
LA-UR- 00-29 96 
Approved for public release; 
distribution is unlimited. 

Title: On 3D, Automated, Self-Contained Grid Generation Within the 
RAGE CAMR Hydrocode. 

Author(s): William R. Oakes 
Paul J. Henning 
Michael L. Gittings 
Robert P. Weaver 

Submitted to: 7th International Conference on Numerical Grid Generation in 
Computational Field Simulations 

Los Alamos 
NATIONAL LABORATORY 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. 
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government 
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. 
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the 
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to 
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (10/96) 



DISCLAIMER 

This report was ,prepared as an account of work sponsored 
by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or 
implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States 
Government or any agency thereof. 



GENERAL DISCLAIMER

This document may have problems that one or more of the
following disclaimer statements refer to:

! This document has been reproduced from the best copy furnished
by the sponsoring agency. It is being released in the interest of
making available as much information as possible.

! This document may contain data which exceeds the sheet
parameters. It was furnished in this condition by the sponsoring
agency and is the best copy available.

! This document may contain tone-on-tone or color graphs, charts
and/or pictures which have been reproduced in black and white.

! This document is paginated as submitted by the original source.

! Portions of this document are not fully legible due to the historical
nature of some of the material. However, it is the best reproduction
available from the original submission.



On 3D, Automated, Self-Contained Grid 
Generation Within the RAGE CAMR Hydrocode 

William R. Oakesl 

Paul J. Henningl 
Michael L. Gittingsl ,2 
Robert P. Weaverl 

1 Applied Physics Division 
Los Alamos National Laboratory 
Los Alamos, NM 87545 USA 
oakes@lanl.gov 

2Science Applications International Corporation 
La Jolla, CA 92121 USA 
gittings@lanl.gov 

Abstract 

OCT 2 62DDD 

OSTt 

We discuss using the inherent grid manipulation capability within a Continuously 
Adaptive Mesh Refinement hydrodynamics code, RAGE, to implement parallel, 
automated, self-contained grid generation. We show how arbitrarily complex 3D 
geometries specified in any unambiguous form can be used. 

The RAGE computational environment is any of several massively parallel com­
puters being developed under the Department Of Energy's Accelerated Strategic 
Computing Initiative. A typical 3D RAGE analysis may contain 100 million cells 
and occupy 2000 processors for several weeks. 

RAGE grid generation is embarrassingly parallel. The RAGE computational grid 
is an octree decomposition of the model space. The problem domain is subdi­
vided into as many subdomains as the number of processors assigned to the prob­
lem. The grid for each subdomain is then generated independently, except for 
occasional adjustments. 

Geometry used for initial grid generation includes CSG combinations of NURBS­
based boundary representation models, stereo lithography (STL) files, implicit 
surfaces, and functionally perturbed surfaces. 

.. Oakes. W.l{ 

i 2000/6/30 
page 1 

---E9 



Introduction 

RAGE is a Continuously Adaptive Mesh Refinement (CAMR) multimaterial, Eu­
lerian, radiation hydrodynamics simulation code based on a high-order Godunov 
method [1]. It is being developed by Science Applications International and Los 
Alamos National Laboratory, within the Department Of Energy's Accelerated 
Strategic Computing Initiative (ASCI) program. RAGE is one of several codes 
under development to explore computational and simulation techniques that might 
be used with the ASCI program's ultra-high performace computer systems; a 100 
teraops system is planned for the year 2004. 

Currently, the ASCI computing environment is comprised of three distinct high 
performance systems, with installations at Los Alamos National Laboratory, San­
dia National Laboratories and Lawrence Livermore National Laboratory. Each 
system has a different architecture and software development environment. The 
common characteristics of these systems are that they are each massively par­
allel MIMD systems, and that they each support a message passing paradigm. 
Blue Mountain, the Los Alamos system, is a Silicon Graphics Origin 2000 system 
comprising 48 symmetric multiple processor (SMP) "boxes", each with 128 pro­
cessors. Blue Mountain is capable of running simulations that use all of these pro­
cessors concurrently, and has demonstrated a benchmarked performance of 2.38 
teraops. The RAGE architecture is sufficiently flexible to fully utilize each of the 
ASCI computing systems in performing the chosen class of hydrodynamics sim­
ulations [2]. This flexibility will be essential as the ASCI computing environment 
continues to migrate towards the eventual goal of 100 teraop systems. Massive 
storage and visualization capabilities are also a must; recent RAGE calculations 
have produced tens of terabytes of data. 

In this paper we discuss using the inherent grid manipulation capability within 
RAGE to implement parallel, automated, self contained grid generation. We will 
show how, and under what conditions, arbitrarily complex 3D geometries speci­
fied in any unambiguous form can be used. We will also show example grids. 

The RAGE Computational Grid 

The RAGE computational grid is an octree decomposition of the model space. 
The tree depth is selected to resolve field variable gradients to RAGE-specified 
resolution and material boundaries to user-specified resolution. The user speci­
fies two resolution values for each material: the cell size at the boundary of the 
material and the cell size in the interior of the material. Because RAGE allows 
a mixture of materials in any cell, it is not necessary to subdivide the cells to the 

"Oakes·WR 

i 2000/7/6 
page 2 

--\B 



resolution and material boundaries to user-specified resolution. The user speci­
fies two resolution values for each material: the cell size at the boundary of the 
material and the cell size in the interior of the material. Because RAGE allows 
a mixture of materials in any cell, it is not necessary to subdivide the cells to the 
size of the smallest geometric features. An approximation of the material ratios 
within a leaf cell of the octree is computed using additional queries. In particular, 
the setup variable "numfine" specifies how many query positions in each dimen­
sion will be performed to approximate fractional composition of each leaf. For 
example, if numfine = n, and the problem is three dimensional, then each leaf cell 
will be queried n 3 times to determine mass fractions. 

Tree construction begins by creating a uniform Cartesian (cubical) "base" (or 
"level I") grid across the region of interest. Then, for each cell of the base grid 
that does not yet conform to the required resolution, a recursive process of octree 
creation is initiated. The "mother" cell is subdivided into eight "daughter" cube 
cells, each with an edge length of 112 of the mother cell edge length. We refer 
to the depth of the subdivision required to attain the requested resolution as the 
"level" of the grid. The 2: 1 edge length ratio of mother to daughter cells is en­
forced as the maximum for any adjacent cells, whether or not they have a common 
ancestor. 

Assuring adjacent cell edge length ratios is the first of our grid generation tasks 
requiring interprocessor communication during multiprocessor execution. To sim­
plify indexing and grid density relaxation during program execution, we keep 
mother cells in the data structure. The cost of keeping these cells is, at most, 
a 12.5% reduction in memory allocation efficiency for cell storage. Once the ini­
tial computational grid is established, the geometric data set describing the initial 
geometry will not be queried again during the simulation, and so is released from 
memory. 

Continuously Adaptive Mesh Refinement and Geometry 
Queries 

Because CAMR requires repeated grid refinement and grid density relaxation as 
analysis proceeds, RAGE contains a flexible geometry and field variable query 
mechanism that supplies all required grid manipulation information. The only 
geometric query that RAGE requires is a point containment test, which determines 
if a specified region contains a query point. At the highest level inside the RAGE 
code, each geometric region is assigned a priority value. When the grid generation 
algorithm queries to determine which material region contains a query point, each 
region is tested in order from high to low priority. The first region for which the 

"Oakes·WR 

i 2000/6/30 
page 3 

-€j 



RAGE 

Inherent Spica 

I ~ 
Implicit 

I 
Solid 

~ 
Perturbed NURBS STL 

Figure 1: The hierarchy of RAGE geometry support. 

point containment test returns "inside" is returned as the containing region. 

The problem domain is subdivided into as many subdomains as the number of pro­
cessors assigned to the problem. The grid for each subdomain is then generated 
independently, except for two adjustments that require occasional interprocessor 
communication: 1) load balancing is performed by redistributing problem subdo­
mains as the number of cells increases, and 2) edge length information for adjacent 
cells in different sub domains is communicated to ensure the 2: 1 edge length ratio. 

Geometric Modeling 

RAGE evolved from a ID code to its present ability to perform ID, 2D, or 3D 
simulations. In this paper we will discuss only 3D simulation and the related 
3D geometric modeling. RAGE 3D modeling and simulation is performed in a 
Cartesian coordinate system. 

Since RAGE only requires a point containment predicate, a wide variety of ge­
ometric modeling techniques are feasible. Geometric support for RAGE is cur­
rently divided among "inherent" support directly in the code and support in a 
stand-alone query library referred to as Spica. The entire geometric support hi­
erarchy is shown in Figure 1. The internal structure of RAGE has proven to be 
flexible enough that any geometric query system could be added, provided that it 
supports two features: a point containment query and a means of distributing its 
data structures for parallel execution. 

The inherent geometric support in RAGE includes spherical, ellipsoidal, conical 

"Oakes'WR 

i 2000/6/30 
page 4 

-----B7 



~i. 

frustum, triangular prism and quadrilateral prism regions, as well as perturbed 
boundary regions (sine and cosine perturbations), and radially swept 2D regions. 
Use of the inherent geometric modeling involves describing a physical problem 
within the RAGE input file and then verifying through RAGE execution that the 
desired model has been achieved. These geometric primitives combined with ju­
dicious application of the RAGE region priority ordering scheme allows clever 
RAGE users to perform a surprising number of valuable simulations. However, 
these geometry models are often difficult to create, convoluted, and hard to under­
stand. 

To address these problems, the Spica library allows direct input of data from sev­
eral geometric modeling packages, ranging from proprietary to commercial CAD 
packages. The Spica library tests point containment using an expression tree. The 
leaf nodes of this tree are geometry descriptions, and the interior nodes consist of 
region selection operators «, ::s, =, ~, », logical operators (AND, OR, NOT), 

and special nodes (LINK, TRANSFORM). 

A geometry description node can be a solid representation, a closed, manifold, 
boundary representation (b-rep), or an implicit surface that constitutes part of a 
closed boundary. In order for a particular geometry description to be compatible 
with Spica, it must have a point categorization query. For solids and b-reps, this 
query returns -1 if the point is inside the region, 0 if the point is on the region 
boundary, and 1 if the point is outside of the region. For implicit surfaces, "below" 
is equivalent to "inside." 

Associated with each geometry description node is a region selection operator. 
This is simply a map 

{-I, 0, I} I-t {t, J} (1) 

For example, the < operator returns "true" if a query point is in the open interior 
of the associated geometry description. Separating the region selection from the 
geometry description is useful because it moves the exact definition of "inside" or 
"outside" to the tree, rather than leaving it up to the geometry generation package. 
Spanning the results of the region selection nodes are the logical operators. These 
are used to form boolean expressions. The caller of the library is returned the 
boolean value of the root node for each query point. 

For efficiency purposes, there are several special nodes in the tree. The first is a 
LINK node. These serve as a placeholder or a pointer to either another expres­
sion tree or to a geometry node, and are used to prevent duplication of data. The 
TRANSFORM node contains an affine transformation that is applied to the query 
point for the subtree below the TRANSFORM. Combined with a LINK node, this 

"Oakes' WI{ 

i 2000/6/30 
pageS 

----E9 



allows geometry to be copied to other positions and orientations with minimal 
storage overhead. As always, timelspace trade-offs are a concern: it is more effi­
cient to duplicate a sphere geometry description node than to use transforms and 
links. 

As described above, the geometry description nodes can be b-reps, solids, or im­
plicit surfaces. Under the category of b-rep geometry, the Spica library currently 
supports NURBS-based representations and triangulated surfaces. Support for 
the NURBS representation, common in CAD models, is provided by Spatial's 
ACIS modeling kernel. As most of the CAD models we use are produced in Para­
metric Technology Corporation's ProlENGINEER package, we translate from the 
ProlENGINEER representation to the ACIS representation. Ensuring an accurate 
translation is one of the most difficult steps in this process. 

The query support for triangulated b-reps is supplied by one of two algorithms. 
The first is a ray-shooting parity test: if a ray passes through a closed, 2-manifold 
boundary an odd number of times, the origin of the ray is inside of the region 
delineated by the boundary [3]. The special cases that arise in this approach are 
handled simply by shooting a new ray in a random direction. We have found this 
brute-force approach to handling degenercies to be highly efficient: the number of 
rays that have to be re-cast is typically very small. 

The second query algorithm finds a surface point closest to the query point, and 
compares the normal at the surface to the direction of the ray. While slower than 
the ray-shooting approach, the closest point query has no special cases and is more 
robust in the face of small cracks in the surface [4]. Spica currently accepts stereo 
lithography (STL) files as input, simply because many packages write that format. 

The solid geometry description nodes contain a variety of primitive objects: box, 
cone, cylinder, sphere, parallelepiped, torus, and a surface of revolution gener­
ated by a piecewise-linear curve. These primitives are composed into parts using 
a geometrical modeling tool called OSO. While it can be challenging to create 
extremely detailed models using these primitives, there is a considerable query 
speed advantage to doing so. OSO also supports STL files as first class primitives 
that can be translated, rotated, scaled, and combined with the previously speci­
fied primitives to compose parts. In practice, we find that combinations of all the 
geometry description node types are used in computational models. 

"Oakes' W.l{ 

i 2000/6/30 
page 6 

-----B:1 



Figure 2: OSO rendering of the engine model. 

An Example Grid 

Figure 2 is an internal combustion engine model created in ProIENGINEER, out­
put as separate STL files for each part in the assembly, and collected for viewing, 
scaling, positioning, and rendering by OSO. The OSO dataset was then prepro­
cessed by RAGE to create an initial RAGE input file. Minimal adjustments are 
then performed on the initial RAGE input file to suit the analyst's criteria. 

Figure 3 presents a close-up of a cross section of a RAGE grid generated from the 
ProlENGINEER modeL Notice that the boundaries of the cylinder block, head, 
valve springs, and retainers are modeled at level 6, while the valve boundaries 
have been modeled at level 7. Also notice the gradual transition from level 1 to 
level 7 caused by the enforcement of 2: 1 edge length ratios between adjacent cells. 
This grid has been restricted to seven levels for purposes of illustration. Typically, 
a well resolved computational grid must descend to level 10. Interestingly, for a 
highly detailed 3D model of a very complex mechanism, our current computa­
tional environment often restricts us to a level 8 grid, due to memory and CPU 
constraints. 

Geometry Query Speed 

In practice, there is another requirement for adapting geometry queries to RAGE 
grid generation. Because a typical 3D RAGE grid may contain 100 million cells 
and require 20 billion queries to create the cells and define their mass ratios, fast 
query speeds are essentiaL The table in Figure 4 presents typical query rates per 

"Oakes·WR 

i 2000/6/30 
page 7 

----E9 



Figure 3: Magnified cross section of the RAGE engine model. 

processor measured during RAGE execution. We find that intrinsic and Spica solid 
queries are sufficiently fast to never cause concern during grid generation and that 
the Spica triangulated b-rep query is sufficiently fast that our largest problems can 
be generated, in parallel, in two to five hours. However, the NURBS b-rep queries 
are sufficiently time consuming that they can not be used routinely at this time. 

As is generally the case with geometric queries, timings are related to to the com­
plexity of the model being queried. For the intrinsic and solid geometry types, 
query times are extremely fast because of the small number of primitives involved, 
and the ease of performing point containment queries on those primitives. For the 
triangulated surfaces, tree-based spatial search structures are used to quickly iden­
tify facets of interest [4], but there is a dependency on the total number of facets 
in the model. A NURBS b-rep often has much fewer elements than a triangulated 

Representation 
Solid or Inherent 

Triangulated 
NURBS 

Queries/second 
200,000 
1,500 
20-500 

Figure 4: Expected query speeds for representative models. 

"Oakes·WR 

i 2000/6/30 
page 8 

-BJ 



b-rep, but the computational complexity of ray intersection or point projection 
algorithms dominates the query time. 

Future Directions 

In terms of geometry, we are currently looking at means of striking a compro­
mise between modeling accuracy and query speeds. While NURBS-based CAD 
models provide the best accuracy, they are also very expensive to query for point 
containment. In comparison, triangulated surfaces are fairly inexpensive to query, 
but can introduce artifacts into the hydrodynamics solution. An attractive-looking 
compromise is the use of implicit surface patches for the b-rep [5]. These would 
allow a good match to the CAD model surface while providing efficient query 
capabilities. 

We are also studying ways to improve our parallel query performance. Our pri­
mary computational platform is a cluster of multiprocessor machines, where each 
machine contains a large amount of shared memory. However, our current par­
allel implementation uses only a message passing paradigm. Taking advantage 
of the system topology should reduce our memory requirements and reduce the 
communication overhead, making higher-resolution grids feasible. 

References 

[1] RM. Baltrusaitis, M.L. Gittings, RP. Weaver, RF. Benjamin, and 
J.M. Budzinski. Simulation of shock-generated instabilities. Physics of Flu­
ids, 8(9):2471-2483, September 1996. 

[2] RP. Weaver, M.L. Gittings, M.R Clover, and H.P. Pritchard. The parallel 
implementation of RAGE: a 3-D continuous adaptive mesh refinement shock 
code. ISSW22, July 18-23, 1999. 

[3] J. O'Rouke. Computational Geometry in C. Cambridge University Press. 
1993. 

[4] A. Khamayseh and P. Henning. Point inclusion methods for boundary rep­
resentation models. Technical Report LAUR-00-922, Los Alamos National 
Laboratory, 2000. 

[5] C. Bangert and H. Prautzsch. Quadric splines. Computer Aided Geometric 
Design, 16:497-515, 1999. 

"Oakes·WH 

i 2000/6/30 
page 9 

-----€J 


