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Abstract

Multiphase flow models have been proposed for use in situations which have
combined Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities [2,
3]. Such an approach works poorly for the case of a heavy to light shock incidence
on a developed interface. I suggest that this difficulty can be overcome by adding
an additional source to the turbulence kinetic energy equation. A variety of con-
straints on such a source are considered. In this context it is observed that a new
constraint on closures arises. This occurs because of the discontinuity within the
shock responsible for the RMI. The proposed model (Shock Scattering) is shown
to give useful results.

1 Introduction

Multiphase flow models have been proposed for use in situations which have combined
Rayleigh-Taylor (RTI) and Richtmyer-Meshkov (RMI) instabilities [2, 3]. Such an
approach works poorly for the case of a heavy to light shock incidence on a developed
interface. This may occur because of an inadequacy in the modeling of the sources
to the k-equation. The situation is illustrated in a very schematic manner in Fig. 1.
A shock interacting with a complex surface produces transmitted and reflected waves
which cannot be represented by the mean flow ũi. Note that these fluctuations u′′i =
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2 2 MOTIVATION

Figure 1: The figure shows a very schematic representation of the interaction of a shock
with a mixed region. Part (a) is before the shock (incident from the left) interacts with
the interface. Part (b) shows the interaction of the shock with the interface and the
generation complex transmitted and reflected waves. Part (c) shows the view of this by
the mix model.

ui − ũi between the actual complex velocity field ui and the mean flow ũi arise from
the interaction between the shock and the interfaces (or, more generally, between the
shock and density gradients). They therefore represent a shock-mix interaction, and not
a shock-turbulence interaction. I.e., these fluctuations will be generated even if initially
u′′i = 0. In many models fluid motions which cannot be represented by the mean flow
are absorbed into a quantity like1 k = 1

2ρ · ρu′′i u′′i . If this is the case, then we should
expect a source term in the time evolution equation for k of the form

∂t(ρk)+ · · · = · · ·+E ′(shocks,mix) (1)

where E ′ depends on the presence of a shock and a mixed region, but not on the pres-
ence of velocity fluctuations. I.e., a term which does not vanish just because k = 0.
Such a term may arise in the context of a multiphase flow model, and I propose that it
be called “shock scattering.”

The balance of this paper will consist of 1) a motivation for the use of multiphase flow
models, 2) a description of how interfacial pressure terms arise, 3) a consideration of
the constraints on the modeling of these terms, 4) a description of an implementation
of the model, and 5) the comparison of the model to three experiments which can be
used to set some of the new parameters which have been added.

2 Motivation

Because this work relies heavily on the formalism used to derive the equations of mul-
tiphase flow [5], it is useful to review this so as to appreciate its applicability to the

1This is the simplest case. One might also have multiple k’s for small and large scales, direction specific
k’s to capture anisotropies in the flow, etc.
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case of mixing2 produced by a combination of the Rayleigh-Taylor and Richtmyer-
Meshkov instabilities. In the presence of n materials or phases3 the mass or continuity
equation must be split into n separate equations, one for each phase-r:

∂tρr +∂xi(ρrui) = 0, ρ =∑
r
ρr (2)

(The index i labels a direction and the index r labels a phase.) Note that this is simply
the physics and not a modeling equation. It is valid at every point in space (trivially
if the phase is not present). It contains only a single velocity ui. This increase in
complexity is required for the simple reason that one now needs to keep track of the
locations of n different materials. Associated with these is a single (vector) momentum
equation

∂t(ρui)+∂x j(ρu jui) = −∂xi p (3)

and an analogous equation for the internal energy.

The need for a model arises when the complexity of the flow makes the calculation
of details of the interpenetration (mix) impractical or unnecessary. In such a case it
is hopefully not necessary to know ρr at every point in space and time, but rather it
is sufficient to know only an average value ρr. The bar here denotes an averaging
operation which is to be understood in an ensemble sense. (See reference [5].) The
equation for the averaged quantity is obtained almost trivially

∂tρr +∂xi(ρrui) = 0 (4)

where the second term illustrates the problem. This term contains an unknown correla-
tion between the presence of the phase-r (ρr) and the velocity (ui). Hence the problem
of mix modeling reduces to that of modeling the correlation ρrui.

As an aside it is useful to consider a path sometimes taken in mix modeling. One
can define both an average density ρ̄ and a mass weighted average velocity ũi = ρui/ρ̄
without regard to the presence or absence of a particular phase. From this one can
define a velocity fluctuation u′′i = ui − ũi which makes it possible to write the previous
equation as

∂tρr +∂xi(ρ̄rũi) = −∂xi(ρru′′i ) (5)

Since the advection term on the left-hand side contains the same velocity for every
phase, this term will not produce any mixing. The problem then reduces to modeling
the correlation in the term on the right side ρru′′i .

At this point it is not uncommon to concede defeat by invoking a gradient diffusion
closure. I.e., taking

ρru′′i = −D∂xiρr (6)

2In this paper I am going to use the term “mix” to mean the interpenetration of two (or more) fluids. The
subsequent molecular mix is not considered.

3I am going to use the term “phase” in the balance of this paper only because it has been used in the past.
The reader might just as well understand this as “material” or “component.”
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where D ∝
√

kl, for instance. While a closure such as this has very definite prac-
tical advantages in its implementation, its utility for modeling instability driven mix
is unproven. Given that it has its motivation in the ideas of isotropic turbulence and
analogies to kinetic theory, it is not obvious that such a closure should be applicable to
the present problem. Such closures are often accompanied by complicated turbulence
models. (Perhaps to obscure the fact that the proponent gave up on the initial ρru′′i
term).

In any case a more reasonable path is to model the mass flux in question ρrui and then
use it to define a phase specific mass averaged velocity ũr,i = ρrui/ρr. This results in a
set of phase specific mass conservation equations (i.e., multiphase flow equations)

∂t(ρr)+∂xi(ρrũr,i) = 0 (7)

Note that this procedure has closed these equations without introducing a closure ap-
proximation as such. This is a cute trick if one can produce an evolution equation for
the velocity ũr,i. Such an equation can, in fact, be obtained as follows. If the momentum
equation is valid at every point in space, then it is also valid in the phase-r. I.e.,

∂t(ρui)+∂x j(ρu jui) = −∂xi p
︸ ︷︷ ︸

everywhere:
simple bounbary conditions

→ ∂t(ρrui)+∂x j(ρru jui) = −∂xi p
︸ ︷︷ ︸

within phase-r:
complicated bounbary conditions

(8)

where the two equations differ only in the presence of the subscript r on the density
ρr on the right-hand equation. The cost of this is that while for the left-hand equation
one has very simple boundary equations (i.e., at the edges of the box), for the right-
hand equation one has to specify the boundary conditions between the phases. From
averaging the right-hand equation one obtains[5]

∂t( frρrũi)+∂x j( frρrũ jũi) = − fr∂xi p−∂x j( frTr,i j)+∂xi(Xr)p− pr∂xi fr (9)

where pr = Xr p, Xr is a characteristic function for phase-r which is 1 in phase-r and
0 elsewhere, the volume fraction fr = Xr and ρr = ρ̄r/ fr. The first three terms in
the equation are the analogues to the unaveraged terms in the momentum equation.
The last three terms (on the right) arise from the averaging process. The first of these
∂x j( frTr,i j) is analogous to the Reynolds stress which occurs in the usual Reynolds or
Favre averaging. In this case it differs in that the velocity fluctuations are with respect
to the phase specific mass averaged velocity ũr,i, and not with respect to the overall
mass average velocity ũi.

The last two terms arise because the averaging operation was performed over only the
phase-r and the average of the pressure gradient within the phase-r is not the same as
the gradient of the average of the pressure[5]. These terms are typically modeled as
drag between the two phases.

Before proceeding with this, it is worthwhile to consider whether anything was ob-
tained from this exercise. The answer to this is an emphatic yes, as the model at this
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point is able to produce mixing (and demixing) without any closure approximations.
To see this, consider a simple problem with a constant pressure gradient gi = ∂xi pr with
the fluids initially at rest. Then the momentum equation initially reduces to

∂t( frρrũi) = − frgi (10)

From this it is clear that the acceleration of each phase-r will go like 1
ρr

. The sub-
sequent velocity separation will result in either mixing or demixing depending on the
sign of gi and the initial conditions. Models based on this formalism are also inherently
anisotropic and will provide a sort of automatic scale separation if a closure is included
for the Reynolds stress (i.e., a k-equation, etc.). The costs of this are interfacial pres-
sures to model and phase specific Reynolds stresses.

2.1 Drag may not be enough

As was indicated above, the interfacial pressures which appear in the momentum equa-
tion are typically modeled as drag between the phases. This may not be adequate in
the presence of shocks. To see this it is useful to consider the Reynolds stress which
appears in the momentum equation

Tr,i j =
1
fr

Xrρu′′r,iu
′′
r, j (11)

From this one can obtain an equation for the energy not resolved in the ũr,i if we pro-
ceed as follows. First, assume that all the anisotropies are handled by the mean flow
variables ũr,i = ρrui/( frρr).

If this is the case, then it is reasonable to define a phase specific turbulence kinetic
energy

kr =
1

2ρr
∑

i
Tr,ii (12)

If we make the further assumption that all the phases have similar velocity fluctuations
kr, then one can, without loss of information, sum over the phases to define a total
turbulence kinetic energy

k =
1
ρ∑r

frρrkr =
1

2ρ∑r,i
frTr,ii (13)

The usual manipulations starting from the momentum equation (along with the as-
sumptions above) eventually produce

∂t(ρk)+∂xi(ũiρk) = −Tin∑
r

fr∂xi ũr,i +∑
r
∂xi

(

Xr
1
ρ

u′′r,ku′′r,iu
′′
r,i

)

(14)

+ ∑
r

[

∑
i

ũr,i

(

pr∂xiXr − pr∂xi fr

)

+ p′r(ũr,i +u′′r,i)∂xiXr

]

︸ ︷︷ ︸

surface pressure terms
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where the first line contains the terms analogous to the single material case and the
second line contains the terms arising from the surface pressure terms in the momentum
equation. (I have dropped some of the higher order non-surface terms.) The surface
terms are obviously not small and have been modeled previously as sources of the
energy lost from the velocity slip due to drag and added mass effects[2, 3]. Further, if a
mixed region is initially at rest then u′′r,i = 0, and as a consequence Tin = 0 and similarly
for the triple correlation. Hence, only the surface pressure term is available to generate
k as is required according to the argument presented in the introduction. This appears
plausible since neither the pressure nor the mean flow velocities which appear in this
term vanish. The model for this will be called “shock scattering” as was explained in
the introduction.

3 Shock Scattering

At this point it seems plausible that there should exist a pair of additional terms in the
momentum equation and the k-equation. I.e., Er,i and E ′ as in

∂t( frρrũi)+∂x j( frρrũ jũi) = · · ·+Er,i

∂t(ρk)+∂xi(ũiρk) = · · ·+E ′

If this is the case, then the first step is to consider what constraints might exist on the
forms of Er,i and E ′. The list includes (at least): 1) Well behaved in the presence of
shocks, 2) No constants with units introduced, 3) Invarient under a Galilean transfor-
mation, 4) Energy and momentum must be conserved, 5) Length scale does not enter
the problem.

3.1 Well behaved in the presence of shocks

Substantial constraints are placed on the form of Er,i and E ′ (as well as any other term
which is used in a mix model) by the requirement that these terms have meaningful
behavior in the presence of discontinuous solutions (i.e., shocks). Recall that there
are subtle issues when shocks form in any system of differential equations. The two
derivatives ∂x and ∂t are not defined (in the usual sense) at a discontinuity. For systems
of conservation laws this can be dealt with through the ideas of generalized functions
and weak solutions[6]. I.e.,

an equation like: ∂tρ+∂xQ(ρ) = 0

is interpreted to mean:
∫ ∫

R
(ρ∂tφ+Q(ρ)∂xφ) = 0

where φ is an arbitrary test function with compact support on R, ρ is some density,
and Q(ρ) is some flux. For continuous ρ and Q(ρ) these two equations are equivalent
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and can be obtained from each other by integration by parts. If ρ or Q(ρ) become
discontinuous only the second equation actually has meaning. From these sorts of
considerations one also obtains the jump condition [ρ] ·U = [Q(ρ)] (where [X ] means
the change in X across the shock). Because mix models do not generally appear in
conservation form,4 the situation with respect to discontinuous solutions is very murky
indeed.5 Nevertheless, it is clear that the issue of the interpretation of these models
in the presence of shocks does not go away just because it has been ignored to date.
This issue may become worse in the models than in the Euler equations because of the
presence of higher order derivatives and/or products of derivatives.

One can, nevertheless, see that a simple necessary condition exists for these terms to
have meaning in the presence of shocks. If one considers a potential closure E ′ which
appears on the right-hand side of some time evolution equation (of ρk for instance)

∂t (ρk)+ · · · = · · ·+E ′

then a set of necessary conditions for this term to be meaningful in the presence of a
shock is6

∫

shock
E ′dt =







· finite
· non-zero
· depends only on the jump conditions across the shock

(15)

In general one can show that “good” terms “work” by using integration by parts to
move the derivatives off the discontinuous functions (so to speak). For “bad” terms
no such manipulations appear possible, and it seems to be necessary to introduce a
particular continuous form for the step, do the integration explicitly, and then show
that the result is not defined (and therefore “does not work”) as the step is allowed to
become discontinuous. Since the latter is somewhat more transparent, it will be used
throughout.

Consider a test function

u� = u�(x+ ct) =







u1 if x+ ct < 0
u1 +(x+ ct)∆u

∆ if 0 < x+ ct < ∆
u2 = u1 +∆u if ∆ < x+ ct

(16)

i.e., a linear ramp in u which goes from u1 to u2 over an interval ∆ and which propagates
with a velocity c. (The superscript � is used to indicate a discontinuous function.) Then
it is trivial to see that in the limit ∆→ 0 a continuous function times the derivative of a
discontinuous function is O.K.

∫

shock
f∂xu�dt → f

∆u
c

An example of such a term is the pressure
gradient in the momentum equation.

(17)

4This has never happened to my knowledge.
5In general, one has to accept the possibility (if not exactly the certainty) that the answers will depend on

both the differencing schemes used, and also possibly on both the particular spatial and temporal discretiza-
tions used. Hence, one can not really claim to be “solving” the equations in this case.

6The requirement that the result be non-zero is not strictly necessary, zero being a perfectly good number.
However, in the current context such a term is not useful.
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Several other terms also work. The product of a discontinuous function and the deriva-
tive of a discontinuous function is O.K.

∫

shock
h�∂xu�dt → (h1 +

∆h
2

)
∆u
c

Like the pdV term in the
internal energy equation.

(18)

The product of a continuous function and the nth derivative of a discontinuous function
also works

∫

shock
f∂n

xu�dt → (−1)n−1∂n−1
x f

∆u
c

(19)

There are also at least a couple of terms which do not work. The product of the
derivatives of two discontinuous functions

∫

shock
∂xg�∂xu�dt → ∆g ·∆u

c ·∆ → ∞ (20)

and the product of a discontinuous function and the second derivative of a discontinu-
ous function

∫

shock
g�∂2

xu�dt → −∆g ·∆u
c ·∆ →−∞ (21)

are both undefined. This is roughly the equivalent of saying that there is no meaning to
multiplying δ-functions. (Note that these two cases are also related by an integration
by parts.) Note also that the first of these rules out the use of ∂xρ ·∂x p.

Some terms are zero. These are a couple of almost trivial examples. The integral
over a shock of either a continuous or discontinuous function vanishes.

∫

shock
f dt =

∫

shock
g�dt = 0 (22)

The point here being that one requires a certain degree of singular behavior out of the
term in order to get a non-zero contribution as the width of the shock goes to zero.
More complicated terms can also be zero. For instance

∫

shock
∂x

(

g�∂xu�
)

dt =
∫

shock
∂xg�∂xu� +

∫

shock
g�∂2

xu�

=
∆g ·∆u

c ·∆ − ∆g ·∆u
c ·∆ = 0 (23)

Figure 2 shows a rather schematic representation of this potential source term. The
point to appreciate is that one might have difficulties integrating this numerically and
actually getting zero.
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Figure 2: The figure shows the complex singular behavior of the term in eqn. 23. Labels
show proportionality to ∆. This term, nevertheless, integrates to zero.

Terms which “do not work” are commonly used in turbulence modeling. Some
of the terms indicated above which “do not work” are used in turbulence modeling in
cases where there are typically no shocks. An example of such a situation is a common
closure for the Reynolds stress[8].

ρu′′i u′′i = T = −µT
4
3
∂xu

︸ ︷︷ ︸

A

+
2
3
ρk

︸︷︷︸

B

, µT = ρ
√

kl (24)

The labels A and B will be used in the discussion below as these two parts of the closure
behave in a very different manner in the presence of a shock. This term appears in both
the momentum equation and in the equation for k, acting as a sort of turbulent pressure
which can move energy between the mean flow and the unresolved scales k.

∂t (ρu)+ · · · = · · ·−∂xT = · · ·∂x

(

µT
4
3
∂xu

)

︸ ︷︷ ︸

A

− 2
3
∂x(ρk)

︸ ︷︷ ︸

B

∂t (ρk)+ · · · = · · ·−T∂xu = · · ·µT
4
3

(∂xu)2

︸ ︷︷ ︸

A

− 2
3
ρk∂xu

︸ ︷︷ ︸

B

(25)

By the criteria given above the B terms “work.” The A terms do not. The A term in
the k-equation contains the product of two derivatives of a discontinuous function, and
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will make an undefined contribution to k.
∫

shock
µT

4
3

(∂xu)2 dt = ρ
√

kl · 4
3
· (∆u)2

c ·∆ ∝
1

zone size!
(26)

The corresponding A term in the momentum equation has no net effect on the mo-
mentum, but because it acts to accelerate and decelerate the flow at times at which the
flow velocity is very different (recall the discontinuous change in u), it can nevertheless
change the energy in the mean flow.

In any code, of course, shocks always have a finite width so that in practice “bad terms”
as identified here will have large but finite effects due to shocks. In an Euler code (one
with no explicit viscosity) these effects will be proportional to inverse powers of the
zone size (since shocks are typically spread over a few zones by artificial viscous effects
of one sort or another). This means that models with such terms will prevent the code
from reaching a converged answer as the zone size is reduced. In a code with explicit
viscous effects, “bad terms” will produce effects which depend upon the viscosity. As
shock interactions are generally thought to be independent of the actual viscosity and
thermal conductivity which determine the width of the shock[7] this would appear to
be the wrong physics.

These observations are not entirely new. At least one author[9] understood that some
of these terms get too big, and that limiters must be used. While anecdotal evidence
suggests that the use of limiters may be more widespread and not generally reported in
the literature[4, 10], it is not clear that the fundamentally undefined character of these
terms has been appreciated. To put this another way, the difficulty here goes beyond
the idea of realizability constraints[8].

Lastly, one should ask if there are any ways around the difficuties described in this
section. If the model were to act upon the mean flow variables so as to induce a correct
shock width (in the average sense), then all the “bad” terms would be defined. Such
an interaction is expected in some sense, of course, because the Reynolds stress term
in the momentum equation can have the form of a viscosity. The usual closure will
presumably not work in the present case because it is (at best) a shock-turbulence
interaction and not a shock-mix interaction. Even with a closure which induces the
correct shock width, it might be a difficult task to get overall reasonable behavior. I.e.,
it is not clear that a “bad” term with a value of ∆ proportional to the average shock
width induced by the passage through a mix material would give reasonable behavior.
Such a model would also require that the resolution in the simulation be adequate to
resolve the shock width.

3.2 Influence of the Length Scale

Before turning our gaze upon the desperate cure of “dimensional analysis,” it is worth-
while to consider whether the length scale (i.e., the size of the large scale structures
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Figure 3: We consider what would happen if we change all the length scales in a shock
mix region interaction by a factor of 2.

in the mix region) can reasonably enter into the term. Consideration of the micro-
scopic shock interface interaction suggests that the length scale does not matter.7 More
formally we can consider the similarity parameters in radiation hydrodynamics. We
follow Pai [14], and consider a change in the length scale of the problem as is shown
in Fig. 3. The length scale enters into the following parameters

time parameter Rt = Ut0
L

Reynolds number Re = UL
νg

Radiation Knudson number LR∗ = LR
L

(Here L is a characteristic material length, t0 a characteristic time, U a characteristic
velocity, and LR a characteristic length for radiation diffusion.) Of these, LR∗ is clearly
not relevant. We expect that Re will also not be relevant on the short time scales it takes
to produce the velocity fluctuations. Hence only the time parameter need concern us.
If we scale the time by the same amount, then Rt is unchanged. Hence we expect to get
exactly the same velocity field in the problem as long as we wait until the shock is in
the analogous position.

It follows from this that we do not expect any factors of l in the term we are looking
for. This is quite significant as it limits greatly the number of possible forms.

3.3 Dimensional analysis

The dependant variables in the model which are available for building the required
term are as follows: ρr, ũr, er, k, l plus the operator ∂xi . We do not consider ∂t as it can
always be removed using the time evolution equations. There exists an ambiguity with
respect to the application of ∂xi , which will allow for multiple terms.

7I.e., the scattering of the shock at the interface occurs at an almost point-like region which does not
“know” about the size of the structure.
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We showed above that the length scale l does not enter. As we are searching for a term
which will generate turbulence where there was none, no powers of k can appear in the
term. Lastly, instead of using the internal energy e, we will substitute the pressure. As
p = p(ρ,e) this would appear to be general. For a polytropic gas p = (γ− 1)ρe and
this is clearly the case.

Then the variables left at this point and their units are: ρ[m/l3], u[l/t], p[m/lt2], and
∂
∂xi

[1/l]. The required units come from ∂
∂t (ρk)[m/lt3]. The form of the desired term is

then

ραuβpγ
(

∂
∂xi

)δ

(27)

We can then write the following system of equations needed to get the units correct





α +γ
−3α +β −γ −δ

β +2γ



 =





1
−1

3



 (28)

where the rows correspond to [m], [l], and [t]. The columns correspond to ρ, u, p, ∂
∂xi

.
Given 3 equations and 4 unknowns, we do not expect a unique solution. Nevertheless,
δ is determined uniquely. To see this multiply the top equation by 3 and add it to
the middle one. The resulting is β+ 2γ− δ = 2 which when combined with the third
equation shows that δ = 1.

The resulting three equations in three unknows are not linearly independent, but we
can write β and γ as functions of α. This gives

ραu1+2αp1−α ∂
∂xi

(29)

3.4 Invariance

It is well known that E ′ must be invariant under a change in coordinate systems. The
term u1+2α above might break such an invariance. This can be “fixed” either by taking
the exponent of u to be zero so that α = −1/2, or by taking the exponent to be one so
that α = 0 and letting the derivative operate on it. These two cases result in

∂t(ρk)+ · · · = C ·
√

p
ρ
∂x p or ∂t(ρk)+ · · · = C · p ·∂xu (30)

The left one being roughly a pressure gradient times a sound speed and the right one a
pδV work term.
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3.5 Energy and momentum conservation

Lastly, the need to conserve momentum and energy forces the selection of the right-
hand term. The total energy equation is obtained by multiplying the momentum equa-
tion in two forms by u and adding these to the equations for k and internal energy.
Conservation is achieved if the combined term ∑r ũr,i ·Er,i +E ′ either vanishes or forms
a total divergence. The first of these would correspond to a purely local exchange of
energy between the mean flow and k. The second case allows for energy transport as
well as exchange. The first would require an inverse power of ũr,i in the term in the mo-
mentum equation and, therefore, appears to be unreasonable. Hence the only possible
forms for Er,i and E ′ appear to be

Er,i = C ·∂xi pr and E ′ = C ·∑r,i pr∂xi ũr,i (31)

(where I have generalized this to three dimensions and n-phases). This is exactly the
same form as the pδV work terms which exchange energy between the mean flow and
internal energy. Note also that the term in the momentum equation must be a divergence
so as to conserve momentum.

4 Non-dimensional factor

At this point we are required to specify the form of the non-dimensional factor C. As
was discussed above, this term must be sensitive to 1) the presence of a mixed region,
and 2) the presence of a shock. Toward this end I first introduce

Hi = Fi∑
r

frHr (32)

which is the product of two factors. The first Fi will be sensitive to the presence of a
shock. The second (the sum) is sensitive to the presence of a mixed region. Specifically

Hr = ∑
s�=r

fs
|ρr −ρs|
ρr +ρs

(33)

so that ∑r frHr is just a weighted sum of Atwood numbers. The Fi term is the nth root
of a product over phases

Fi = [ΠrFr,i]
1
n where Fr,i =















0 iff δui < δul

0.5
( |δui−δu j |

δδu

)c13c
iff δul < δui < δuo

1.0−0.5
(

|δuh−δui|
δδu

)c13c
iff δuo < δui < δuh

1 iff δuh < δui

(34)

and

δui = ui− 1
2
−ui+ 1

2
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δuo = c13a

δδu = c13a · c13b

δul = δuo −δδu

δuh = δuo +δδu

While the algebra is a little tedious, the function Fi simply implements a smooth tran-
sition from zero to one as the relative velocity between two zone edges goes from less
than δu0 = c13a to greater than δu0. The final result is

∂t( frρrũr,i)+ · · · = · · ·c10∂xi( fr prHi)
∂t(ρk)+ · · · = · · ·c10∑

r,i
fr prHi∂xi ũr,i

where c10 is a constant. Note that Hi must appear inside one derivative and outside
the other so that the resulting combined term in the total energy equation is still a total
divergence. The parameters c13a, c13b and c13c have been adjusted to provide reliable
shock identification.

It was also found to be necessary to inhibit velocity separation during shocks so as to
prevent double counting in this case. This is done by interpolating the ∂x pr between
the multi-phase value and the single-phase value based on Fi.

5 Modifications to the length scale equation

The length scale equation plays a major (perhaps dominant) role in this model. Be-
cause of this and because it will eventually be necessary to introduce an additional
source term in it, it is worthwhile to consider in some detail its character and possi-
ble motivation. One can trivially write down an equation in one dimension for some
conserved scalar quantity l

∂t l +∂x(ūl) = −∂x (Dl∂xl) (35)

where ū is some advection velocity and Dl is some diffusion coefficient (presumably
needed because of the turbulent character of the flow). If one identifies l with a length
scale, then this has the obvious problem that l in the equation decreases in an expansion,
whereas we certainly expect the large scale structures in a expansion to grow. Hence
the motivation to expand the ∂x(ūl) term and reverse the sign on the dilatation part.

∂t l + ū∂xl = −∂x (Dl∂xl)+ l∂xū (36)

This may, however, overestimate the effects of compression and expansion for two
reasons. The first is because of dimensionality. If the flow undergoes an infinitesi-
mal expansion in one direction only, then initially the length scales in the other two
directions are not altered. Hence, a more reasonable estimate might be 1

3 l∂xū [3].
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This consideration might also apply to gradual compressions. However, in gas dynam-
ics compressions are typically discontinuous, i.e., shocks. A shock compression of a
mixed region is known to produce additional mix and this requires additional l, not
less. In general, one needs to write at least

∂t l + ū∂xl = −∂x (Dl∂xl)+ clscl∂xū (37)

where I have taken clsc = 0.3 if ∂xū > 0 and clsc = 0 if ∂xū < 0.8 The equation is further
modified to include the mix region specific advection velocity ul and a source for l due
to the velocity slip Sl [2] (see below for definitions).

∂t l +(ū+ul)∂xl = −∂x (Dl∂xl)+ clscl∂xū+Sl (38)

It is an indication of the importance of this equation to the overall behavior of the model
that without future modification it inhibits the growth of mix due to the Richtmyer-
Meshov instability. It was found necessary to add a second source term of the form

Sl2 = clsc ·
∑r>s fr fs(

2ρrs
ρr+ρs

)
1
2 (w̃s − w̃r)

∑r>s fr fs
(39)

This simply mirrors the form of Sl with the ũr’s replaced by w̃r’s. It increases the
production of l in a mix region which is growing due to turbulent diffusion (as opposed
to velocity slip).

6 Final version of the model

The final form of the model (reduced to one dimension) is

∂t fr +∂x( frũr) = S f ,r

∂t( frρr)+∂x( frρrũr) = 0

∂t( frρrũr)+∂x( frρrũrũr) = − fr∂x pr−
Reynolds stress

fr∂xT +∑
s

Drs+
Shock scattering

c10∂x(pr frH) (40)

∂t( frρrer)+∂x( frρrerũr) = −hr pr∂xū+Se,r + frε

∂t(ρk)+∂x(ρkũ) = −
Reynolds stress

T∂xū −∂x (ρDk∂xk)+∑
r<s

(ũs − ũr)Drs

+
Shock scattering

c10∑r fr prH∂xũr −ε

∂t l +(ū+ul)∂xl = −∂x (Dl∂xl)+
dilitation

csssl∂xū +Sl+
turb. source

Sl2

8Another interesting possibility would be using |∂xū| to get an impulsive source of l out of this for shocks.



16 6 FINAL VERSION OF THE MODEL

where:

S f ,r = S f ,r(e1,ρ1,e2,ρ2, · · ·) (pressure relaxation scheme - see below)

Se,r = Se,r(e1,ρ1,e2,ρ2, · · ·) (pressure relaxation scheme - see below)

pr = pr(ρr,er) =
1

1− γ
erρr (phase specific pressure)

T = −µT
4
3
∂xū+

2
3
ρk, limited by 0 < T <

5
4
ρk (Reynold’s stress)

µT = ρ
√

klt (turbulent viscosity)

ρ =∑
r

frρr (average density)

lt = c2l (turbulent length scale)

Drs = −c1
ρrs fr fs

l
|∆rs|∆rs (drag)

ρrs =
frρr + fsρs

fr + fs
(effective average density)

∆rs = (ũr − w̃r)− (ũs − w̃s) (velocity difference)

w̃rs = − D
frρr

∂x( frρr) (turbulent diffusion velocity)

D = c5

√
klt (turbulent diffusion coefficient)

H = (shock scattering - see eqn. 32)

hr =
fr/(ρrc2

r )
∑s( fs/(ρsc2

s ))
(relative compressibility)

cr = sound speed in phase r

ū = ∑
r

frũr (volume average velocity)

ε = c4
ρk3/2

lt
(turbulent dissipation)

Dk = c7

√
klt (diffusion of turbulence)

ul = ∑r>s fr fs( fr − fs)(ũs − ũr)
∑r>s fr fs

(length scale advection velocity)

Dl = c8

√
klt (length scale diffusion)

Sl = clsc ·
∑r>s fr fs(

2ρrs
ρr+ρs

)
1
2 (ũs − ũr)

∑r>s fr fs
(length scale source - slip)

Sl2 = clsc2 ·
∑r>s fr fs(

2ρrs
ρr+ρs

)
1
2 (w̃s − w̃r)

∑r>s fr fs
(length scale source - diffusion)

The relaxation terms S f ,r and Se,r allows phases occupying the same zone to exchange
volume fraction and internal energy (∑r S f ,r = ∑r Se,r = 0) at a rate inversely propor-
tional to the length scale l. As has been indicated previously, this is derived from the
work of Youngs[2, 3, 4]. Deviations from that work are indicated in the boxes. They
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parameter value what

c1 7.25−5.25 ·At drag
c2 0.075 turbulent length scale w.r.t. l
c4 0.09 dissipation of turbulence kinetic energy
c5 2.0 mass diffusion
c7 1.0 turbulent kinetic energy diffusion
c8 2.0 length scale diffusion
c10 2.0 shock scattering
c11 0.005 mix trigger

c13a,b,c 5 [m/s], 0.4, 1.2 shock finder
csss 0.0 / 0.3 dilatation
clsc 1.0 length scale source due to velocity slip
clsc2 1.0 length scale source due to diffusion

Figure 4: Parameters used in the model.

fall into four groups.

• Shock scattering terms (proportional to c10) appear in the momentum and k-
equations.

• Reynolds stress terms of a different sort also appear in these two equations. Note
the need for a limiter on T .

• The definition of ū as it appears in the pδV work term in the energy equation
has been changed. This allows a “bad” term to be deleted from the k-equation as
discussed above.

• Two length scale source terms in the length scale equation are changed.

• I have dropped the added mass terms.

The parameters of the model are show in Table 4. The origin of the values of c1, c10,
csss, and clsc2 are described in the text. The remaining values are from ref. [2] and
ref. [3]. The model has been implemented as part of a one-dimensional Lagrangian
hydrocode.

7 Comparisons to experiment

This effort was originally motivated by the inability of the model to handle heavy to
light RMI. This section makes comparisons to three experiments. Since the changes
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Figure 5: The figure shows a comparison between the measured and modeled bubble
height amplitudes from the acceleration-deceleration experiment. The model results
are shown in green. The experimental data appears as red and green points. Reasonable
agreement is obtained. The red curve shows the displacement of the interface as a
function of time.

(particularly those to the length scale sources) will change the behavior of the model in
general, a comparison is made to an acceleration/deceleration “rocket rig” experiment.
The second is a heavy to light reshock experiment in which improved behavior is ob-
served. A reasonable agreement with the data is obtained, with the two experiments
together substantially constraining the model. Lastly the model is compared to the ex-
periment of Poggi et al.[13]. Reasonable agreement is obtained with the turbulence
production measured in that experiment.

7.1 Acceleration - Deceleration

The acceleration / deceleration experiment of Smeeton and Youngs [12] used immis-
cible fluids in the “rocket rig” facility at AWE. The tank first experienced a constant
acceleration, followed by a coast, followed by a more or less constant deceleration,
followed by another coast. The turbulent mixing layer was observed to first grow, then
demix during the deceleration, and then resume growing during the final coast phase.
This subsequent regrowth is interpreted as being due to the turbulence [12].

The two fluids (actually a calcium chloride solution and hexane, densities of 1.142
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Figure 6: The figure shows a comparison between the measured and modeled values
of the total mix width in the Vetter and Sturtevant experiment. The red points are from
the experiment. The green and blue solid lines show the results of the model with
and without the shock scattering. Reasonable agreement is obtained with the modified
model up until the arrival of the reflected rarefaction at about 4.5 msec. The unmodified
model produces no additional mix due to the reshock.

g/cm2 and 0.66 g/cm2) are modeled with a scaled ideal gas equation-of-state. The ini-
tial temperature distribution through the problem is set to produce the pressure gradient
required to give a uniform initial acceleration. Subsequent changes in the acceleration
are implemented through changes to the external pressure boundary conditions and
necessarily produce a series of small shocks (below the threshold for the shock finder).
The results of the simulation are compared to the experiment in Fig. 5. Reasonable
agreement is obtained. In this case the initial mix was triggered by taking l in the drag
term to be the greater of the actual l or c11 ·∆x where ∆x is the zone size.

This is a significant experiment because it tests not only the multiphase flow part of the
model, but also the kl turbulence part. A substantial effort was required to find param-
eters which would simultaneously fit both this experiment and the reshock experiment
(see below). The nature of the difficulty is as follows. The length scale l is a sort of
quasi-conserved quantity. I.e., just because one would like more

∫

ldx, does not mean
the terms on the right-hand side will produce it. In order to grow the mix region, the
model must increase

∫

ldx. In the case of the RTI, the Sl term generates the required
l. In the current case the Sl2 term was added to enable the growth of the mixing region
in the reshock experiment. It does this by allowing turbulence to generate l after the
passage of the shock. While it appears possible to match the reshock experiment with
a variety of values of c10 and clsc2 (they are anti-correlated), not perturbing the accel-
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Figure 7: The figure shows a comparison between the total mix width in the reshock
experiment of Poggi et al. and the model. The first reshock occurs at about 1.2 msec.
The model modestly underestimates the width when it is run using the parameters
from the previous two experiments. (An additional shock arrives at about 1.9 msec and
produces additional growth in the mix region.)

eration / deceleration experiment is more difficult. This experiment sets an upper limit
on the value of clsc2 (larger values produce too much mix at late times). The resulting
value of c10 = 2 appears large in that it implies that the energy removed from the main
flow and moved into k is similar to that moved into internal energy.9 If the change in
k produced by the passage of the shock is, in fact, too big, then another mechanism for
producing l may be required.

7.2 Reshock

The reshock experiment of Vetter and Sturtevant [11] provides a test of the ability of
the model to produce mix when a shock propagates through a mixed region in the RT
stable direction. In this air-SF6 Mach 1.5 shock tube experiment the initial interface is
formed by a membrane. The incident shock brakes the membrane and then is reflected
from the end wall (62 cm from the inital interface location). This reflection (a heavy
to light shock) accelerates the interface approximately 3.4 msec. after the initial shock

9Recall that ∑r frHr,i cannot be greater than 1
4 At in the two phase case, for instance.
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Figure 8: The figure shows a comparison between the velocity fluctuations as measured
in the Poggi et al. experiment and in the model. Reasonable agreement is obtained with
respect to the amplitude. The timing shifts are discussed in the text.

and is observed to cause a substantial growth in the mixing rate.

Because of the poorly defined initial conditions provided by the membrane, no claim
is made as to the modeling of the initial interaction. Rather, the initial conditions in
the model (l at the interface) are adjusted to match the measured mix width before
the reshock (at about 3 msec.). The subsequent reshock is then modeled and used to
constrain parameters. The simulation of this experiment is carried out with ideal gas
equations-of-state (γ = 1.402 for air and γ =1.0935 for SF6). The results are compared to
the experiment in Fig. 6. Good agreement is obtained up until the arrival of a reflected
rarefaction at 4.5 msec. (The mix trigger (c11) is not used here.) The behavior of the
unmodified model is also shown.

7.3 Reshock with measurement of ki = ρu′′i u′′i

The experiment of Poggi et al.[13] resembles that of Vetter and Sturtevant and has
been modeled in a similar manner. In addition to mix width, it also provides data on
the value of the velocity fluctuations ki = ρu′′i u′′i . The Poggi experiment differs from
Vetter and Sturtevant in that the positions of the air and the SF6 where reversed, the test
section is shorter (30 cm), and the Mach number of 1.45 is slightly lower. Comparisons
to the total mix width and to kx are shown in figures 7 and 8 respectively. Because the
model does not account for anisotropies in k, the model quantity plotted is kx = k/3.
I.e., the model assumes isotropy (kx = ky = kz and k = kx +ky +kz). Because the Poggi
experiment saw large anisotropies in ki, it is likely that the model is removing about
two times as much energy from the mean flow as it should.
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8 Conclusions and Outlook

This paper has proposed an innovative method to improve the behavior of an existing
model for the mix from combined RMI and RTI. The model was first tuned to the vari-
able acceleration Rayleigh-Taylor experiment of Smeeton and Youngs and the reshock
experiment of Vetter and Sturtevant. Subsequent comparisons to the experimental data
from the Poggi experiment are in reasonable agreement.

Issues which require further investigation include the scaling of the turbulence produc-
tion in the model with Mach number and Atwood number (and subsequent compar-
isons to experiments or simulations). A further examination of the modifications to the
l equation is also planned.
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