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Abstract 
 
It is shown that high rate extrusion is a viable production process for obtaining desirable 
microstructures and mechanical properties in ultrahigh carbon steels (UHCSs).  The coefficient of 
friction for extrusion was determined for the UHCSs as well as five other materials and shown to 
be a function of stress - decreasing with increasing stress.  The extruded UHCSs deform by a 
diffusion-controlled dislocation creep process.  Stacking fault energies have been calculated from 
the extrusion data and observed to decrease with increasing concentrations of silicon, aluminum 
and chromium.  Microstructures are either ultrafine pearlite when extruded above the eutectoid 
temperature or ultrafine spheroidite when extruded below the eutectoid temperature.  The resulting 
strength - ductility properties are shown to be superior to those obtained in high-strength low alloy 
steels. 
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1.  Introduction 
 
Ultrahigh-carbon steels (UHCS) containing 1 – 2.1% C are an emerging class of steel with high 
ambient-temperature strength, hardness, wear resistance and ductility [1].  Achieving good 
strength with high ductility requires microstructures containing ultrafine carbides in spherical or 
pearlitic form and the elimination of deleterious proeutectoid carbide networks.  Many processing 
routes have been developed for producing these microstructures including hot and warm working, 
a divorced eutectoid transformation (DET), and a DET with associated deformation (DETWAD) 
[1].  However, these processing routes are a significant departure from current steel processing 
practice and thus less likely to be adopted in commercial application.  Recently, extrusion has been 
examined as a single-step thermo-mechanical process for UHCS [2].  In this recent study, the 
microstructure-property relations were examined for UHCS, which was hot extruded in the single-
phase austenite region and in the two-phase austenite + carbide region without any subsequent heat 
treatment.  The results showed that, depending on steel composition and extrusion temperature, 
grain boundary carbide networks and graphite could be avoided.  In addition, excellent 
combinations of strength and ductility were obtained, which were superior to the properties that 
could be obtained with conventional low carbon steels, conventional high strength steels and dual 
phase steels.  In this paper, additional insight into the high temperature (0.6 - 0.9Tm), high strain 
rate (1.4 s-1) extrusion of UHCS is provided.  The pressure – time history of the extruded billets is 
analyzed to determine the strain rate – stress response of the materials and the coefficients of 
friction during extrusion are evaluated.  Atomic diffusion, elastic modulus and stacking fault 
energy are known to contribute to the flow stress and strain rates during extrusion and thus the 
influence of these material characteristics on the constitutive response are examined.  The resulting 



microstructures and the influence of extrusion temperature on the ambient-temperature stress–
strain behavior are then studied. 
 
2.  Materials 
 
Four UHCSs were used in this study.  The chemical composition and alloy designation for these 
materials are shown in Table 1.  The materials were extruded at three temperatures, 900, 1025 and 
1150°C, and air cooled.  At these temperatures, the alloys were either in the austenite range or the 
austenite + carbide range.  Extrusion was done through round dies using a nominal 16:1 reduction 
ratio at an average effective strain rate of 1.4 s-1.  Further details concerning the thermomechanical 
processing and extrusion of these materials can be found in reference [3].   



Table 1.  Chemical composition of UHCS materials studied. 
 

Alloy Designation Composition, wt% 
UHCS-1.30C-0.5Si 1.30C, 0.5Si, 0.5Mn, Balance Fe 
UHCS-1.23C-1.2Si 1.23C, 1.2Si, 0.5Mn, Balance Fe 
UHCS-1.15C-1.6Al 1.15C, 1.6Al, 0.5Mn, Balance Fe 

UHCS-1.80C-1.6Al-1.5Cr 1.80C, 1.6Al, 0.5Mn, 1.5Cr, Balance Fe. 
 

3.  Coefficients of friction 
 
The extrusion experiments were conducted on UHCS alloys that were contained within a mild 
steel can.  Analysis of the extrusion data to obtain the flow stress of the UHCSs was based on 
pressure-time records and the measured external strain rate.  The coefficient of friction (Ψ) during 
extrusion can be calculated as defined in Eq. (1),   
 

 Ψ = σeff / σext (1) 
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Fig. 1.  Influence of flow stress of 
extrusion on the coefficient of friction for 
UHCS-1.30C-0.5C and UHCS-1.8C-1.6Al-
1.5Cr and five other materials. 

where σeff is the effective stress for frictionless deformation of the materials and σext is the flow 
stress of the material during extrusion.  The quantity σext, which includes friction, can be calculated 
from the expression σext = P/ln(Ao/A), where P is the steady-state pressure during extrusion, Ao is 

the initial area of the extrusion and A is 
the final area.  Flow stress data in torsion 
were available for two of the UHCSs 
(UHCS-1.30C-0.5Si and UHCS-1.80C-
1.6Al-1.5Cr) and for the mild steel can.  
Thus, assuming isostrain behavior, σeff for 
these extruded materials could be 
calculated.  The average value of Ψ for 
these UHCS-based materials at the three 
temperatures of extrusion was 0.38.  The 
details of the calculations have been 
provided by Lesuer et al. in ref. [3]. 
 
The values of Ψ have also been calculated 
for Pb, Sn, Cd, mild steel and NiAl from 
literature data on creep and extrusion flow 
stresses.  The results are plotted in Fig. 1 
as a function of σext on logarithmic scales.  
Also included in the figure are the friction 

coefficients for the UHCS materials.  The results in Fig. 1 show that the Ψ decreases as σext 
increases; thus friction is providing an increasing contribution to σext (and the energy required for 
extrusion) as σext increases.  In addition, the results in Fig. 1 suggest a power law relationship 
between Ψ and σext.  This power-law relationship provides a useful guide to obtain values of Ψ for 
materials/extrusion conditions for which coefficients of extrusion are unknown.  Previous work by 
the authors [3] suggests that the decrease in Ψ with increase in σext could be related to the unique 
state of stress during extrusion or to accompanying microstructural changes. 
 



4.  Constitutive response 
 
Given the friction coefficient and the 
observation of isostrain behavior, the steady 
state, effective strain rate - effective flow 
stress response of the UHCS materials in Table 
1 were determined.   The effective strain rate 
was calculated as the time average strain rate 
for a volume element moving through the die 
using relationships developed by Jonas and 
Chandra [4].  In Fig. 2, the lattice-diffusion 
compensated strain rate is plotted as a function 
of the modulus-compensated flow stress for 
the four UHCS materials studied.  In the graph 
a creep datum point for pure iron is included as 
well as creep data for an austenitic stainless 
steel.  Pure iron and austenitic stainless steel 
are representative of high and low stacking 
fault energy materials respectively. 
 
The slope of the curves for the austenitic 
UHCS materials is about five. This variation of 
strain rate with stress suggests that the 
dominant deformation resistance is diffusion-
controlled dislocation creep [5, 6], which can be d
 

Ýε  = A*·(DL/b2)·(σ/E
 
where A* is a constant for a given material, DL

magnitude of the burgers vector and E is the dyna
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 is the lattice self-diffusion coefficient, b is the 
mic unrelaxed elastic modulus. 
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Fig. 3.  Torsion (tor) and extrusion (xtr) data for the Fe-1.3C-0.5Si alloy obtained at 

a range of strain rates.  The strain rate – stress behavior is shown in (a).  The data has 
been re-plotted as Ýε b2/DL versus σ/E in (b). 

 
The data in Fig. 3(a) is re-plotted as εb

2
/DL versus σ/E in Fig. 3(b).  For this analysis, the self 

diffusion coefficient of iron in austenite (DL) was taken from the work of Mead and Birchenall [8], 
who studied self-diffusion in austenite as a function of carbon concentration.  The values of E 
were taken as a function of temperature from the dynamic elastic moduli obtained by Andrews [9].  
All the data in Fig. 3(b) fall along a single straight line with very little scatter.  This excellent 
correlation is particularly impressive given the range of temperatures and strain rates and the fact 
that the microstructures at the two lowest temperatures (750°C and 900°C) contained austenite and 
cementite.  The results confirm that the dominant deformation resistance at these high 
temperatures (~0.6 - 0.9 Tm) and high strain rates (~1 - 100 s-1) is climb-controlled dislocation 
creep. 
 
5.  Influence of stacking fault energy 
 
The data in Fig. 2 can be used to predict the stacking fault energy (γ) for the UHCS materials.  The 
predictions are based on the well-established power-law relationship between γ and A*. Using the 

experimentally-derived γ and A* values for austenitic 
stainless steel as a baseline, the γ for UHCS can be 
predicted from the A* values obtained from creep or 
extrusion experiments.  The results are plotted in Fig. 
4, where A* is plotted as a function of γ. The 
correlation is rather remarkable inasmuch as there is 
a very systematic variation of γ with increasing solid 
solution alloy additions.  For pure iron, the predicted 
value is 250 mJ/m2 decreasing only slightly for the 
0.5%Si UHCS material (γ=200 mJ/m2).  The lowest 
deduced value of γ among the UHCS materials was 
for UHCS containing 1.6Al and 1.5Cr at about 100 
mJ/m2.  These predictions, although realistic, await 
experimental studies since no values of γ have been 10 8
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reported for pure iron or for iron-carbon alloys in the austenite range.  In the analyses on solid 
solution alloying effects, the possible influence of 0.5% manganese, listed in Table 1, was not 
taken into account.  It is assumed that this element is so similar to iron in atom size that it did not 
contribute to the strength of the UHCS materials. 
 
 
6.  Resulting microstructures and properties 
 
Previous studies on the as-extruded and air-cooled bars showed that the UHCSs had high strengths 
at room temperature [2].  These high strengths were related to the fine pearlitic structures that were 
created during air-cooling from the extrusion temperature.  Typical microstructures are shown for 
the as-extruded UHCS-1.2C-1.2Si in Fig. 5.  A low magnification photomicrograph is shown in 
Fig. 5(a) where an outline of the prior austenite grain boundaries is given, showing a typical grain 
size of 150 µm. The mottled appearance of the outlined grains is related to pearlite colonies.  
These pearlite colonies are readily resolved with the scanning electron microscope and Fig. 5(b) 
shows the structure at a twenty-fold increase in magnification over that used in Fig. 5(a).  Here, the 
pearlite, consisting of alternating plates of nearly pure iron and iron carbide, are within colonies of 
the order of 10 to 20 µm.  These colonies are probably related to the subgrains that were created 
during deformation by extrusion.  Such microstructural studies permitted the present authors to 
relate the room temperature strength of the UHCSs to the corresponding microstructure [2].  The 
closer the interplate spacing, the stronger the material. 

 
 

Fig. 5. Microstructures of UHCS-1.23C-1.2Si after extrusion at 1150°C and air cool.  
Prior austenite grain boundaries are outlined in optical micrograph (a) and pearlite 
colonies are clearly visible in SEM micrograph (b). 
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Fig. 6.  Influence of extrusion temperature on 
the ambient temperature stress-strain response of 
UHCS alloys. 

The influence of extrusion 
temperature on the ambient 
temperature stress-strain response is 
shown in Fig. 6 [10].  Data is provided 
for the UHCS-1.30C-0.5Si alloy and 
for a steel of related composition 
(UHCS-1.25C-.12Si).  All materials 
were extruded at or above the A1 
temperature (750°C) with the 
exception of the extrusion at 650°C.  
The extrusion below the A1 
temperature resulted in a fully 
spheroidized structure, which had the 
highest yield strength but virtually no 
work hardening.  The extrusions 
above the A1 temperature resulted in 
fully-pearlitic or partially-pearlitic 
microstructures.  For the extrusions at 

or above the A1 temperature, the yield strength and work hardening rate increased with an increase 
in extrusion temperature.  This trend is related to an increase in the amount of pearlite and a 
decrease in the interlamellar spacing in pearlite.  The data in Fig. 6 dramatically illustrates the 
wide range of properties in extruded UHCS that can be obtained by changing the temperature of 
extrusion.   
 
Figure 7 is a plot of the ultimate tensile strength as a function of elongation-to-failure for the 
extruded UHCS materials compared with dual phase, conventional high strength (HSLA), Inland’s 
MartINsite steels and mild steels.  As can be seen, the strength-ductility data for the as-extruded 
UHCSs fall in line with the dual-phase steels at strength levels from 500 to 1000 MPa.  Very high 
strengths are achieved (>1250 MPa) with moderate elongations to failure (5 to 10%) for the as-
extruded UHCSs.  These results would classify the UHCSs as ultrahigh strength steels, with 
strength-ductility combinations approaching those exhibited by the MartINsite steels of Inland 
Steel. 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Comparison of the 
ultimate tensile strength - 
elongation data for the as-
extruded UHCS materials 
with dual phase, HSLA steels, 
mild steels and MartINsite 
steels. 
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