Notional process of calculating the 
assessed Risk Reduction and BCR of development of 
an improved impact model for each explosive type. 
Model Max 

QRC  
∆QRC 
vs 
prev. 
model 

∆$B, Risk 
Reduction 
benefit 

∆$C, Cost 
to achieve 

BCR 

0D 
Model, 
Base 

748     

3D FEM, 
Current 
1st Cut 
Model 

581 N/A N/A $0.3M 
Approx. 

N/A 

3D FEM, 
New 
Viton, 
N=12 

827 79 $15.8M $2.0M 
Approx. 

6.9 

3D FEM, 
New 
Viton, 
N=13 
(add 1 
data 
point) 

848 21 $4.2M $0.1M 
Approx. 

42.0 

 
With the cost of each Steven Test and related 
analyses well under $0.1M each, we calculate a 
BCR=42.0 for adding to the data referent used for 
V&V of the model. We have previously noted that in 
BCR prioritization, items with high BCR, e.g. 
BCR=42.0, should be done first if possible, and this 
is our next step after the improved Viton model 
which is needed first to make the 3D FEM model 
competitive with the 0D regression model. With the 
3D FEM model improvements in place to give us the 
QRC of Table IV (hopefully with high BCR’s as we 
estimate), we are on track for even further 
improvements in what is now a physics-based 3D 
FEM model, used in a Systems Engineering 
construct, with demonstrated ability for reductions in 
assessed risk. 
 
Naturally, such a series of numbers as in Table 4 
cannot replace expert judgment in the decision 
process. This should be more evident than ever after 
following all the assumptions and uncertainties in 
this example validation with calculation of risk 
reduction and BCR. Furthermore, we stress that in 
our QRC effort to construct single measure 
combinations of Reliability and Confidence, we have 
only shown one such measure in this analysis. The 
“lower bound” QRC we discuss in this work is 
essentially a quantification of the assessed 
model+system Reliability “R” within the stated (and 
inferred) statistical confidence. Outside the 
confidence interval, we quantify reliability with what 
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can be viewed as a “coin flip” or R=50%. There are 
of course more complex ways to map both R and C 
onto a symmetric (or asymmetric) risk diagram. 
However, the analysis process, from V&V to QRC to 
risk to BCR, can provide a numerical defense of our 
decision, showing a process with quantitative 
diligence backed up by expert judgment for a 
balanced and defensible decision process. 
 
Other Methods of Risk Mitigation: Consequence 
In plant operations, we can only work in a System 
Engineering context using assessed risk; we believe 
that our real risks have such low likelihoods that we 
will never accumulate enough data to quantify our 
actual risk. We can only establish conservative 
bounds on our model assessed risk. This brings the 
desire for a high fidelity model (a good fit), followed 
by a quantitative V&V process (leading to a high 
QRC and low model assessed failure likelihood). In 
plant operations, we want even model assessed 
likelihoods to be of the order 10n, where “n<<0”. For 
example, QRC=900 leads to n=-1, QRC=990 leads to 
n=-2, etc. Model assessed QRC>999 are obviously 
desirable in this situation, but may be difficult to 
obtain in analyses such as the one just shown. While 
we work on improving our models and V&V 
confidence bounds, there are two other aspects of the 
systems engineering cycle that can help as well. One 
of these is to address the Requirement (e.g. the 20 
m/s impact requirement or the 20 oC temperature) 
used in this analysis.  Either of these quantities could 
be changed in order to raise the model assessed QRC 
and hence lower the Likelihood term in the model 
assessed Risk. The other is to mitigate the 
Consequence of an impact that does achieve 
threshold.  
 
Some generalized examples of ways we could adjust 
Requirements to reduce the Likelihood term, or add 
mitigators to reduce the Consequence of an event 
exceeding threshold, include the following: 
 

• Lower the desired production (or rework) 
rate 

o This would reduce Benefit $B and 
increase cost $C in other ways – so 
again a trade study would be 
needed 

• Modify or delete hazardous operations (e.g. 
heavy or sharp tooling, etc) 

o Once again this could adversely 
affect the productivity BCR though 
it could enhance the safety BCR 

• Add mitigating assembly/disassembly 
compartments, impact absorption barriers, 

etc. to mitigate the consequence of either an 
impact or potential impact 

o Trade study on risk and BCR 
would again be needed. 

 
In doing so, we must realize that concessions on the 
Requirements side or the addition of mitigation 
measures for reduced Consequence, may  slow down 
production operations.  This may have a poor or 
negative “BCR” on the production side, because we 
slow down production rate (reduced benefit $B), and 
achieve production at higher unit cost $C. 
 

CONCLUSION: 
On reflection, our Systems Engineering goal remains 
that of safe environments for our high explosive 
components and assemblies, both in production and 
logistics environments. To assure such safety and 
provide quantitative evidence, we have chosen a 
Systems Engineering context that includes: 
 

• Requirements Management 
• Functional Analysis 

o Model V&V of HE Impact  
• Risk Management 

o Terms from Model V&V combine 
with Requirements to form 
Likelihood 

o Consequence values generated 
separately from V&V 

• Decision Analysis 
o Benefit / Cost Ratio BCR provides 

a quantitative metric as input for 
what remains a qualitative decision 
process 

• Technical Performance Management 
o In the sense of our work, we can 

ask “Did we meet our V&V goals 
with a new model; is uncertainty 
lower? Are reliability, confidence 
and other metrics higher?” 

o In the production sense, we can 
ask, “Has our risk assessment and 
mitigation impacted production 
efficiency?” 

o In the financial sense, we can ask 
“Did we achieve the BCR we had 
hoped for during our 
developments?” 

• Verification & Validation (V&V) 
o Model V&V fits into the middle 

portion of the Systems Engineering 
Context 

o System V&V must close the loop 
over the domain of cost, schedule, 
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and performance, all with minimal 
assessed risk.  

 
We can never do as much experimental work as we 
would like. Furthermore, experimental costs are 
rising, while numerical model costs decreasing; cost 
per compute cycle continues a steep downward trend. 
Because of this, we have chosen to stress the role of 
numerical models, and the growing role and 
flexibility of nonlinear 3D finite element models, in 
the Systems Engineering context.  
 
However, as part of that same Systems Engineering 
context, we have attempted to show that models of a 
complex nonlinear physics problem such as 
explosive reaction threshold impact velocity, can be 
very misleading unless rigorous and quantitative 
model V&V is applied. When model V&V is applied 
to such problems, we have shown how quantitative 
linkages can be made directly to assessed reliability 
and confidence of the model of the product, to risk 
and risk reduction, and to benefit / cost ratio (BCR) 
for decision trade studies. 
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NOMENCLATURE: 
∆$B Benefit, usually in $$$ 
BCR Benefit / Cost Ratio ∆ 
∆ $C  Cost, usually in $$$ 
C  Confidence, a numerical value  
FEM Finite Element Method 
K  Tuning Dials; free parameters 
M Margin, where Factor of Safety = M+1 
µ population mean 
N  Number of trials as in coin-flipping 
PDF Probability Distribution Function 

QRC Quantitative Reliability at Confidence 
R Reliability  
σ population standard deviation (estimate) 
U Uncertainty, General or "System" [in V&V 

always at a confidence C] 
V&V Verification & Validation 
Z Standard Normal Distribution Variable for 

variable X, Z=(X-µ)/σ 

Zqrc QRC analog to Z, where function Zqrc 
provides R for a chosen PDF, U, C, and M. 
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