
 101

The Design and Evolution of Jefferson Lab’s Jasmine Mass Storage System*

Bryan K. Hess
Thomas Jefferson National

Accelerator Facility
bhess@jlab.org

Michael Haddox-Schatz
Thomas Jefferson National

Accelerator Facility
mschatz@jlab.org

M. Andrew Kowalski
Thomas Jefferson National

Accelerator Facility
kowalski@jlab.org

Abstract*

We describe the Jasmine mass storage system, in
operation since 2001. Jasmine has scaled to meet the
challenges of grid applications, petabyte class storage,
and hundreds of MB/sec throughput using commodity
hardware, Java technologies, and a small but focused
development team. The evolution of the integrated disk
cache system, which provides a managed online subset
of the tape contents, is examined in detail. We describe
how the storage system has grown to meet the special
needs of the batch farm, grid clients, and new
performance demands.

1. Introduction

Jasmine is the integrated tape and disk mass storage
system developed and used by the Thomas Jefferson
National Accelerator Facility (Jefferson Lab). The lab is
operated for the U.S. Department of Energy to conduct
nuclear physics experiments examining the quark nature
of matter. The data rates generated by these experiments
are currently ~30MB/sec, and will eventually reach
100MB/sec. Jasmine manages more than 1 PB of data
stored on tape. Aside from maintenance and upgrade
periods, the system has run in a “lights out” mode with
24 hour operation and daytime administrative work
since its deployment. In this paper, we outline the design
and operational challenges experienced in transitioning
Jasmine from a mission critical storage system to a
multi-purpose storage fabric for use by running
experiments, batch farm processing, grid applications,
individual users, and the lab’s lattice QCD effort. The
basic distributed framework of the system has scaled
well. We describe modifications made to system
components, like the disk cache, to grow it to its current
state. Finally, we anticipate future changes based on
current stresses on the system.

* The Southeastern Universities Research Association (SURA)

operates the Thomas Jefferson National Accelerator Facility under
DOE contract DE-AC05-84ER40150.

2. Jasmine Design

The initial design and implementation of Jasmine
was presented in 2001[1]. We described at that time an
almost pure Java, database-driven, distributed system.
There were two primary customers for Jasmine’s
services. First, data acquisition from the experimental
halls required immediate access to tape drives to write
data without any queuing. Secondly, batch farm and
user requests, which queued until the system could
process the requests to pull files from tape. User access
to the system was through user level commands to read
files, write files, or request that files be added to the user
visible disk pool.

The overall architecture is shown in Figure 1. Data

mover machines manage file movement to tape. Disk
Nodes store cached copies of files or files in transit to
tape. A replicated MySQL[9] database forms the central
core of the system. Data flow is between the client and
the data movers or the disk nodes; there is no single data
flow bottleneck. Design Goals

Jasmine was designed with the goals of minimizing
single points of failure, creating a system that would
scale for future needs, and be able to provide both
queuing and non-queuing service for clients.
Experimental data rates tend to increase over time as
detector and data acquisition technology improve. We
wanted Jasmine to scale with these changes, realizing
that this could mean an increase in the data rate by an
order of magnitude over five years. We anticipated that
some of this data rate increase could be solved by new
tape, disk, and networking technology, but that some of
it would require a distributed architecture where
multiple data paths are used to achieve high aggregate
performance.

There are two classes of failures addressed in the

design. For those failures that can be managed in an
automated way, it is important that they result in
degraded performance rather than system-wide failure.
That is, individual redundant system component failures
should be detected and contained. Machines that

 102

manage tape or disk resources are examples that can fail
in a contained way. Certain files or user requests may
fail as a result of a single machine’s problems, but those
failures do not cascade into other parts of the system.

The second sort of error management is with regard

to system critical components. Some single points of
failure are too costly or complex to eliminate completely
but the risk can be mitigated by selecting high quality
solutions and documented recovery plans. In the design
of Jasmine there are several of these components: The
database, the network, and the tape robotics are the most
obvious examples. In the case of the MySQL[9]
database, we have added replication and frequent
backups. In the case of the network we rely on shelf
spares. For the tape robotics, we rely on 24 hour vendor
support.

2.1. Name Space Management

Files are stored in Jasmine as digital objects (files)
that reside on disk, tape, or both. These files are
organized into hierarchies of directories in the Jasmine
database. The directory structure and file entries are
presented in an NFS-mountable file system that is

browsable as any other file system. The entries in this
file system are stub files, which are mere placeholders
for the actual data. These stub files are used as the
names for files on tape, but they are not the files. By
convention we mount this stub file system on our
scientific computing machines under /mss. Jasmine
updates /mss as files are added and removed, but the
database is the master record of the name space
hierarchy.

When a user wants to place a file into tape storage,

they run a command that contacts Jasmine and moves
the file to tape. A name space entry under /mss is used
as the name of the file on tape, and a stub file is written
to show that the name is in use. Users retrieve files
using these same stub file names.

When writing to tape the name space is used to
choose the set of tapes that will be used for storing the
file. Under /mss, directory trees are mapped to
collections of related tapes, called volume sets. Files can
only be written to tape if such a mapping exists. These
mappings are inherited by subdirectories. For example,
the path /mss/clas/eg3a/raw is mapped to a set of
volumes reserved for raw data from that experiment.
The parent, /mss/clas/eg3a could be mapped to a more

Figure 1. Overall Architecture

 103

general set of volumes for analyzed data so that any new
subdirectories (other than raw) would inherit that
mapping.

2.2. Data Mover

A data mover is a computer with an attached tape
transport and some amount of local disk space for local
staging of files to/from tape. Figure 2 shows the high-
level architecture of the data mover. The dispatcher
coordinates with the system resource manager for tape
drives, disk space, and network bandwidth to decide
which jobs to run. Each data mover culls through the job
queue database looking for work to do based on
available resources. When a group of runnable jobs is
found, a cluster of running jobs is created. Jobs are
gathered into clusters based on their resource needs. For
example, a group of jobs in the queue that need files
from the same tape are processed in the order of files
stored on the tape.

The data mover always stages data in two phases,

one is a tape transfer and one is a network transfer. In
the case of writing to tape, the data is copied over the
network to a pool of disk space dedicated to that data
mover in the first phase. In the second phase that data is
copied from the staging disk to tape. When data is read
from tape, the order is the reverse: Phase 1 is a copy

from tape to disk and phase 2 is a copy from the staging
disk over the network to the client.

This two-phased scheme for data movement

increases the latency of job processing, but has several
advantages. First, it hides any data rate mismatch
between the network and the tape drive when the disk is
not the performance bottleneck. Secondly, it allows data
being written from clients to be staged in from clients
when no tape drive is immediately available to write the
data. This allows for faster processing from the point of
the view of the client. Finally, it allows the tape drive to
read files from the tape at native speed, even when
writing to slow clients. Using the disk as a buffer works
best when a data mover has one tape drive, one network
interface, and an appropriate amount of disk space. The
tape drive and disk performance are knowable
quantities. The network performance is the least
predictable aspect of the system.

There is a second means for access to tape storage

which neither queues nor uses the intermediary disk

cache. This lower-level mechanism is designed for
collecting data from experiments. The Data Acquisition
Manager bypasses queue processing and allows running
experiments to write running data to tape on demand.
Tape drives may be reserved exclusively for data
acquisition so that experiments never wait for tape

Figure 2. Data Mover Architecture

 104

access, or they can preempt the queue between clusters
of jobs.

When a user requests a file from tape, the request is

made based on the stub file name. These requests are
placed in the queue database for processing. Data mover
nodes process these requests when they have sufficient
tape drive and disk resources. Our strategy for queue
processing focuses on minimizing tape mounts and
positioning time. When a request for a tape rises to the
top of the queue, any other requests in the queue
needing the same tape, regardless of queue position, is
processed as part of the same job cluster. Jobs are also
ordered to read the tape sequentially. Any new request
in the queue for a mounted tape will be processed first to
avoid an additional tape mount. This queue discipline
hides some of the latency of tape processing at the
expense of some fairness.

2.3. Disk Cache

A primary feature of the initial design of Jasmine was
the integrated disk cache, a system that we developed
and used prior to Jasmine and carried over into
Jasmine’s design. The cache keeps disk-resident copies
of files stored on tape and deletes them in a least-
recently-used order when space is needed for new files
read from tape. This disk cache was exposed to users
and the batch farm using NFS, and provided an
alternative file retrieval mechanism. Users could read
files at will from the disk cache, but all the file additions
and deletions were done by the system according to
system policy.

The disk cache was designed to be used in several
different roles: as temporary staging space on data
movers, as long-term storage for frequently accessed
data, and as a repository of input files for the batch farm.
The graceful handling of failures was an important part

Figure 3. Cache System Architecture

 105

of the system. The disk cache system has changed
significantly since the first implementation of Jasmine,
as discussed in section 3.1.

2.4. Library Manager

The library manager is the third major component of
the system. A library manager coordinates tape mount
and dismounts and answers data mover queries about
the availability of volumes. The library manager
provides a simple library abstraction on top of a vendor
supplied API. Our library manager implementation is
built on top of StorageTek’s ACSLS.

3. Jasmine Evolution

Jasmine has undergone several significant software
updates since the initial release. The current version,
Jasmine 4, is described here. Changes were geared
toward the redesign of the cache disk system and the
specialization of client interfaces including batch farm
processing, grid storage with Storage Resource
Managers (SRM), and programmatic clients. The status
web pages were rewritten using Java Server Pages
(JSPs) and servlets to maximize reuse of the core classes
and provide a more flexible means for maintaining web
content. The mechanism for tape copying was replaced
to better track the provenance of a file. Strategies for
processing tape requests were also modified to make
better use of tape mounts.

3.1. Disk Cache Redesign

Jasmine’s initial disk cache system consisted of
gigabit Ethernet attached hosts with hundreds of GB of
disk space (cache nodes), which acted as file servers and
cached copies of files read from tape. Space was
allocated in logical partitions (disks) to experiment-
specific cache groups. Files were added to the
appropriate disk group’s disks based on the user’s
experimental group membership. Files were deleted on a
least-recently-used basis when new files were added.
Failures were problematic because all of an
experiment’s files could be rendered unavailable with
the failure of just one or two nodes where that group’s
files were concentrated.

The disk cache has been overhauled based on these

experiences. A significant change to the architecture of
the disk cache is that all the user-visible cache disks are
treated as a single pool. Experimental groups are
assigned allocations in this pool. When one experiment
adds a large number of files to the cache for batch
processing the files can be retrieved from tape and
quickly spread over all the available disks. This

improves the overall bandwidth of the system, and
prevents individual cache nodes from being
overwhelmed by hundreds of farm nodes. A single node
failure effectively deletes some files from the cache, but
does not stall any individual experiment’s work because
the files can be re-cached to other nodes.

One drawback to this approach is that failures are now
more complicated. When a disk node fails, some
percentage of all files becomes invisible, which can be
perplexing to the user.

Figure 3 shows the major components of the new cache
system. The cache façade is the API for other
components, like the data mover and the batch farm, that
use the cache for file storage. Cache requests are made
through the cache façade, but the data flow is always
directly between the client and the disk node machine
that holds the data.

A central cache hub now monitors all disk nodes to

make sure that they are alive and reporting back file
access time changes that are needed for file deletion
decisions. A disk node that does not provide periodic
heartbeat messages is marked offline. The files stored on
an offline disk are considered to no longer exist. This
strategy allows the system to return to tape and re-cache
any files that are requested but have dropped out of the
cache. Should the failed disk node be repaired, the files
are once again made available for user access.

The cache is organized into pools of disks. Each pool

can contain many families of files, each of which has an
allocation. These allocations may be strict or relaxed.
Families with strict allocations may not exceed their
limit in any case. Families with soft allocation limits
may overrun their space when other families in that pool
are not using their allocation.

Families use either automatic deletion or strict

deletion. Automatic deletion is the usual case. Files are
removed as they age out. With strict deletion, files are
removed upon user request only. This is useful for
keeping online data sets that need frequent reanalysis.
The use cases are outlined in the table below.

 Strict Deletion Automatic Deletion
Strict
Allocation

Frequently
Accessed
Summary Data

Data Mover
Staging Space;
User-Writeable
Cache

Relaxed
Allocation

Not used Batch Farm Cache;
User Requests

Figure 4. Cache Family Types

 106

In the original cache system, files were removed only

when new files were added and space was needed. This
policy made good use of disk space, but could become a
performance block when a large number of small files
needed to be removed. For this reason, file deletion is
now handled in advance. This policy is essentially a
garbage collection policy. The system strives to always
keep some space free.

The Advance Deleter thread on the cache hub

removes files from experimental groups that exceed
their allocation. The deletion strategy is a relaxed-LRU
policy that attempts to remove files from most nodes in
a way that encourages new files to be spread over all

available disks. It works in the following way: For each
disk in the cache pool, the families represented on the
disk are examined. Any family that is not over its
allocation on all disks is skipped. For any remaining
over-allocated families, the files on the disk in question
are examined. If any of them are in the oldest 5% of
files for that family over the whole system, then they are
deleted up to a pre-defined per-disk free space goal.
This goal is typically large enough to hold a file of the
largest size expected, currently 2GB.

By working to maintain most disks with enough free
space to add at least one large file, we ensure that there
is very little delay between the start of the job and the
time when the file streams from the data mover to the
cache disk. This also gives us flexibility to add files to

Figure 5. Web Status Page

 107

disk in a loose round-robin fashion making sure that no
individual disk partition is overloaded.

Files stored in any family or pool may be pinned. A

pinned file is not subject to deletion until that pin is
removed. File pins are used to make sure that files not
yet committed to tape are not accidentally removed.
Pinning also permits a data mover to retain files to
satisfy an upcoming request without going to tape. The
file pinning system in this version of the cache manager
is much more sophisticated than the simple use counts
that were kept on files in the first implementation. Since
pins are stored in the database, they are easily tracked
and audited.

A potential downfall in the cache system redesign is

that decision-making has become more centralized, and
the cache hub, which contains all the logic for file
allocation and deletion, becomes a single point of
failure. It is our experience that this is less problematic
than trying to make decisions of similar complexity in a
more distributed fashion. It also adds more definitive
detection of failures and anomalies. The cache
controller, along with the library manager and the
database, become the primary essential components in
the system.

3.2. Batch Farm Interaction

The batch farm is Jasmine’s largest client. To make
efficient use of the batch farm, it is essential that a farm
job not be started until the input data (typically ~2GB) is
in the disk cache. It is also important that any files
added to the disk cache not be removed until the farm
job requesting them had copied the files to the local
farm node for processing. This need for improvement
led to the related Auger[6] batch farm management
project. To support this, Jasmine includes a new farm
cache interface which caches and pins files in place for
farm use until they are explicitly released by Auger.
This allows our compute farm to spend the majority of
its time in compute-intensive tasks, despite the data
intensive nature of the work.

With the redesigned cache system, the batch farm no

longer uses NFS for file transfers. When a user’s batch
job is placed on a farm node, the client makes a call to
the cache system to directly retrieve the file from the
cache node that is holding it. This has several
advantages. First, if that copy fails the system falls back
to retrieving the file from tape again. Secondly, since
NFS is not used, a number of the NFS-related Linux
bugs that have caused productivity problems are

avoided. Replacing NFS also allows us to spread the
farm cache load over a large number of machines that
may not be NFS servers. Should any of these machines
crash, they do not cause NFS IO hangs, reducing the
need for immediate system administrator interaction.

3.3. Metadata Tracking

There are two classes of metadata to consider. The
first is the storage-related information: file information
that would normally be found in a UNIX file system and
extended information like checksum and duplicate
tracking. The second class of information is physics-
specific: detector calibration, experimental notes,
processing parameters, and the like.

Our decision was to track metadata that establishes
data provenance, ownership, and usage information, but
not to track data that is specific to physics data
processing. We want to know, for each file, when it was
written, what experiment it is charged against, and what
type of data it is in a very broad sense: raw experimental
data, duplicated experimental data, production data
derived from raw data, or other unclassifiable data.
Beyond this we break data down according to project to
distinguish simulation output from, for example, data
summary files that are used for final physics analysis.
This level of detail is maintained to meet our
requirement for system monitoring and accounting.

There is no barrier to establishing a comprehensive

physics metadata catalog that would reference our
metadata database directly, but because of
organizational structure this responsibility falls to other
groups within the laboratory.

3.4. User Interface

There are three sorts of user interface: Command line
utilities, web pages, and programmatic access via API.

The user interface for the batch farm and for

interactive access is through command line utilities to
get and put files, to add files to the disk cache, and
related administrative functions. User-level command
line tools are the choice in many cases because they can
be used either for interactive work at the desktop, or in
batch processing.

A combined web-page status and monitoring system

for Auger and Jasmine is available[10]. This portal,
shown below, is implemented using a typical J2EE[11]
system involving servlets and Java Server Pages. A
simple front page breaks down work by user and shows
summary statistics for job processing during each day.

 108

This top-level view, along with time-series graphs of the
batch and tape system load, give users and
administrators an immediate view of the overall state of
the system.

More advanced queries linked off the main page

allow for reporting and graphing based on user-selected
criteria. A goal for these web pages was to provide to
the user immediate access to the most useful summary
data (how many jobs do I have? What are their states?)
while still giving enough control for system
administrators and advanced users to make more
detailed queries (Which of my batch jobs are waiting
longest for file retrieval from tape? How many of my
files have been staged to disk so far?)

For programmatic access to Jasmine, several special

purpose interfaces have been implemented. These focus
on providing file writing and retrieval services to other
lab systems, such as the lattice QCD file manager, the
Storage Resource Manager (SRM), and Auger batch
system manager.

3.5. Tape Technology Migration

We have seen two major transitions in tape
technology since the system began running. In both
cases we decided to migrate the data from the old tape
technology to the new. In the first case, this was a
migration from the unreliable helical-scan Redwood
tape drive to the reliable, but expensive 9840 tape. The
second data migration was from the 9840 tapes to
9940B to achieve more storage per tape cartridge.

We wrote into the Jasmine queuing system a low-

priority mechanism for migrating data from one set of
tapes to another during system idle times. We anticipate
this being a regular process every few years. In each
case we copied over 4,000 tapes over a period of 9 to 12
months.

Although this data migration system has worked very

well, it has brought forth some issues of data
provenance. Data that is copied from an older tape
technology to a new one still has value on the old tapes.
They are a backup duplicate of the data should the new
tape fail. Eventually the old data becomes unreadable as
the drives are no longer available or supported, but up to
that point they still have value. We track the existence of
these duplicates. The tape-rewriting feature of Jasmine
has also proven useful for rewriting and replacing tapes
with high error rates or physical defects.

4. Operational Issues

The knowledge gained in the operation of Jasmine
over the past few years has been useful for guiding
future development. The system goes through
development phases and production phases. During
development phases we reexamine the architecture of
components that need updating and make changes as
necessary. During production periods, however, the
emphasis is on operational integrity, and we shift to a
system administrator’s point of view, where the
emphasis is on treating the software as a black box and
working with configurations of the existing system to
maintain performance and reliability.

4.1. Hardware selection and reliability

The greatest single impediment to system
performance has been hardware reliability. As an
example, the failure of cache disk nodes has been
common. These failures have been because of unreliable
power supplies, RAID controller failures, and similar
causes. The commitment to low-cost PC hardware has
allowed us to scale the system size, but the use of
system administrator and technician time has been
significant. Some failures have been complicated and
hard to diagnose, leaving individual machines unusable
for weeks or months at a time.

We have stepped back from the use of low-end
commodity hardware in some areas. Our experience
with white-box PC vendors has demonstrated that they
frequently lack the experience with storage systems to
provide reliable multi-TB RAID systems. Additionally,
our experiences with PCI RAID cards under Linux has
left us to consider that external hardware RAID or
software RAID-based solutions may be a better fit for
our needs.

4.2. Error Detection and Recovery

Our experience with unreliable hardware has
encouraged us to put significant development into error
detection and management. Our goal in error handling is
to create a system as we described in our design goals—
that is, one where faults result in degraded operation, not
complete failure. In such a system, failures over nights
and weekends can be repaired at convenient times with a
minimal amount of after hours support from on-call
administrators.

When a tape fails to mount in a tape drive, both the

tape and the tape drive are removed from the system and
flagged as suspect. This allows a system administrator to
examine both of them and make a decision. This

 109

prevents a bad drive from mangling multiple tapes, and
it prevents a defective tape from being passed from
drive to drive. We track error counts per-file, per-
volume, and per-drive. This allows us to spot impending
drive or tape failures and gives us a chance to copy data
before it is lost. We log a complete history of what
drives a tape cartridge has been in. This has helped us to
track down tape drives that were damaging tapes in the
past.

In the cache disk system, we remove any cache node

from the system if it fails to open a file, usually an
indicator of an underlying file system problem. We
disable any system that does not report a heartbeat
message to the cache hub within a settable interval.
These measures tend to remove failing hardware while
allowing the system to continue at a slightly decreased
performance level.

Certain critical conditions, like a robotics failure or

the disabling of all the data acquisition tape drives,
automatically page on-call personnel for immediate
repair.

4.3. System Administration

The developer’s point of view is different from that
of the system administrator’s. Maintaining a complex
in-house developed system like Jasmine is significantly
different from building it. System administration tends
to consider closed systems and how they can be
integrated, managed, and repaired without access to
internals. Even though we have access to the internals of
the system, it is useful when in production to freeze the
configuration of the system and take the system
administrator’s point of view.

We find that taking the system administrator’s view
during periods where the system is receiving data from
running experiments to be useful. Code changes and
updates are made as bug fixes only on scheduled
maintenance days. Major code changes are held off until
facility shutdown periods where changes can be
introduced and tested. Freezing the code state and living
with known bugs is useful because even innocuous code
changes, if not well tested, can lead to unintended
consequences in the running system.

5. Ongoing Development

There are two design aims that are driving current
development efforts within Jasmine. The most obvious
emerging need is for infrastructure to support data grid
computing. This includes taking a fresh look at

accounting, authorization, and authentication and how
these needs can be met in a grid environment.

At the same time, development changes that can

enhance the on-site performance of the system also
continue.

5.1. Grid Fabric

Grids are emerging as a solution to the data and
compute intensive requirements of high energy and
nuclear physics experiments. Storage Resource
Managers (SRMs)[7] provide grid-level access to
storage at diverse sites through a common interface
mechanism. Jefferson Lab has been active in the SRM
community as part of the Particle Physics Data Grid
(PPDG)[8], developing one of the first version 1.x SRM
implementations, and now an SRM 2.1 implementation,
both of which use Jasmine as the data store. SRM proof-
of-concept has been demonstrated in SRM
communication between different implementations
among different labs.

5.2. User-Writeable cache

After the rewrite of the disk cache sytem, it became
possible to consider allowing files to exist in the cache
that are not yet on tape. This led to the development of
the user-writeable cache, a system that is currently being
tested.

The user-writeable cache maps a part of the cache

file system space to a cache family. For example,
/cache/farm_output/exp123 might be mapped in the
cache database to a cache family for experiment 123
with an allocation of 10TB. Users, then, can add files
under this part of the file hierarchy with a command line
tool similar to the jput command that is used to write
files to tape. It is important that the cache family used
for holding these files have a strict allocation policy so
that users do not completely fill up the cache system.
Once a file is added to the cache in this way, the file is
pinned in place and a record of who added the file and
when is recorded.

Users can subsequently examine their files in the

cache, retrieve copies of them from the cache, and then
choose to either commit them to tape, or unpin them and
let the system garbage collect that space as it is needed.

It is important to point out that this is the same cache

system that is used for the batch farm and the data
movers. There is simply another layer of accounting

 110

information to track file ownership and other extended
metadata.

There are two motivations for this system. One use

for this is in large batch system runs where the output
data needs some post-processing examination to decide
if it should be committed to tape for permanent storage.
A second use is to provide a high-throughput
mechanism for moving output from many farm nodes to
disk nodes in a way that spreads out the I/O load.
Historically, the batch farm has been able to overload
individual fileservers with output from many nodes at
once.

6. System Performance

Jasmine is designed for high-throughput, sometimes
at the expense of latency. Requests are ordered to make
efficient use of the tape drives. In 0we show the number
of bytes moved to or from tape over a period of several
weeks. Peaks occur when the queue contains enough
requests to keep all the tape drives busy. The troughs in
the graph do not represent degraded performance, but
cases where there is not sufficient work to keep all the
tape drives and cache servers busy. 10TB/day seems to
be the steady state performance of the system with a
queue of about a day’s worth of work. With modest
hardware upgrades (faster staging disks, fewer drives
per data mover) this number could be increased.

Figure 6. Typical Tape Data Volume

6.1. Data Access Patterns

 We observe that our experimental data is typically
accessed 10-20 times over its life. Accesses tend to
come with some temporal locality. Because of this
access pattern, the disk cache is useful during multiple
runs through experimental data on the farm. As one data
set is completed and another is accessed, the cache is
cleared out to make space for other data. Some
experiments require more passes through the data than
others, improving cache efficiency.

The disk cache lifetime for batch farm processing has

been fairly short, with files living in the cache for a few
days to a week. If the cache size were increased by an

order of magnitude, we would see a moderate increase
in cache hits for large experiments.

7. Related work

Fermi Lab’s Enstore[3] combined with DESY’s
dCache[5] provides similar functionality to Jasmine and
handle data of approximately the same scale and
metadata complexity. dCache also functions
independently of Enstore as a disk-only mass storage
solution in some Grid environments.

CERN’s Castor[4] has historically had a different

philosophy for queue processing, but is changing to
meet LHC requirements, including a new queuing
system and a different database backend. Castor has
always offered a POSIX-like C library for access to files
which gives more file system-like programmatic access
to the mass storage system.

Enstore and Castor, like Jasmine, track metadata

concerning data origin, use, and integrity. None of these
systems tracks physics-related metadata, which requires
knowledge of the stored data’s structure. This metadata
is handled by clients of the storage system that are used
for analysis work.

It is interesting to note that all these storage systems

are converging to an architecture involving significant
disk cache on the front end, a complex database on the
back end, and a scheduler to manage queuing in the
presence of large numbers of requests.

Some systems, like SRB[12] have a much wider

scope than Jasmine and offer digital library and
metadata features not present in Jasmine.

8. Future work

We anticipate future work continuing in three areas:
Addressing the needs of the growing batch farm;
addressing the needs of the emerging data grid; and
adapting to handle a wider variety of data access
patterns and file sizes, including the handling of small
files.

8.1. Small File Handling

One of the most significant challenges to the system
is the handling of small files. Jasmine was designed as a
mass storage system with the anticipation that 2GB files
would be the norm. This is usually the case, but some
new applications (Lattice QCD and certain experimental

 111

work) are testing the limits of the system to handle large
numbers of files at once.

The original design of Jasmine called for files on the

order of 2GB in extent. Handling smaller files (less than
~100MB) effectively has several performance barriers.
First, Jasmine keeps significant per-file statistics in the
database as the file’s progress is tracked through the
system. For tape performance reasons, small files
require an aggregation layer that writes groups of small
files to tape in some single-file archive format, like tar.
Jasmine currently does not have an aggregator. Such an
aggregator must also take care to update the database in
a more efficient way that hides the latency of the per-file
operations with a batch add facility.

Although this data is useful for mining accounting

information from the database, it causes a lot of high-
latency database interactions per file. Secondly, files are
written individually on tape with file marks between
them. The tape positioning and lack of streaming
inherent in this process also slows the system. To
properly handle small files in an efficient way without
sacrificing the overall performance of the system will
require reexamination of some key components.

8.2. Authorization and Authentication

The arrival of data grids challenges storage systems
that have been designed with a UNIX-centric idea of
user accounts. When a user writes a file into Jasmine,
the file ownership and permissions must be tracked as
long as the file persists in the system. This data may last
longer than the UNIX user account that wrote it. The
recent addition of grid user identities, typically
represented as time-limited X509 certificates,
compounds this problem by introducing a second type
of user identity that could own a file. Storing simple
Unix UIDs or usernames is not sufficient to maintain
data ownership over time. We find it necessary to store
user identity information beyond simple UIDs in the
Jasmine database.

Jasmine maintains its own user identity database.

This user identity can be mapped to Unix usernames,
X509 certificate identities, or our own PKI-based
identity. Allowing a many-to-one mapping of external
identities to Jasmine identities helps to obviate the
problem of long-term file ownership tracking at the
expense of more accounting within Jasmine.

We anticipate that any fully grid-integrated storage
system will need to do a similar level of user tracking.
Further, we recognize the need for a more sophisticated

authorization mechanism beyond this authentication-
based user identity-tracking model.

9. Conclusion

Jasmine has successfully managed the data storage
needs of Jefferson Lab since its introduction. The
system has scaled well to meet the needs of new
experiments and efforts at the lab. The cache system,
when it was clear that it would not scale to meet
emerging requirements, was replaced with a new system
that has added new functionality used by the Auger
batch system.

The core design of a database-centric, distributed

system has not changed. The ability to add more data
movers and cache nodes to accommodate more tape
bandwidth and disk storage has allowed us to implement
important hardware changes and upgrades with minimal
impact to the user community.

Our chief operational problems have been from

faulty hardware, and operating system specific problems
including Linux NFS bugs and unexpected device
drivers/kernel bugs.

We look forward to the continued development of

Jasmine as needed to meet the growing edge of the lab’s
needs.

References

URLs in references were checked for validity on
December 22, 2004.

[1] I. Bird, B. Hess, M. A. Kowalski, “Building the

Mass Storage System at Jefferson Lab,”
Proceedings of the 18th IEEE Symposium on Mass
Storage Systems. (Los Alamitos, CA: IEEE
Computer Society Press, 2001)

[2] W. A. Watson, I. Bird, J. Chen, B. Hess, A.
Kowalski, Y. Chen, “A Web Services data analysis
Grid,” Concurrency and Computation: Practice
and Experience. (John Wiley & Sons, Ltd.
14:1303-1311, 2002)

[3] J Bakken, E. Berman, C. Huang, A. Moibenko, D.
Petravick, “The Status of the Fermilab Enstore
Data Storage System,” Computing in High Energy
Physics 2004.

[4] O. Bärring, B. Couturier, J.-D. Durand, S. Ponce,
“Castor: Operational Issues and New
Developments,” Computing in High Energy
Physics 2004.

[5] http://www.dcache.org
[6] http://auger.jlab.org/

 112

[7] http://sdm.lbl.gov/srm-wg
[8] http://www.ppdg.net
[9] http://www.mysql.com
[10] http://jasmine.jlab.org/scicomp/
[11] http://java.sun.com/j2ee
[12] http://www.npaci.edu/DICE/SRB/

