
 101 

The Design and Evolution of Jefferson Lab’s Jasmine Mass Storage System* 

Bryan K. Hess 
Thomas Jefferson National 

Accelerator Facility 
bhess@jlab.org 

Michael Haddox-Schatz 
Thomas Jefferson National 

Accelerator Facility 
mschatz@jlab.org 

M. Andrew Kowalski 
Thomas Jefferson National 

Accelerator Facility 
kowalski@jlab.org 

  
Abstract* 

We describe the Jasmine mass storage system, in 
operation since 2001. Jasmine has scaled to meet the 
challenges of grid applications, petabyte class storage, 
and hundreds of MB/sec throughput using commodity 
hardware, Java technologies, and a small but focused 
development team. The evolution of the integrated disk 
cache system, which provides a managed online subset 
of the tape contents, is examined in detail. We describe 
how the storage system has grown to meet the special 
needs of the batch farm, grid clients, and new 
performance demands.  

1. Introduction 

Jasmine is the integrated tape and disk mass storage 
system developed and used by the Thomas Jefferson 
National Accelerator Facility (Jefferson Lab). The lab is 
operated for the U.S. Department of Energy to conduct 
nuclear physics experiments examining the quark nature 
of matter. The data rates generated by these experiments 
are currently ~30MB/sec, and will eventually reach 
100MB/sec. Jasmine manages more than 1 PB of data 
stored on tape. Aside from maintenance and upgrade 
periods, the system has run in a “lights out” mode with 
24 hour operation and daytime administrative work 
since its deployment. In this paper, we outline the design 
and operational challenges experienced in transitioning 
Jasmine from a mission critical storage system to a 
multi-purpose storage fabric for use by running 
experiments, batch farm processing, grid applications, 
individual users, and the lab’s lattice QCD effort. The 
basic distributed framework of the system has scaled 
well. We describe modifications made to system 
components, like the disk cache, to grow it to its current 
state. Finally, we anticipate future changes based on 
current stresses on the system. 

                                                             
* The Southeastern Universities Research Association (SURA) 

operates the Thomas Jefferson National Accelerator Facility under 
DOE contract DE-AC05-84ER40150. 

 
 

2. Jasmine Design 

The initial design and implementation of Jasmine 
was presented in 2001[1]. We described at that time an 
almost pure Java, database-driven, distributed system. 
There were two primary customers for Jasmine’s 
services.  First, data acquisition from the experimental 
halls required immediate access to tape drives to write 
data without any queuing. Secondly, batch farm and 
user requests, which queued until the system could 
process the requests to pull files from tape. User access 
to the system was through user level commands to read 
files, write files, or request that files be added to the user 
visible disk pool. 

 
The overall architecture is shown in Figure 1. Data 

mover machines manage file movement to tape. Disk 
Nodes store cached copies of files or files in transit to 
tape. A replicated MySQL[9] database forms the central 
core of the system. Data flow is between the client and 
the data movers or the disk nodes; there is no single data 
flow bottleneck. Design Goals 

Jasmine was designed with the goals of minimizing 
single points of failure, creating a system that would 
scale for future needs, and be able to provide both 
queuing and non-queuing service for clients. 
Experimental data rates tend to increase over time as 
detector and data acquisition technology improve. We 
wanted Jasmine to scale with these changes, realizing 
that this could mean an increase in the data rate by an 
order of magnitude over five years. We anticipated that 
some of this data rate increase could be solved by new 
tape, disk, and networking technology, but that some of 
it would require a distributed architecture where 
multiple data paths are used to achieve high aggregate 
performance.  

 
There are two classes of failures addressed in the 

design. For those failures that can be managed in an 
automated way, it is important that they result in 
degraded performance rather than system-wide failure. 
That is, individual redundant system component failures 
should be detected and contained. Machines that 
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manage tape or disk resources are examples that can fail 
in a contained way. Certain files or user requests may 
fail as a result of a single machine’s problems, but those 
failures do not cascade into other parts of the system.  

 
The second sort of error management is with regard 

to system critical components.  Some single points of 
failure are too costly or complex to eliminate completely 
but the risk can be mitigated by selecting high quality 
solutions and documented recovery plans. In the design 
of Jasmine there are several of these components: The 
database, the network, and the tape robotics are the most 
obvious examples. In the case of the MySQL[9] 
database, we have added replication and frequent 
backups. In the case of the network we rely on shelf 
spares. For the tape robotics, we rely on 24 hour vendor 
support. 

 

2.1. Name Space Management 

Files are stored in Jasmine as digital objects (files) 
that reside on disk, tape, or both. These files are 
organized into hierarchies of directories in the Jasmine 
database. The directory structure and file entries are 
presented in an NFS-mountable file system that is 

browsable as any other file system. The entries in this 
file system are stub files, which are mere placeholders 
for the actual data.  These stub files are used as the 
names for files on tape, but they are not the files. By 
convention we mount this stub file system on our 
scientific computing machines under /mss. Jasmine 
updates /mss as files are added and removed, but the 
database is the master record of the name space 
hierarchy.  

 
When a user wants to place a file into tape storage, 

they run a command that contacts Jasmine and moves 
the file to tape. A name space entry under /mss is used 
as the name of the file on tape, and a stub file is written 
to show that the name is in use. Users retrieve files 
using these same stub file names. 
 

When writing to tape the name space is used to 
choose the set of tapes that will be used for storing the 
file. Under /mss, directory trees are mapped to 
collections of related tapes, called volume sets. Files can 
only be written to tape if such a mapping exists. These 
mappings are inherited by subdirectories. For example, 
the path /mss/clas/eg3a/raw is mapped to a set of 
volumes reserved for raw data from that experiment.  
The parent, /mss/clas/eg3a could be mapped to a more 

Figure 1. Overall Architecture 
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general set of volumes for analyzed data so that any new 
subdirectories (other than raw) would inherit that 
mapping. 

2.2. Data Mover 

A data mover is a computer with an attached tape 
transport and some amount of local disk space for local 
staging of files to/from tape. Figure 2 shows the high-
level architecture of the data mover. The dispatcher 
coordinates with the system resource manager for tape 
drives, disk space, and network bandwidth to decide 
which jobs to run. Each data mover culls through the job 
queue database looking for work to do based on 
available resources. When a group of runnable jobs is 
found, a cluster of running jobs is created. Jobs are 
gathered into clusters based on their resource needs. For 
example, a group of jobs in the queue that need files 
from the same tape are processed in the order of files 
stored on the tape.  

 
The data mover always stages data in two phases, 

one is a tape transfer and one is a network transfer. In 
the case of writing to tape, the data is copied over the 
network to a pool of disk space dedicated to that data 
mover in the first phase. In the second phase that data is 
copied from the staging disk to tape. When data is read 
from tape, the order is the reverse: Phase 1 is a copy 

from tape to disk and phase 2 is a copy from the staging 
disk over the network to the client.   

 
This two-phased scheme for data movement 

increases the latency of job processing, but has several 
advantages. First, it hides any data rate mismatch 
between the network and the tape drive when the disk is 
not the performance bottleneck. Secondly, it allows data 
being written from clients to be staged in from clients 
when no tape drive is immediately available to write the 
data. This allows for faster processing from the point of 
the view of the client. Finally, it allows the tape drive to 
read files from the tape at native speed, even when 
writing to slow clients. Using the disk as a buffer works 
best when a data mover has one tape drive, one network 
interface, and an appropriate amount of disk space. The 
tape drive and disk performance are knowable 
quantities. The network performance is the least 
predictable aspect of the system.  

 
There is a second means for access to tape storage 

which neither queues nor uses the intermediary disk 

cache. This lower-level mechanism is designed for 
collecting data from experiments. The Data Acquisition 
Manager bypasses queue processing and allows running 
experiments to write running data to tape on demand. 
Tape drives may be reserved exclusively for data 
acquisition so that experiments never wait for tape 

Figure 2. Data Mover Architecture 
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access, or they can preempt the queue between clusters 
of jobs.  

 
When a user requests a file from tape, the request is 

made based on the stub file name. These requests are 
placed in the queue database for processing. Data mover 
nodes process these requests when they have sufficient 
tape drive and disk resources. Our strategy for queue 
processing focuses on minimizing tape mounts and 
positioning time. When a request for a tape rises to the 
top of the queue, any other requests in the queue 
needing the same tape, regardless of queue position, is 
processed as part of the same job cluster. Jobs are also 
ordered to read the tape sequentially.  Any new request 
in the queue for a mounted tape will be processed first to 
avoid an additional tape mount. This queue discipline 
hides some of the latency of tape processing at the 
expense of some fairness.  

2.3. Disk Cache 

A primary feature of the initial design of Jasmine was 
the integrated disk cache, a system that we developed 
and used prior to Jasmine and carried over into 
Jasmine’s design. The cache keeps disk-resident copies 
of files stored on tape and deletes them in a least-
recently-used order when space is needed for new files 
read from tape. This disk cache was exposed to users 
and the batch farm using NFS, and provided an 
alternative file retrieval mechanism. Users could read 
files at will from the disk cache, but all the file additions 
and deletions were done by the system according to 
system policy.  
 
The disk cache was designed to be used in several 
different roles: as temporary staging space on data 
movers, as long-term storage for frequently accessed 
data, and as a repository of input files for the batch farm. 
The graceful handling of failures was an important part 

Figure 3. Cache System Architecture 



 105 

of the system. The disk cache system has changed 
significantly since the first implementation of Jasmine, 
as discussed in section 3.1.  

2.4. Library Manager 

The library manager is the third major component of 
the system. A library manager coordinates tape mount 
and dismounts and answers data mover queries about 
the availability of volumes. The library manager 
provides a simple library abstraction on top of a vendor 
supplied API. Our library manager implementation is 
built on top of StorageTek’s ACSLS.  

3. Jasmine Evolution 

Jasmine has undergone several significant software 
updates since the initial release. The current version, 
Jasmine 4, is described here. Changes were geared 
toward the redesign of the cache disk system and the 
specialization of client interfaces including batch farm 
processing, grid storage with Storage Resource 
Managers (SRM), and programmatic clients. The status 
web pages were rewritten using Java Server Pages 
(JSPs) and servlets to maximize reuse of the core classes 
and provide a more flexible means for maintaining web 
content. The mechanism for tape copying was replaced 
to better track the provenance of a file. Strategies for 
processing tape requests were also modified to make 
better use of tape mounts. 

3.1. Disk Cache Redesign 

Jasmine’s initial disk cache system consisted of 
gigabit Ethernet attached hosts with hundreds of GB of 
disk space (cache nodes), which acted as file servers and 
cached copies of files read from tape. Space was 
allocated in logical partitions (disks) to experiment-
specific cache groups.  Files were added to the 
appropriate disk group’s disks based on the user’s 
experimental group membership. Files were deleted on a 
least-recently-used basis when new files were added. 
Failures were problematic because all of an 
experiment’s files could be rendered unavailable with 
the failure of just one or two nodes where that group’s 
files were concentrated. 

 
The disk cache has been overhauled based on these 

experiences. A significant change to the architecture of 
the disk cache is that all the user-visible cache disks are 
treated as a single pool. Experimental groups are 
assigned allocations in this pool. When one experiment 
adds a large number of files to the cache for batch 
processing the files can be retrieved from tape and 
quickly spread over all the available disks. This 

improves the overall bandwidth of the system, and 
prevents individual cache nodes from being 
overwhelmed by hundreds of farm nodes. A single node 
failure effectively deletes some files from the cache, but 
does not stall any individual experiment’s work because 
the files can be re-cached to other nodes.  

 
One drawback to this approach is that failures are now 
more complicated. When a disk node fails, some  
percentage of all files becomes invisible, which can be  
perplexing to the user.  
 
Figure 3 shows the major components of the new cache 
system. The cache façade is the API for other 
components, like the data mover and the batch farm, that 
use the cache for file storage. Cache requests are made 
through the cache façade, but the data flow is always 
directly between the client and the disk node machine 
that holds the data.  

 
A central cache hub now monitors all disk nodes to 

make sure that they are alive and reporting back file 
access time changes that are needed for file deletion 
decisions. A disk node that does not provide periodic 
heartbeat messages is marked offline. The files stored on 
an offline disk are considered to no longer exist. This 
strategy allows the system to return to tape and re-cache 
any files that are requested but have dropped out of the 
cache. Should the failed disk node be repaired, the files 
are once again made available for user access.  

 
The cache is organized into pools of disks. Each pool 

can contain many families of files, each of which has an 
allocation. These allocations may be strict or relaxed. 
Families with strict allocations may not exceed their 
limit in any case. Families with soft allocation limits 
may overrun their space when other families in that pool 
are not using their allocation.  

 
Families use either automatic deletion or strict 

deletion. Automatic deletion is the usual case. Files are 
removed as they age out. With strict deletion, files are 
removed upon user request only. This is useful for 
keeping online data sets that need frequent reanalysis. 
The use cases are outlined in the table below. 

 
 Strict Deletion Automatic Deletion 
Strict 
Allocation 

Frequently 
Accessed 
Summary Data 

Data Mover 
Staging Space; 
User-Writeable 
Cache 

Relaxed 
Allocation 

Not used Batch Farm Cache; 
User Requests 

Figure 4. Cache Family Types 
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In the original cache system, files were removed only 

when new files were added and space was needed. This 
policy made good use of disk space, but could become a 
performance block when a large number of small files 
needed to be removed. For this reason, file deletion is 
now handled in advance. This policy is essentially a 
garbage collection policy. The system strives to always 
keep some space free. 

  
The Advance Deleter thread on the cache hub 

removes files from experimental groups that exceed 
their allocation. The deletion strategy is a relaxed-LRU 
policy that attempts to remove files from most nodes in 
a way that encourages new files to be spread over all 

available disks. It works in the following way: For each 
disk in the cache pool, the families represented on the 
disk are examined. Any family that is not over its 
allocation on all disks is skipped. For any remaining 
over-allocated families, the files on the disk in question 
are examined. If any of them are in the oldest 5% of 
files for that family over the whole system, then they are 
deleted up to a pre-defined per-disk free space goal. 
This goal is typically large enough to hold a file of the 
largest size expected, currently 2GB. 

By working to maintain most disks with enough free 
space to add at least one large file, we ensure that there 
is very little delay between the start of the job and the 
time when the file streams from the data mover to the 
cache disk. This also gives us flexibility to add files to 

Figure 5. Web Status Page 
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disk in a loose round-robin fashion making sure that no 
individual disk partition is overloaded. 

 
Files stored in any family or pool may be pinned. A 

pinned file is not subject to deletion until that pin is 
removed. File pins are used to make sure that files not 
yet committed to tape are not accidentally removed. 
Pinning also permits a data mover to retain files to 
satisfy an upcoming request without going to tape. The 
file pinning system in this version of the cache manager 
is much more sophisticated than the simple use counts 
that were kept on files in the first implementation. Since 
pins are stored in the database, they are easily tracked 
and audited. 

 
A potential downfall in the cache system redesign is 

that decision-making has become more centralized, and 
the cache hub, which contains all the logic for file 
allocation and deletion, becomes a single point of 
failure. It is our experience that this is less problematic 
than trying to make decisions of similar complexity in a 
more distributed fashion. It also adds more definitive 
detection of failures and anomalies. The cache 
controller, along with the library manager and the 
database, become the primary essential components in 
the system.  

 
 

3.2. Batch Farm Interaction 

The batch farm is Jasmine’s largest client. To make 
efficient use of the batch farm, it is essential that a farm 
job not be started until the input data (typically ~2GB) is 
in the disk cache. It is also important that any files 
added to the disk cache not be removed until the farm 
job requesting them had copied the files to the local 
farm node for processing. This need for improvement 
led to the related Auger[6] batch farm management 
project. To support this, Jasmine includes a new farm 
cache interface which caches and pins files in place for 
farm use until they are explicitly released by Auger. 
This allows our compute farm to spend the majority of 
its time in compute-intensive tasks, despite the data 
intensive nature of the work.  

 
With the redesigned cache system, the batch farm no 

longer uses NFS for file transfers. When a user’s batch 
job is placed on a farm node, the client makes a call to 
the cache system to directly retrieve the file from the 
cache node that is holding it. This has several 
advantages. First, if that copy fails the system falls back 
to retrieving the file from tape again. Secondly, since 
NFS is not used, a number of the NFS-related Linux 
bugs that have caused productivity problems are 

avoided. Replacing NFS also allows us to spread the 
farm cache load over a large number of machines that 
may not be NFS servers. Should any of these machines 
crash, they do not cause NFS IO hangs, reducing the 
need for immediate system administrator interaction. 

 

3.3. Metadata Tracking 

There are two classes of metadata to consider. The 
first is the storage-related information: file information 
that would normally be found in a UNIX file system and 
extended information like checksum and duplicate 
tracking. The second class of information is physics-
specific: detector calibration, experimental notes, 
processing parameters, and the like.  

Our decision was to track metadata that establishes 
data provenance, ownership, and usage information, but 
not to track data that is specific to physics data 
processing. We want to know, for each file, when it was 
written, what experiment it is charged against, and what 
type of data it is in a very broad sense: raw experimental 
data, duplicated experimental data, production data 
derived from raw data, or other unclassifiable data. 
Beyond this we break data down according to project to 
distinguish simulation output from, for example, data 
summary files that are used for final physics analysis. 
This level of detail is maintained to meet our 
requirement for system monitoring and accounting.   

 
There is no barrier to establishing a comprehensive 

physics metadata catalog that would reference our 
metadata database directly, but because of 
organizational structure this responsibility falls to other 
groups within the laboratory. 

3.4. User Interface 

There are three sorts of user interface: Command line 
utilities, web pages, and programmatic access via API.  

 
The user interface for the batch farm and for 

interactive access is through command line utilities to 
get and put files, to add files to the disk cache, and 
related administrative functions. User-level command 
line tools are the choice in many cases because they can 
be used either for interactive work at the desktop, or in 
batch processing.  

 
A combined web-page status and monitoring system 

for Auger and Jasmine is available[10]. This portal, 
shown below, is implemented using a typical J2EE[11] 
system involving servlets and Java Server Pages. A 
simple front page breaks down work by user and shows 
summary statistics for job processing during each day. 
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This top-level view, along with time-series graphs of the 
batch and tape system load, give users and 
administrators an immediate view of the overall state of 
the system. 

 
More advanced queries linked off the main page 

allow for reporting and graphing based on user-selected 
criteria. A goal for these web pages was to provide to 
the user immediate access to the most useful summary 
data (how many jobs do I have? What are their states?) 
while still giving enough control for system 
administrators and advanced users to make more 
detailed queries (Which of my batch jobs are waiting 
longest for file retrieval from tape? How many of my 
files have been staged to disk so far?)   

 
For programmatic access to Jasmine, several special 

purpose interfaces have been implemented. These focus 
on providing file writing and retrieval services to other 
lab systems, such as the lattice QCD file manager, the 
Storage Resource Manager (SRM), and Auger batch 
system manager.  

 

3.5. Tape Technology Migration 

We have seen two major transitions in tape 
technology since the system began running. In both 
cases we decided to migrate the data from the old tape 
technology to the new. In the first case, this was a 
migration from the unreliable helical-scan Redwood 
tape drive to the reliable, but expensive 9840 tape. The 
second data migration was from the 9840 tapes to 
9940B to achieve more storage per tape cartridge. 

 
We wrote into the Jasmine queuing system a low-

priority mechanism for migrating data from one set of 
tapes to another during system idle times. We anticipate 
this being a regular process every few years. In each 
case we copied over 4,000 tapes over a period of 9 to 12 
months.  

 
Although this data migration system has worked very 

well, it has brought forth some issues of data 
provenance. Data that is copied from an older tape 
technology to a new one still has value on the old tapes. 
They are a backup duplicate of the data should the new 
tape fail. Eventually the old data becomes unreadable as 
the drives are no longer available or supported, but up to 
that point they still have value. We track the existence of 
these duplicates. The tape-rewriting feature of Jasmine 
has also proven useful for rewriting and replacing tapes 
with high error rates or physical defects. 

4. Operational Issues 

The knowledge gained in the operation of Jasmine 
over the past few years has been useful for guiding 
future development. The system goes through 
development phases and production phases. During 
development phases we reexamine the architecture of 
components that need updating and make changes as 
necessary. During production periods, however, the 
emphasis is on operational integrity, and we shift to a 
system administrator’s point of view, where the 
emphasis is on treating the software as a black box and 
working with configurations of the existing system to 
maintain performance and reliability. 

4.1. Hardware selection and reliability 

The greatest single impediment to system 
performance has been hardware reliability. As an 
example, the failure of cache disk nodes has been 
common. These failures have been because of unreliable 
power supplies, RAID controller failures, and similar 
causes. The commitment to low-cost PC hardware has 
allowed us to scale the system size, but the use of 
system administrator and technician time has been 
significant. Some failures have been complicated and 
hard to diagnose, leaving individual machines unusable 
for weeks or months at a time.  
 

We have stepped back from the use of low-end 
commodity hardware in some areas. Our experience 
with white-box PC vendors has demonstrated that they 
frequently lack the experience with storage systems to 
provide reliable multi-TB RAID systems. Additionally, 
our experiences with PCI RAID cards under Linux has 
left us to consider that external hardware RAID or 
software RAID-based solutions may be a better fit for 
our needs.  

4.2. Error Detection and Recovery 

Our experience with unreliable hardware has 
encouraged us to put significant development into error 
detection and management. Our goal in error handling is 
to create a system as we described in our design goals—
that is, one where faults result in degraded operation, not 
complete failure. In such a system, failures over nights 
and weekends can be repaired at convenient times with a 
minimal amount of after hours support from on-call 
administrators.  

 
When a tape fails to mount in a tape drive, both the 

tape and the tape drive are removed from the system and 
flagged as suspect. This allows a system administrator to 
examine both of them and make a decision. This 
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prevents a bad drive from mangling multiple tapes, and 
it prevents a defective tape from being passed from 
drive to drive. We track error counts per-file, per-
volume, and per-drive. This allows us to spot impending 
drive or tape failures and gives us a chance to copy data 
before it is lost. We log a complete history of what 
drives a tape cartridge has been in. This has helped us to 
track down tape drives that were damaging tapes in the 
past.   

 
In the cache disk system, we remove any cache node 

from the system if it fails to open a file, usually an 
indicator of an underlying file system problem. We 
disable any system that does not report a heartbeat 
message to the cache hub within a settable interval. 
These measures tend to remove failing hardware while 
allowing the system to continue at a slightly decreased 
performance level. 

 
Certain critical conditions, like a robotics failure or 

the disabling of all the data acquisition tape drives, 
automatically page on-call personnel for immediate 
repair. 

4.3. System Administration 

The developer’s point of view is different from that 
of the system administrator’s. Maintaining a complex 
in-house developed system like Jasmine is significantly 
different from building it. System administration tends 
to consider closed systems and how they can be 
integrated, managed, and repaired without access to 
internals. Even though we have access to the internals of 
the system, it is useful when in production to freeze the 
configuration of the system and take the system 
administrator’s point of view. 
 

We find that taking the system administrator’s view 
during periods where the system is receiving data from 
running experiments to be useful. Code changes and 
updates are made as bug fixes only on scheduled 
maintenance days. Major code changes are held off until 
facility shutdown periods where changes can be 
introduced and tested. Freezing the code state and living 
with known bugs is useful because even innocuous code 
changes, if not well tested, can lead to unintended 
consequences in the running system. 

 

5. Ongoing Development 

There are two design aims that are driving current 
development efforts within Jasmine. The most obvious 
emerging need is for infrastructure to support data grid 
computing. This includes taking a fresh look at 

accounting, authorization, and authentication and how 
these needs can be met in a grid environment.  

 
At the same time, development changes that can 

enhance the on-site performance of the system also 
continue. 

 

5.1. Grid Fabric 

Grids are emerging as a solution to the data and 
compute intensive requirements of high energy and 
nuclear physics experiments. Storage Resource 
Managers (SRMs)[7] provide grid-level access to 
storage at diverse sites through a common interface 
mechanism. Jefferson Lab has been active in the SRM 
community as part of the Particle Physics Data Grid 
(PPDG)[8], developing one of the first version 1.x SRM 
implementations, and now an SRM 2.1 implementation, 
both of which use Jasmine as the data store. SRM proof-
of-concept has been demonstrated in SRM 
communication between different implementations 
among different labs.  
 

5.2. User-Writeable cache 

After the rewrite of the disk cache sytem, it became 
possible to consider allowing files to exist in the cache 
that are not yet on tape. This led to the development of 
the user-writeable cache, a system that is currently being 
tested. 

 
The user-writeable cache maps a part of the cache 

file system space to a cache family. For example, 
/cache/farm_output/exp123 might be mapped in the 
cache database to a cache family for experiment 123 
with an allocation of 10TB. Users, then, can add files 
under this part of the file hierarchy with a command line 
tool similar to the jput command that is used to write 
files to tape. It is important that the cache family used 
for holding these files have a strict allocation policy so 
that users do not completely fill up the cache system. 
Once a file is added to the cache in this way, the file is 
pinned in place and a record of who added the file and 
when is recorded. 

 
Users can subsequently examine their files in the 

cache, retrieve copies of them from the cache, and then 
choose to either commit them to tape, or unpin them and 
let the system garbage collect that space as it is needed. 

 
It is important to point out that this is the same cache 

system that is used for the batch farm and the data 
movers. There is simply another layer of accounting 
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information to track file ownership and other extended 
metadata.  

 
There are two motivations for this system. One use 

for this is in large batch system runs where the output 
data needs some post-processing examination to decide 
if it should be committed to tape for permanent storage. 
A second use is to provide a high-throughput 
mechanism for moving output from many farm nodes to 
disk nodes in a way that spreads out the I/O load. 
Historically, the batch farm has been able to overload 
individual fileservers with output from many nodes at 
once.  

6. System Performance 

Jasmine is designed for high-throughput, sometimes 
at the expense of latency. Requests are ordered to make 
efficient use of the tape drives. In 0we show the number 
of bytes moved to or from tape over a period of several 
weeks. Peaks occur when the queue contains enough 
requests to keep all the tape drives busy.  The troughs in 
the graph do not represent degraded performance, but 
cases where there is not sufficient work to keep all the 
tape drives and cache servers busy. 10TB/day seems to 
be the steady state performance of the system with a 
queue of about a day’s worth of work. With modest 
hardware upgrades (faster staging disks, fewer drives 
per data mover) this number could be increased.  

 

 
Figure 6. Typical Tape Data Volume 

6.1. Data Access Patterns 

 We observe that our experimental data is typically 
accessed 10-20 times over its life. Accesses tend to 
come with some temporal locality. Because of this 
access pattern, the disk cache is useful during multiple 
runs through experimental data on the farm. As one data 
set is completed and another is accessed, the cache is 
cleared out to make space for other data. Some 
experiments require more passes through the data than 
others, improving cache efficiency. 

 
The disk cache lifetime for batch farm processing has 

been fairly short, with files living in the cache for a few 
days to a week. If the cache size were increased by an 

order of magnitude, we would see a moderate increase 
in cache hits for large experiments.   

 

7. Related work 

Fermi Lab’s Enstore[3] combined with DESY’s 
dCache[5] provides similar functionality to Jasmine and 
handle data of approximately the same scale and 
metadata complexity. dCache also functions 
independently of Enstore as a disk-only mass storage 
solution in some Grid environments.  

 
CERN’s Castor[4] has historically had a different 

philosophy for queue processing, but is changing to 
meet LHC requirements, including a new queuing 
system and a different database backend. Castor has 
always offered a POSIX-like C library for access to files 
which gives more file system-like programmatic access 
to the mass storage system.  

 
Enstore and Castor, like Jasmine, track metadata 

concerning data origin, use, and integrity. None of these 
systems tracks physics-related metadata, which requires 
knowledge of the stored data’s structure. This metadata 
is handled by clients of the storage system that are used 
for analysis work. 

 
It is interesting to note that all these storage systems 

are converging to an architecture involving significant 
disk cache on the front end, a complex database on the 
back end, and a scheduler to manage queuing in the 
presence of large numbers of requests. 

 
Some systems, like SRB[12] have a much wider 

scope than Jasmine and offer digital library and 
metadata features not present in Jasmine.  

 

8. Future work 

We anticipate future work continuing in three areas: 
Addressing the needs of the growing batch farm; 
addressing the needs of the emerging data grid; and 
adapting to handle a wider variety of data access 
patterns and file sizes, including the handling of small 
files. 

8.1. Small File Handling 

One of the most significant challenges to the system 
is the handling of small files. Jasmine was designed as a 
mass storage system with the anticipation that 2GB files 
would be the norm. This is usually the case, but some 
new applications (Lattice QCD and certain experimental 
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work) are testing the limits of the system to handle large 
numbers of files at once.  

 
The original design of Jasmine called for files on the 

order of 2GB in extent. Handling smaller files (less than 
~100MB) effectively has several performance barriers. 
First, Jasmine keeps significant per-file statistics in the 
database as the file’s progress is tracked through the 
system. For tape performance reasons, small files 
require an aggregation layer that writes groups of small 
files to tape in some single-file archive format, like tar. 
Jasmine currently does not have an aggregator. Such an 
aggregator must also take care to update the database in 
a more efficient way that hides the latency of the per-file 
operations with a batch add facility.  

 
Although this data is useful for mining accounting 

information from the database, it causes a lot of high-
latency database interactions per file. Secondly, files are 
written individually on tape with file marks between 
them. The tape positioning and lack of streaming 
inherent in this process also slows the system. To 
properly handle small files in an efficient way without 
sacrificing the overall performance of the system will 
require reexamination of some key components.  

8.2. Authorization and Authentication 

The arrival of data grids challenges storage systems 
that have been designed with a UNIX-centric idea of 
user accounts. When a user writes a file into Jasmine, 
the file ownership and permissions must be tracked as 
long as the file persists in the system. This data may last 
longer than the UNIX user account that wrote it. The 
recent addition of grid user identities, typically 
represented as time-limited X509 certificates, 
compounds this problem by introducing a second type 
of user identity that could own a file. Storing simple 
Unix UIDs or usernames is not sufficient to maintain 
data ownership over time. We find it necessary to store 
user identity information beyond simple UIDs in the 
Jasmine database. 

 
Jasmine maintains its own user identity database. 

This user identity can be mapped to Unix usernames, 
X509 certificate identities, or our own PKI-based 
identity. Allowing a many-to-one mapping of external 
identities to Jasmine identities helps to obviate the 
problem of long-term file ownership tracking at the 
expense of more accounting within Jasmine.  
 

We anticipate that any fully grid-integrated storage 
system will need to do a similar level of user tracking. 
Further, we recognize the need for a more sophisticated 

authorization mechanism beyond this authentication-
based user identity-tracking model. 

9. Conclusion 

Jasmine has successfully managed the data storage 
needs of Jefferson Lab since its introduction. The 
system has scaled well to meet the needs of new 
experiments and efforts at the lab. The cache system, 
when it was clear that it would not scale to meet 
emerging requirements, was replaced with a new system 
that has added new functionality used by the Auger 
batch system. 

 
The core design of a database-centric, distributed 

system has not changed. The ability to add more data 
movers and cache nodes to accommodate more tape 
bandwidth and disk storage has allowed us to implement 
important hardware changes and upgrades with minimal 
impact to the user community. 

 
Our chief operational problems have been from 

faulty hardware, and operating system specific problems 
including Linux NFS bugs and unexpected device 
drivers/kernel bugs. 

 
We look forward to the continued development of 

Jasmine as needed to meet the growing edge of the lab’s 
needs. 
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