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1 Overview

We study mix from analytical and numerical points of view. These inves-
tigations are linked. The analytical studies (in addition to laboratory ex-
periments) provide bench marks for the direct simulation of mix. However,
direct simulation is too detailed to be useful and to expensive to be practical.
We also consider averaged equations. Here the major issue is the validation
of the closure assumptions. We appeal to the direct simulation methods for
this step.

We have collaborated with several NNSA teams; moreover, Stony Brook
alumni (former students, faculty and research collaborators) presently hold

staff positions in NNSA laboratories.

2 Research Accomplishments

2.1 Direct Simulation of Mix

Mixing results from the instability of an interface separating distinct fluids.
We consider acceleration driven instabilities, with a density discontinuity at
a fluid interface. Constant acceleration (e.g. gravity) defines the Rayleigh-
Taylor (RT) instability [34], while impulsive acceleration (as by a shock wave)
yields the Richtmyer-Meshkov (RM) instability. In the self similar case of
constant acceleration, the height, A(t) of the mixing zone as a function of

time, t satisfies a scaling relation
h(t) = aAgt? ,

where ¢ is the (gravitational) acceleration, A = (py — p1)/(p2 + p1) is the
Atwood number which is a buoyancy renormalization of g, and « is a dimen-

sionless constant which characterizes the mixing rate. The mixing behavior
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is described by the growth rates a = «y, for the bubble side of the mixing
layer, measuring the penetration of the light fluid into the ambient heavy
fluid, and a = a4 for the spike side of the mixing layer, measuring the pen-
etration of the heavy fluid into the ambient light fluid. For incompressible
flows, oy, & 0.06 & 0.01 is a universal constant.

The proposers and co-workers have achieved simulations and theory in
agreement with experiment, and thus laid a foundation for a predictive sci-
ence of mixing. Many open questions remain.

Front Tracking prevents numerical diffusion at the interface, which is a
dominant aspect of most simulations of interface dominated flows. In [12],
we show that for constant simulation error, a tracked simulation requires a
factor of 4 to 8 less resolution, i.e. 43 or 8 fewer space time cells in a 2D

simulation.

2.1.1 RM Simulation and ICF Modeling.

In collaboration with a team centered at LLNL and U. Michigan, we simu-
lated axisymmetrically perturbed spherical explosions as performed on NOVA
laser experiments [35], with excellent agreement with experiments. Contin-
uing this collaboration, we have coupled FronTier to radiation hydro initial
laser accelerations performed at LLNL, and thereby determined the effect of
preheat on the initial perturbation. We found, for strong laser pulses, that
the as machined perturbation is reduced by about a factor of 2 by the motion
associated with the preheat. This indicates that the perturbation design has
to be engineered to take the preheat into account, or that the main hydro
dynamics needs a corrected initial amplitude for simulation of the subsequent
instability growth.

We have successfully performed front tracking simulations [24, 23] for



Richtmyer-Meshkov (RM) instabilities in converging spherical geometry. These
instabilities are a central hydrodynamics concern in an inertial confinement
fusion (ICF) reactor. The influence of the symmetry axis on the instabil-
ity evolution and late time mixing was investigated [24, 11], with the main
conclusions that (1) this North Pole effect was a real consequence of axisym-
metrically perturbed flows, i.e. it was not due to numerical effects, (2) the
effect occurs late in time and, for spherical flow, is pronounced after reshock,
and (3) that the effect is not eliminated through use of spherical harmonic
perturbations. We have also analyzed the effect of the shock strength in
a spherical RM system [14, 11, 10]. We find scaling invariant with respect
to shock strength for fluid mixing statistics. The effectiveness of scaling is
better for stronger shock strength. Such a scaling law is important since it
allows us to obtain the results for all strong shocks by conducting one strong

shock experiment or simulation in that family.

2.1.2 Multimode RT Simulation.

Experimental values for the RT mixing coefficient a4, lie in the range oy, ~
0.05 — 0.07 as determined by Read and Youngs, Smeeton and Youngs, and
Dimonte et al. The theoretical value is & 0.05—0.06 [7]. FronTier simulation
gives a value at or near the upper end of the experimental interval, while most
simulation codes report values of a4, outside of this experimental range, for
example oy = 0.03.

We have established that numerical mass diffusion, present in many sim-
ulations, is the cause of the differences between FronTier and the other sim-
ulations [15]. Use of a time dependent Atwood number, computed from the
densities observed during the evolution of the instability, shows that the At-

wood number, buoyancy force and mixing rates are diminished by about 1/2



experiment ~ 0.05 — 0.07
COltheory ~ 0.05 — 0.06 [7]
QFronTier ~ 0.07

QTVD ~ 0.04

QTVD,eff ~ 0.07

Table 1: «; as determined by experiment, theory, and the calculations re-
ported here. The untracked TVD simulation is diffusive, but a renormalized
«, using the time dependent Atwood number to compensate for the mass
diffusion of the simulation, allows agreement among all values of o reported
here.

in untracked simulations but not in tracked simulations, due to numerical
mass diffusion. This same numerical mass diffusion is also a possible cause
for the disagreement between experiment and many simulations. See Ta-
ble 1. Physical mass diffusion must be at least the laminar value cited in
handbooks, but could be larger if a transition to turbulence has occured.
Noise in the initial conditions has also been proposed as contributing to the
value of a4, so the comparison of simulation to experiment requires further
study.

In work in progress, we find that the improvements to RT simulations
resulting from the use of local grid based tracking increase the value of «,
placing the FronTier simulations in disagreement with experiment. However,
it appears that use of the physical values for surface tension (for immiscible
fluids) or physical mass diffusion (for miscible fluids) will improve and pos-
sibly restore the agreement with experiment, and show that FronTier is able

to distinguish secondary aspects of the physics modeling parameters.



2.1.3 Turbulent Combustion

The nuclear burning in a type Ia supernova explosion gives rise to turbulent
combustion. We have conducted 2D axisymmetric simulations which show a
successful level of burning. We do not use a turbulent model in the simula-
tion, so that the simulation is free from adjustable parameters related to the

hydrodynamics. See [36].

2.2 Averaged Mix Model Equations

Closure is the problem of defining the functional form of the averaged non-
linear terms in the flow equations, as these should not be represented as the
nonlinear function of the averaged primitive variables. This is the central
problem for averaged equations. In our approach to averaged equations, we
require expressions for the interface averaged velocity, pressure and work,
namely the quantities v*, p*, and (pv)*. As a physics postulate, we suppose
that v* does not depend on spatially dimensional quantities other than the
vg. This is in effect the assumption that the mixing layer has no internal
length scales, and represents a coarse graining to eliminate special effects of
boundary layers, etc.

We have developed a closure which replaces phenomenological drag forces
with a model for the pressure differences (pressure drag) between the phases.
We have solved this model in closed form in the 1D incompressible limit, and
in asymptotics for the weakly compressible limit. Using these solutions, we
validated a numerical solution of these equations, see [25, 26] and our earlier
papers cited there.

We analyzed the compressible formulation of these equations, and de-
rived a closure which conserves energy. The entropy of smooth flow should

not be conserved, as the averaging process, as with a mixing process, is not



adiabatic. Rather, the phase entropies of the averaged quanities (expressed
through the thermodynamic relations as a function of the conserved average
density and energy) should satisfy an inequality expressing entropy loss dur-
ing averaging. Imposition of this inequality results in an identity relating the
edge motions of the two sides of the mixing layer, confirming earlier work of
ours in which the same edge coupling was derived from postulates concerning
the center of mass motion of the mixing layer. See [29].

We have shown that modeling the pressure difference between the phases
will be a difficult matter in the incompressible limit. We established numer-
ically strong EOS effects in RT mixing for very weakly compressible flows
[30]. These effects included averaged phase pressure differences (pressure
drag) and shape differences (form drag), but the overall perturbation ampli-
tudes were not sensitive to the EOS.

The above model for closure of the averaged equations has been extended,
in the incompressible case, to multilayer mixing [8]. The previously studied
case of n = 2 layers, ¢.e. a single interface was solvable in closed form, and
the general case n > 2 reduces to the previous case for n = 2 and also yields
many explicit formulas for n > 3; details for n = 3 are presented.

See the recent survey article [6], emphasizing analytic methods for mix.

2.3 Analytical Studies
2.3.1 The Renormalization Group (RNG).

In the RNG approach, integration over small scales is used to define the ef-
fective equations on some intermediate length scale. The introduction of new
(small) length scales and the change in location of the intermediate length
scale is treated differentially, to give the renormalization group equation. A

fixed point for this equation is of special interest. In this case, the problem



formulation and equations do not change as the intermediate length scale is
varied. The equations and solutions are self similar. Power law exponents

and premultiplying coefficients then determine the solution.

2.3.2 Bubble Merger and RNG.

Our RNG study of the Rayleigh-Taylor instability is based on a statistical
model for the dynamic evolution of an ensemble of bubbles, regarded as an
approximation to the two fluid Euler equations, describing the fluid evolution
directly. The bubble model has its own laws of dynamical evolution. Each
bubble moves as the sum of two velocities. The first is due to the bubble
itself, and is the terminal velocity taken from single bubble studies. It is a
function of the bubble width. The second contribution is a velocity associated
with the bubble interactions, and is defined in terms of the relative position
of the bubble and its neighbor. It is also derived from single bubble studies of
the Rayleigh-Taylor problem. At sufficiently large relative heights, a merger
process will occur between adjacent bubbles, leading to a new bubble, of
width equal to the combined widths of the two which are merging. This
model was extended to 3D and solved to yield agreement with experimental
values in both the mixing growth rate a; &~ 0.05—0.06 and the bubble height
to width ratio [7]. We derived and validated against experimental data a new
dynamic relation, relating the bubble growth rate, the bubble width and the
fluctuations in the bubble height.

2.3.3 Rayleigh-Taylor Perturbation Theory.

In a series of papers [2, 1, 3] we established a higher order model for the
asymptotic velocity of a single RT bubble in 2D and 3D. The model admits

multiple solutions, and the slowest moving one is then selected as the phys-



ical solution. The model predicts both the Froude number (the asymptotic
velocity) and the width of the bubble. Results compared well to numerical

simulations.

2.4 Advanced Numerical Methods

Front Tracking is a numerical method in which surfaces of discontinuity are
given explicit computational degrees of freedom, supplementing the continu-
ous solution values at regular grid points [33].

We have developed the Front Tracking simulation code FronTier, into a
robust, parallelized code, tested on multi-physics, and of critical importance
for the simulation results reported here. It is now in public release.

Here we emphasize recent developments in the numerical analysis of front
tracking: robustness, simplicity, conservation, and convergence order. See

the recent survey articles [11, 13, 16].

2.4.1 Local Grid Based Tracking

Two tracking methods, called grid-free [17] and grid-based tracking [21], have
been used to describe the three dimensional interface propagation and its
topological bifurcation. The former is a pure Lagrangian method in which the
interface propagation and redistribution are independent of the underlying
Eulerian grid. The detection and resolution of topological bifurcation is
fully determined by the interface itself. This method is more accurate in
the propagation of the interface position, but it is not robust in resolving the
topological bifurcations. The grid-based tracking method is just the opposite.
That is, it is robust in resolving the interface topology, but introduces a
larger error in interface propagation. Its handling of the interface topology is

through the reconstruction of the interface on Eulerian mesh blocks similar



Figure 1: Comparison between Lagrangian propagation and Eulerian recon-
structed propagation. In this computation, the initial surface is an ellipsoid.
The left plot is the interface after 500 steps of the pure Lagrangian propaga-
tion in a spiraling velocity field. The right plot is the Eulerian reconstructed
propagation after the same number of steps. The computational mesh is
803. The plots show the surfaces after about 1.6 rounds of revolution at the
center and 2.86 rounds of revolution at the outer edge (the angular velocity
is linear function of 7). The loss of accuracy in the right plot (the grid-based
simulation) is evident.

to [32]. In Fig. 1, we compare grid-free to grid-based tracking.

We introduce the new locally-grid-based method [9], which combines the
advantages of both methods. That is, we use the fully Lagrangian method
to propagate the interface to obtain an accurate solution of the interface
position. The Eulerian reconstruction of the interface is only used in small
regions where a topological bifurcation is detected. Fig. 2 shows the steps of

the local reconstruction of the interface.

2.4.2 Conservative Tracking

The solutions to nonlinear hyperbolic systems of conservation laws,

u+ Y fi(u)e =0, (1)
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Figure 2: Steps to reconstruct a tangled section of the three dimensional
interface. From left to right and top to bottom: (a) assemble blocks which
contain unphysical edges, (b) delete triangles attached to the box and rebuild
the interface through the grid-based method, (c) reconnect the grid-based
interface in the box to its neighbors and (d) the final interface.

develop discontinuities even under smooth initial conditions. The classical
front tracking method does not satisfy the conservation property of the sys-
tem (1). For cells which are cut by the front or cells which miss points of
the computational stencil because the stencil crosses the front, the missing
points of the stencil are filled in as ghost cells, with the state values obtained
by extrapolation from nearby front states of the same component [28].

The proposers and co-workers have introduced a conservative front track-
ing algorithm. It preserves conservation properties of the system (1) by
enforcing conservation for all grid cells, including the ones cut by the front.

The essence of the conservative front tracking algorithm is the tracking of
the front in space and time, to construct the space-time finite volume cells,
and then solving (1) by

Viltn1)[@ [t = Vi)l | —/wi(u, fi(w)) -ndsS (2)

where V; is a control volume. This general algorithm works in any dimen-
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Figure 3: A step in the construction of the conservative algorithm. This step
follows the construction of the space time interface and the irregular cells it
has cut, and precedes the merger of the small cut cells.

sional space [18].

In [27], the proposers described the 1D and 2D implementation of the
conservative tracking algorithm. In 2D conservative tracking, a grid-based
spatial interface (the original interface) [22] is first propagated [20, 22, 21, 19].
This yields a general interface, not grid-based, which is then reconstructed
to be grid-based [32, 22, 21] (the image interface). The space-time interface
is formed by joining these two spatial interfaces (the original and the image
interfaces).

We then construct a finite volume decomposition of space time which
respects this space-time interface, see Fig. 3. To maintain numerical stability
(the CFL time step restriction), we merge those space time cells with small
top area to form polyhedra with top area bigger than 0.5Axz2.

In 2D, the scheme should be second order in the interior region and first
order near the front, improving over O(1) errors commonly found near a
discontinuity. The convergence of the bubble growth rate in the simulation

of the Richtmyer-Meshkov instability supports this claim. See Figs. 4 and 5.
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Figure 4: Front plots for RM instability simulations. The upper row shows
the plots of a non-conservatively tracked interface at a fixed time. The lower
row shows the plots of a conservatively tracked interface at the same time.
For both rows, from left to right 40 x 80, 80 x 160 and 160 x 320 grids are
used respectively.
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Figure 5: Spike amplitude in the RM instability simulations, as functions of
time. The conservative tracked amplitude for a coarse grid is in approximate
agreement, with the non-conservative tracked amplitude for a fine grid.

2.4.3 Multimaterial Tracking

In general, the grid-based tracking can be extended to an interface separat-
ing any number of components. The maximum number of components in a
rectangular mesh block is eight. The most useful interface, after the case of
two components in a block, is an interface separating three material compo-
nents in a block. For such an interface in three dimensions, after rotation
and commutation, the block interface can be attributed to 57 isomorphically
distinct cases. We have built 57 subroutines for the front tracking code to
handle all these cases [31]. The tracking of multicomponent interfaces has

greatly extended our scope of applications.

2.4.4 Adaptive Mesh Refinement

Adaptive mesh refinement (AMR) is a powerful tool to concentrate computa-
tional effort in regions of computational difficulty. Block-structured AMR has
been developed systematically by M. Berger and P. Collela [4, 5]. The front
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tracking method is also an adaptive method. The authors and co-workers
merged the Front Tracking code FronTier with the AMR code Overture,
based on the Berger-Colella box refinement algorithm, [4, 5], and developed
and maintained at LLNL.

We calculate an axisymmetric spherical RM instability. A Mach 10 im-
ploding spherical shock strikes a spherical contact interface perturbed by 6
modes. We used 3 levels of refinement, with the refinement ratio of 2 and a
level 0 grid of 100 x 100 cells. We compare the result with the comparable
uniform grid simulation. The AMR solution matches the uniform fine grid

solution as shown by Fig. 6.

B

Figure 6: Density and grid plots for the spherical RM simulation at time =
0.3. The left frame shows the density plot from AMR front tracking, and the
middle frame shows the density plot from uniform grid front tracking. The
right frame shows the AMR grid plots.

3 NNSA Interactions
3.1 NNSA Related Research Collaborations

e David Sharp, John Grove, Baolian Cheng and colleagues at LANL:

Studies of mix; uncertainty quantification for mix
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3.2

4

1]

2]

3]

Paul Drake at U. Mich and colleagues at LLNL: Simulation of laser

driven mix experiments

Richard Petrasso and colleagues at MIT: Simulation and modeling of

laser driven experiments of mix

Mark Christon (SNL): numerical methods

Stony Brook Alumni at NNSA Laboratories

Former Ph.D. students: Mary Jane Graham Lindquist (LLNL), Cindy
Zoldi (LANL) and Richard Holmes (LANL)

Former Faculty: John Grove (LANL) and Brad Plohr (LANL)

Former Research Collaborators: John Walter
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