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Abstract

The ILC design is based on a single Interaction Region (IR) with 14 mrad
crossing angle and two detectors in the “push-pull" configuration, where
the detectors can alternately occupy the Interaction Point (IP).
Consequently, the IR optics must be compatible with different size
detectors designed for different distance L* between the IP and the nearest
quadrupole. This paper presents the push-pull optics for the ILC extraction
line compatible with L* = 3.5 m to 4.5 m, and the simulation results of
extraction beam loss at 500 GeV CM with detector solenoid.
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The ILC design [1] is based on a single Interaction Region (IR) with 14 mrad cross-
ing angle and two detectors in the “push-pull” configuration, where the detectors can
alternately occupy the Interaction Point (IP). Consequently, the IR optics must be
compatible with different size detectors designed for different distance L™ between the
IP and the nearest quadrupole. This paper presents the push-pull optics for the ILC
extraction line compatible with L* = 3.5 m to 4.5 m, and the simulation results of
extraction beam loss at 500 GeV CM with detector solenoid.

1 Introduction

The ILC design [1] is based on a single Interaction Region (IR) with 14 mrad crossing angle
and two detectors in the “push-pull” configuration, where the detectors can alternately
occupy the Interaction Point (IP). The impact on the IR optics is that the two detectors may
have different size and require different free space L* between the IP and the nearest Final
Doublet (FD) quadrupole. Below, we present the push-pull optics for the ILC extraction
line compatible with L* of 3.5 m to 4.5 m, and discuss tracking simulations of extraction
beam loss at 500 GeV CM with detector solenoid.

2 Extraction optics

The push-pull optics near IP must be compatible with different detector designs and pro-
vide space for the detector exchange procedure. Fig. 1 shows the proposed layout of
the incoming and extraction magnets on one side of the IP for three values of L* =
3.51, 40 and 4.5 m. Here, Detector cod . " )
the QDO, QF1 and SDO, SF1 < Sy

are the incoming superconducting M

(SC) quadrupoles and sextupoles, 55m
and the QDEX1 and QFEX2A
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the compact SC design [2] in order
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maximize the separation and mag-
net aperture, the first extraction Figure 1: Magnets near IP for L* = 3.51, 4.0, 4.5 m.
quadrupole QDEX1 is placed far-
ther from the IP at distance of 5.5, 5.95 and 6.3 m, in these options. Since the QDO,

—
QDEX1 QFEX2A

*Work supported by the Department of Energy Contract DE-AC02-76SF00515.

LCWS/ILC 2007



SDO0, QDEX1 are inside the detector area, in order to facilitate a rapid push-pull exchange,
each detector will have its own set of these magnets integrated into the detector cryostat.
Consequently, the parameters of QD0, SD0, QDEX1 are optimized for each detector. For
a uniform optics, the magnets outside of the detector will not change with L*, except for
field adjustment. The second set of SC magnets QF1, SF1, QFEX2A will be housed in a
separate cryostat outside of the detector. The 2-3 m warm space between the 1st and 2nd
cryostats, as shown in Fig. 1, will provide a breakpoint for detector detachment from the
beamline. After the Final Doublet, there is a dedicated free space in the extraction line to
accommodate the large size incoming crab-cavity.

The complete extraction optics
and lattice functions are shown in
Fig. 2, based on the earlier de-
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sign in [3]. The SC and warm
quadrupoles provide focusing to
the 2nd focal point at s = 148.6 m
with Rgs = —0.5 required for the
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quadrupoles, there are two vertical
bending chicanes: for energy and
polarization measurements [4] and
gamma calorimeter (GamCal) [5].
The 6-bend polarimeter chicane is
adjusted for 50% higher field in the 3rd and 4th bends for improved acceptance of Compton
backscattered electrons in the Cherenkov detector, while the 5th and 6th bends close the
trajectory bump and provide space and bending for GamCal.
The chicanes are followed by a system of 5 vertical
and 5 horizontal fast cycling kickers. They will protect °
the dump window from damage and prevent water boil- ** - el
ing in the tank in situations with a very small beam size ** p ;ﬁm
such as in cases of an undisrupted beam or accidental fo- ** :" V \“
cusing at dump. The kicker field will oscillate with ~1 ] “™= ——
kHz frequency to sweep the bunches in 1 ms train on 3 d
cm circle at the dump as shown in Fig. 3, thus reducing “'""““ """"“”
the beam density to acceptable level [6]. Finally, a sys- ’
tem of 5 collimators is included: to clip off the disrupted
low energy tail, to protect the extraction magnets and
diagnostic devices from high beam loss and synchrotron
radiation, and to limit the beam size at dump to within
the 15 cm radius of the dump window. The dump is located ~300 m from the IP and > 3.5
m from the incoming line. The parameters of extraction magnets at 500 GeV CM are listed
in Tables 1,2. The extraction magnets are compatible with 1 TeV CM energy, except the
SC quads QDEX1, QFEX2A which require upgrade.
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Figure 2: Extraction lattice functions.
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3 Detector solenoid

The detector solenoid field downstream of IP creates vertical orbit, dispersion, coupling and
focusing in the extraction line. The orbit and dispersion are created due to the 7 mrad
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Table 1: Quadrupole gradient (T/m), length (m) and aperture radius (mm) at 500 GeV CM.

Name Qty L*=35lm L*=40m L*=45m

B’ L R B’ L R B’ L R
QDEX1 (SC) 1 98.00 | 1.060 | 15 | 89.41 | 1.150 | 17 | 86.39 | 1.190 | 18
QFEX2A (SC) 1 31.33 | 1.100 | 30 | 33.67 | 1.100 | 30 | 36.00 | 1.100 | 30
QFEX2 (B,C,D) 3 11.12 | 1.904 | 44 | 11.27 | 1.904 | 44 | 11.36 | 1.904 | 44
QDEX3 (A,B,C) 3 11.39 | 2.083 | 44 | 11.37 | 2.083 | 44 | 11.36 | 2.083 | 44
QDEX3D 1 9.82 | 2.083 | 51 9.81 2.083 | 51 9.80 | 2.083 | 51
QDEX3E 1 8.21 2.083 | 61 8.20 2.083 | 61 8.19 2.083 | 61
QFEX4A 1 7.05 1.955 | 71 7.04 1.955 | 71 7.04 1.955 | 71
QFEX4 (B,C,D,E) 4 5.89 1.955 | 85 | 5.88 1.955 | 85 | 5.88 1.955 | 85

Table 2: Bend and kicker parameters at 500 GeV CM.

Name Qty | L (m) | B (T) | Half-gap (mm) Region
BVEXIE,.. 8E | 8 2.0 | 0.4170 85 Energy
BVEX1P,2P 2 2.0 0.4170 117
BVEX3P 1 2.0 0.6254 117 Polarimeter
BVEX4P 1 2.0 0.6254 132
BVEXIG,2G 2 2.0 0.4170 147 GAMCAL
XSWEEP 5 0.8 0.071 120 Fast
YSWEEP 5 0.8 0.071 120 kickers

angle between the solenoid and beam directions. Without correction, they will cause higher
particle amplitudes and increased beam loss, and will alter trajectory and dispersion at the
2nd focus Compton IP (CIP). The other negative effect of the solenoid angle is deflection
of ete™ secondary pairs away from the detector beam hole, thus increasing the detector
background. The second source of extraction orbit is a non-zero incoming angle of beam
trajectory at IP. The effect of solenoid focusing is weak, but it can shift the beam waist
from the CIP by a few mm. It has been shown [7] that the eTe™ background can be
minimized by including the anti-DID horizontal field in the detector, as shown in Fig. 4
for the 5 T SiD solenoid
model. The SC quadrupoles

i

QDEX! and QFEX2A will  >&® . e
include the corrector coils £
which can be used to cancel :
the solenoid orbit and focus- anti-DID QFEX2A -

ing effects. Fig. 4 shows

the orbit cancelation using o
the QDEX1, QFEX2A dipole
coils for L* = 3.51 m and 50
prad angle at IP. This correction also compensates most of the residual dispersion.

Figure 4: Cancelation of solenoid orbit for L* = 3.51 m.

4 Extraction beam loss at 500 GeV CM

The following ILC beam options were used in tracking simulations: nominal (option c¢11),
large vertical emittance (c13) and low beam power (c14). The disrupted beams are charac-
terized by a low energy tail, with energies reaching 50% to 20% of nominal 250 GeV value,
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and by a large angular spread. Beam in the nominal option has the lowest disruption. Op-
tion c13 has a larger angular spread, and option c14 has larger both the energy and angular
spread. Additional disruption occurs when the beams are vertically offset at IP. The effects
of energy and angular spread are the overfocusing of low energy electrons, large particle
amplitudes and beam loss. The quadrupole focusing and magnet apertures are optimized
for minimal loss of both the primary electrons and beamstrahlung (BS) photons which share
the same beamline. The magnet aperture accepts photons with up to +0.75 mrad angles.
Table 3 shows the beam power loss for the three beam options, including the worst case IP
offset Ay, for optics with L* = 3.51 m without solenoid. The loss is small in options c11 and
c13, and manageable in option c14. The three dump collimators located in the final 100 m
drift have a larger beam load, because they trim the final beam size to within the 15 cm radius
of the dump window. The IP offset may significantly increase the loss on collimators. For this
reason, a protection system should be considered to detect and prevent beam running with
large IP offsets. Example

T T 2000 T T T
of beam loss in the first 0 coLE c14 1500} cl4, y-offset
200 m of extraction line & 7} .

= < 500
for option cl4 is shown 3§ % % 100
P g g
: : = 8f y . 80
in Fig. 5 for L = § o CoLCD £ o
3.51 m without solenoid. * % T
The two high peaks cor- o) o) 50 s o o
I'ESpOHd to IOSSES on the Distance from IP (m) Distance from IP (m)

two diagnostic collima- Figure 5: Beam loss in option ¢14 without (left) and with (right)
tors COLE and COLCD. 1P y-offset for L* = 3.51 m without solenoid.

Table 3: Power loss (kW) without solenoid for L* = 3.51 m.

Primary electrons BS photons

Option All Diagnostic Dump collimators Dump collimators

magnets collimators

and pipe | COLE | COLCD | COLW1 | COLW2 | COLW3 | COLW1 | COLW2
cll 0 0 0 0 0 0.272 0 0
cll+Ay 0.001 0.001 0.0003 1.12 2.59 11.2 0.0001 0.025
cl3 0.007 0.001 0.0001 1.02 1.57 6.54 0.570 0.820
cl3+Ay 0 0.0001 0 1.08 1.76 9.05 0.138 1.82
cl4 0.126 0.044 0.003 2.62 6.18 26.3 0.035 0.171
cld+Ay 0.581 0.549 0.161 85.9 43.7 82.1 10.9 20.1

Comparison of beam loss in the three configurations with L* = 3.51 m, 4.0 m, 4.5 m
without solenoid, and using option c14 without IP offset, showed that the electron losses
are very similar and BS photon loss is evidently the same. For this reason, the remaining
discussion will be limited to the optics with L* = 3.51 m.

Tracking simulations with 5 T SiD solenoid, including anti-DID field and orbit correction,
showed that solenoid effect on beam loss is small if the incoming vertical orbit has zero angle
at IP. But in case of non-zero (under-corrected) y-angle at IP the losses at the diagnostic
collimators would increase. The reason is the higher dipole field required for orbit correction
which, in turn, increases non-linear dispersion and amplitudes of lowest energy electrons.
Example of beam loss with solenoid and 50 urad initial y-orbit angle is shown in Fig. 6 for the
low power option cl4. One can see that although the losses on magnets remain reasonably
small, the load on diagnostic collimators (high peaks) is increased. Similar behavior is in
the nominal ILC option c11, but the level of losses is a factor of 100 smaller.
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may be not desirable to
cancel the IP orbit angle
since it may not be opti-
mum for highest luminos-
ity. Therefore, to mini-
mize the load on collimators, as mentioned earlier, a protection system is needed to detect
and prevent running with large IP offsets. Further optimization of the diagnostic collimators
may be needed to minimize the losses near the diagnostic devices. Bringing the corrector
field closer to IP may also help to reduce the unwanted effects of non-linear dispersion.

Figure 6: Beam loss in option c14 with solenoid, without (left)
and with (right) 50 prad y-orbit angle at IP.

5 Summary

The 14 mrad extraction optics compatible with push-pull detector configuration for a range
of L* from 3.5 m to 4.5 m is designed. The recent optics modifications also include the
6-bend polarimeter chicane which improves acceptance of Compton backscattered electrons
in the Cherenkov detector and provides optics for GamCal, and the system of fast sweeping
kickers for dump protection in cases of the small undisrupted or accidentally focused beam.
Tracking simulations with 5 T SiD solenoid model, including the anti-DID field and orbit
correction, showed that the increase of beam loss due to solenoid field is small. However,
it increases with non-zero incoming vertical orbit angle and with large vertical beam offset
at IP. The combination of these conditions produces the largest effect. The beam loss in
the nominal parameter option still remains small to moderate. But more care is required
in high disruption options. In order to minimize the unwanted power load on collimators,
a protection system is needed to efficiently prevent beam running with large IP offsets.
Secondly, more optimization of diagnostic collimators and orbit correction may be needed
to minimize the unwanted losses and non-linear dispersion.
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