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1 LECTURE 1: Introduction and background

The flavor sector is that part of the Standard Model which arises from the interplay
of quark weak gauge couplings and quark-Higgs couplings. The matrix of quark weak
couplings (in the mass eigenstate basis) encodes these effects in four parameters, one
of which is a CP violating phase. From a theorist’s perspective, the aim of the game
in flavor physics today is to search for Standard Model predictions that cleanly relate
measurements to these parameters. Such relationships always have some theoretical
uncertainty, a clean relationship is one where that uncertainty is well-defined and
small. B physics provides multiple channels that can be used to measure various
combinations of Standard Model parameters. Overdetermination of the parameters
obtained by different measurements provides a test of the theory, or alternatively a
probe for physics beyond the Standard Model. To be interesting, any inconsistency
with Standard Model relationships must be large compared to both experimental and
theoretical uncertainties.

Interesting tests also arise in cases where the Standard Model predicts that a par-
ticular effect is either zero, or very small. Often these predictions can be dramatically
altered in extensions of the Standard Model containing new particles. Searches for
such effects thus provide another set of tests of the theory.

Why do we look for physics beyond the Standard Model? The chief reason is
that it is surely not a complete theory. Just a few of the many reasons for this
statement: that it does not comprehend gravity; it includes no dark matter candidate
particles; and it fails to account for the matter/antimatter asymmetry of the Universe.
There are some reasons to suspect that the scale of new physics is low enough to
be observable via its impacts in B decays, perhaps even before it new particles are
directly observable via their production (for example at LHC). This is what motivates
us to pursue measurements that, were the Standard Model the full story, would simply
be redundant measurements of Standard Model parameters.

When searching for new physics we are of course constrained by what we already
know. The Standard Model generation structure was invented to give a gauge theory
of weak interactions that includes a Z boson with no flavor changing neutral coupling.
Such effects are not seen, and their size is strongly constrained by the small mass
difference between the neutral kaon mass eigenstates. Likewise any CP-violating and
thus, via CPT, T -violating effects in extensions of the Standard Model are strongly
constrained by the small upper bound on the neutron electric dipole moment. The
match between theory and experiment for the quantity (g-2) of both the electron and
the muon also provides constraints. All these effects put lower bounds on the masses
of particular additional particles, and hence, in general, on the size of amplitude
contributions for B decays involving such particles. New tests, the focus of much of
these lectures, will provide further constraints on model building, or, if we are lucky,
a glimpse of new physics.

These lectures begin with some basic background on the nature of CP violation
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in field theories. I review the particular case of CP violation in the quark sector of
the Standard Model and how (and why) it is embedded in the matrix of quark-weak
couplings known as the CKM matrix. I then treat the special case of neutral but
flavored mesons which can exhibit two types of CP violation effects not seen in other
processes. I emphasize the relationships between measurements and the underlying
theory parameters, stressing the issues of the theoretical uncertainties that arise in
such relationships.

There are some excellent textbooks available covering B physics and CP Violation
in much more detail that these three lectures can. I refer students to these texts for
further study. [1] Another useful reference is the BaBar Physics Book [2], which sum-
marizes a year long study effort planning the experimental program for that detector.
As well as some introductory chapters and appendices that cover general issues in
the theory, this report discusses in detail both the theoretical and the experimental
issues for a number of interesting B decay modes. While these references are a few
years old they present a lot of the basics of the field in great detail and hence are
worth the attention of anyone seriously seeking to learn this area. For somewhat more
recent review including many experimental results see the Y. Nir.[3] Note also that I
do not give many experimental numbers here, for that you need to look at the rest
of the papers at this conference, and (now it is some months later) at more recent
conferences.

1.1 Scales and expansion parameters

Where can we make incisive tests of the Standard Model? Why are heavy quarks
so interesting in this regard? There are few measurements, such as that of the CP-
violating asymmetry in B → JψKs where hadronic physics does not enter the rela-
tionship between a measurement and a parameter in the Standard Model. Then there
are cases where we can use symmetries, such as isospin invariance, to relate multiple
measurements and extract a parameter without any calculation of hadronic physics
effects. Finally there are cases where we can make a reliable expansion that controls
the uncertainties in our calculation of hadronic physics.

To see when we can do this it is useful to ask what is the physical meaning
of ΛQCD? The formal definition as the scale where perturbation theory gives an
infinite coupling constant for the strong gauge interactions is clearly not physical; no
measurement can give infinity as its result, and perturbation theory breaks down well
before the coupling grows so large. A better definition is to say that ΛQCD is the
scale that defines the running of the strong coupling constant that should be seen in
high energy jet physics, and in the binding of massive “onium” type states. Indeed
these are the measurements used to determine it.

This is still a rather esoteric definition. What actually occurs at this scale, what
quantity in low-energy physics depends on it? One needs to understand this to see
the role that ΛQCD plays in B-decay physics. The answer is that this scale sets the
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size of hadrons and thus also gives the scale of the kinetic energy of quarks confined
within these hadrons. For hadrons built solely of light quarks (quarks whose mass is
small compared to the scale ΛQCD) it thus also gives the scale of hadronic masses.
(With this definition the up and down quarks are light quarks, but the strange quark
is a borderline case.)

Conversely, quarks with masses large compared to ΛQCD are heavy quarks. There
are two consequences of being heavy: the first and most obvious one is that the quark
mass dominates the mass of any hadron containing that quark, and thus such quarks
are effectively static components of hadrons (mass large compared to kinetic energy);
the second is that the strong interaction coupling at the scale of that quark mass is
small. Thus there are two small parameters for heavy quark physics ΛQCD/mq and
αs(mq). Expansions in both of these parameters are useful in calculating the impact
of hadronic physics on weak decay processes of heavy quarks and thus we have better
control over these effects for hadrons constraining heavy quarks than in the case of
light hadrons. With this definition the b quark is a heavy quark and the c quark is a
borderline case.

The top quark is in fact so heavy that the issues generally called heavy quark
physics do not even enter in its decays. Weak interactions of hadrons are rare com-
pared to hadron formation time if the masses of the W and Z bosons are large
compared to the hadron masses. However the top quark has a mass greater than the
W . The weak decays of the top quark occur so rapidly that it decays before it ever
has time to form a hadron.

Thus when we talk of the heavy quark limit for hadronic physics, we take that
limit while ignoring weak decays. One can ask how hadronic wave-functions and other
hadronic properties scale as the quark mass goes to infinity, without considering the
fact that any such hadron is never formed because of weak decays. The rigorous
scaling properties derivable in this limit can then be used to constrain models and to
inform predictions about the behavior of hadrons in the interesting heavy quark mass
range—namely around the mass of the b-quark, which is conveniently large compared
to ΛQCD while still small compared to MW .

It would be very convenient for the study of flavor physics if there were more than
one quark in this mass range. In fact there is a second quark that is almost so, the
charm quark. The ratio ΛQCD/mc is about 0.3, small, but not quite small enough.
The QCD corrections to weak decay patterns, and the leading order ΛQCD/mc effects
are both quite large for charm quark states, which limits our ability to make clean
predictions about charm decays. We can, and do, use heavy quark theory to simplify
the analysis of b → c decays, but must take care to allow for the leading order
ΛQCD/mc corrections to these predictions. Cases where this leading correction is
absent are particularly interesting.

At the opposite extreme, when quark masses are light compared to ΛQCD we can
derive symmetries of the light hadrons. Since both mu and md are small on this
scale, both isospin symmetry, which is broken by their difference, and chiral symme-
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try, which is exact in the zero mass limit, can provide useful inputs for the study
of hadronic physics. The additional symmetries that involve the strange quark as
well—the full SU(3) flavor symmetry or its SU(2) subgroups U -spin (the symmetry
of interchange of s and d quarks) and V -spin (s and u quarks)—have larger sym-
metry breaking effects. These are scaled by ms/ΛQCD, which is again borderline as
a small parameter. The question of how to quantify corrections to the symmetry
limit dominates the discussion of theoretical uncertainties for the relationship be-
tween measurement and Standard Model test in many cases. But that is always a
gain over trying to quantify uncertainties in a case with no good limit known.

1.2 The Universe and its matter antimatter asymmetry

“... I would like to have the asymmetry between positive and negative electricity in the
laws of nature (it does not satisfy me to shift the empirically established asymmetry
to one of initial conditions)”

Wolfgang Pauli, in a letter to Heisenberg, June 1933.

This remarkable quote from Pauli shows he felt that matter-antimatter asymmetry
in the equations, the asymmetry we now know as CP violation, is preferable to an
initial condition for understanding the matter-antimatter asymmetry of the Universe.
Pauli aside, it seems that most physicists accepted a complete symmetry in the laws
of physics between those for matter and those for antimatter as a natural condition
of their theories until the empirical discovery that this could not be true—the ob-
servation of the two pion decay of the long-lived neutral kaon (the supposed odd-CP
eigenstate).

Now, almost forty years later, not only do we have a theory that accommodates CP
violation, namely the three-generation Standard Model, but also we have observations
of new CP-violating effects in B meson decays, and the expectation that further such
effects will soon be observed. This puts us in the exciting position of being able to test
whether the observed patterns of CP-violation fit the tightly-constrained predictions
of the Standard Model.

The puzzle of how and when the matter-antimatter imbalance in the Universe
arose is still unanswered. Indeed it provides one of the strong motivations for studying
CP symmetry violation effects. Sakharov took Pauli’s statement a two steps further,
when he summarized the three conditions required for such an imbalance to arise
(rather than to persist from an initial condition), namely baryon number changing
processes, CP violation (as remarked by Pauli), and a non-equilibrium situation.[4]

Now that we know that neutrinos have mass there are two places in the theory
where CP violation occurs, namely the quark and the lepton weak coupling matrices.
(We will later study the quark case in some detail.) Thus there are two classes
of scenarios for the matter-antimatter imbalance: one that it developed first from
the neutrino sector and was later thermalized to baryon number via standard model
processes that change both baryon number and lepton number but not the difference
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between them, or alternately that it developed due to CP violations in the Higgs-quark
couplings at the time of the phase transition in which the Higgs vacuum expectation
value became non-zero and thus the particles became massive.

The answer that Pauli did not like, that it is an initial condition protected by a
conservation law is a viable third alternative but unattractive today. It is unattractive
in principle, as Pauli declared, and in practice as well, because the required asymmetry
the early Universe is approximately 1 in 10 billion, which seems to require a very
fine-tuned initial state. (However, while small for an initial condition, this ratio is
too big to be compatible with the idea that the asymmetry arose as a quantum
fluctuation in the early Universe.) Further, for an initial condition to be relevant, it
must be protected by a conservation law, for baryon number, lepton number (or their
difference). Modern theories (GUTS, etc.) rarely have such a law applicable in the
early Universe.

The quark scenario for baryogenesis does not work in the Standard Model. Given
current limits on the Higgs mass we find that the phase transition when the Higgs
vacuum expectation value appeared is not first order. Even if it were, the amount
of mater-antimatter that the known CP violation would give in this scenario is too
small. Extensions to the Standard Model can fix both problems. In general such
extensions would have observable consequences in B physics. That is one reason why
we find B decays a very interesting place to search for violations of Standard Model
predictions.

1.3 Background: How and when do theories exhibit CP vi-
olation

For any field theory Lagrangian, three discrete transformations can be defined for all
fields. These are: C, charge conjugation, which interchanges particle and antipar-
ticle; P , parity, which reverses all spatial co-ordinates; and T , time-reversal, which
interchanges in-states and out-states. The product of these three operations, CPT, is
an exact symmetry in any local Lagrangian field theory. It follows from the locality,
Lorentz Invariance, and hermiticity of the Lagrangian. This means that any two rates
which are related to one another by the operation of CPT must be equal in any field
theory. Tests for CPT violation are thus testing for physics which lies outside the
realm of local Lagrangian field theory.

The combination CP, and thus T , is also an automatic symmetry in pure gauge
theories, and hence, in particular in QED and QCD. These theories also have separate
C and P conservation, as long as all quarks are massless. In this same limit weak
interactions maximally violate C and P but conserve CP. The pattern of automatic
CP conservation applies for many theories beyond QED, and indeed was the only
one known to theorists prior to the experimental discovery of CP violation [5], which
explains why this discovery was such a shock to the physics community.

However we now understand that CP violation, unlike CPT violation, is readily
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accommodated in field theories. CP violation can arise when there is a phase differ-
ence between two couplings in the theory that cannot be removed by any set of phase
redefinitions of the fields. I will explain this point further below.

First let us understand why complex couplings give CP violation. Two amplitudes
contributing to the same process interfere with one another when they have relative
phases. Any coupling constant phase occurs with opposite sign for a decay and the
CP-conjugate decay, and this can lead to CP-violating rate differences. The rate
difference can be seen by the following simple algebra. Let the amplitude for the
decay of interest be

A = A1e
iφ1eiδ1 + A2e

iφ2eiδ2 (1)

where the Ai are real amplitudes, the φi are the coupling constant phases (known
as weak phases), and the δi are the phases from absorptive parts in the amplitude
(known as strong phases). Imagine that the two terms come from two different sub-
processes that contribute to the same transition, for example two different Feynman
diagrams for the quark weak decay. Now the CP conjugate amplitude is given by

A = A1e
−iφ1eiδ1 + A2e

−iφ2eiδ2 . (2)

The weak phases reverse sign between A and A because the CP-conjugate rate is
governed by the complex conjugate couplings. The strong phases, however, are the
same in the two cases, because whatever absorptive parts contribute to the first pro-
cess are matched by the CP-conjugate absorptive parts in the second. The difference
in rates is

|A|2 − |A|2 = 2A1A2 sin(φ1 − φ2) sin(δ1 − δ2) . (3)

Note that a CP-violating rate difference of this type requires that both the weak and
strong phases are different for the two terms in the amplitude. This is called direct
CP violation, or CP violation in the decay, and is characterized by |A/A| 6= 1.

Any two terms that contribute to the same rate must correspond to the same
overall set of quark fields (valence quarks) for the external particles of the process.
A phase redefinition of any subset of fields will change both terms in the same way.
Thus the difference φ1 − φ2 is phase convention invariant, and can have physical
consequences, while the individual values of the phases are convention dependent and
hence have no physical meaning.

Now let us explore what theories can have such phase differences of couplings.
For many years physicists forgot Pauli’s critique of matter-antimatter symmetry and
wrote theories that, like Dirac’s equation have exact CP symmetry. Why? I think
chiefly because many theories automatically have this property. Indeed it turns out
one needs a theory with many different particle types before one can introduce any
CP violating couplings.

A Lagrangian must be Hermitian. That alone makes the gauge coupling constants
real. In QED one could add a complex fermion mass, but that can be made real by
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a chiral rotation, which is simply a phase redefinition of the fermion field.† Once
we add the left-handed gauge coupling of the weak interaction we cannot even add
a fermion mass term, but again Hermiticity is enough to ensure that all the gauge
couplings are real.

Once one adds a scalar field to a multi-fermion theory things get more interesting.
Scalar couplings can take the form

Yijφψiψj + Y ∗
ijφ

∗ψjψi . (4)

Here, I wrote the Hermitian conjugate coupling explicitly. You can see that Hermitic-
ity does automatically force the coupling Yij to be real, because the role of the flavors
i and j is reversed in the second term. However I can readily make any one such
coupling real by a phase redefinition of either of the fermion fields (and if the scalar
field φ is complex I can redefine its phase too.)

As additional copies of each fermion type are added to the theory the number of
possible couplings of the form in Eq. (4) grows more rapidly than the number of fields.
Eventually, with enough independent fields in the theory, we reach the point where,
starting with all complex couplings allowed by the symmetries of the Lagrangian,
there is not enough rephasing freedom to make all couplings real. Such a theory has
CP violating effects.

In the Standard Model the quark-Higgs Yukawa couplings allow the possibility of
CP violation. Quark masses come from the Higgs field vacuum expectation value via
the Yukawa couplings of the quarks to the Higgs field. These couplings thus define
what combination of quark weak eigenstates (states paired to a given up quark in weak
decays) form a definite mass down-type quark. Thus, in the quark mass-eigenstate
basis, these couplings are the source of the quark mixing-matrix parameters, which
define the strength of the various W -emission transitions. Thus the possible CP
violations of quark processes are encoded within this matrix.

1.4 The CKM matrix

In a two generation Standard Model, all couplings can be made real by field redefi-
nitions, starting from the most general complex but Hermitian Lagrangian with the
symmetries imposed. For three generations of quarks in the Standard Model, after
field redefinitions have removed as many phases as possible, and the constraints due
to unitarity of the theory have been imposed, the 3×3 quark-W coupling matrix,
known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix [6] contains four indepen-
dent parameters, one of which is a complex phase that causes CP violation. The aim
of B physics experiments is to over determine the CKM parameters by many inde-
pendent sets of measurement and to search for effects that are not consistent with
the predictions of this theory.

†For QCD the situation is a little more complicated, if there are no massless quarks then chiral

rotations that make all quark masses real introduce a CP violating term of the form ǫµνησF
µν

F
ησ.
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The CKM matrix [6] elements Vij denote the transition between an up-type quark
i and a down-type quark j by W-emission or absorption. The magnitudes of these
matrix elements are physically measurable quantities. I will discuss ways in which
they are determined in the next lecture.

One commonly used convention for the parameters of the CKM matrix was sug-
gested by Wolfenstein [7], namely

V =







Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb







=







1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1





+O(λ4) . (5)

Empirically, we know that the parameter λ ≡ Vus is a small number, of order
0.2. The higher powers of this parameter that appear in the more off-diagonal matrix
elements Vcb and Vub have no theoretical basis; they are simply a way of denoting the
empirical fact that these matrix elements are successively smaller. The powers of λ
are chosen so that the parameters A, defined by |Vcb| and ρ2 +η2, defined by |Vub|, are
of order 1. The matrix elements Vcd, Vtd and Vts are then fixed by unitarity to take
the form given here, up to corrections of order λ4. The Wolfenstein parametrization is
also a choice of phase convention for this matrix. The parameter η is a CP-violating
parameter; couplings in which appears are complex.

The weak interaction gauge symmetry requires that the CKM matrix is unitary,
unless there are additional quark types beyond the three generations of the Standard
Model. The unitarity constraints, which have been built into this parameterization,
take the form

∑

i=u,c,t

VijV
∗
ik = δjk (6)

and likewise
∑

j=d,s,b

VijV
∗
kj = δik . (7)

The off-diagonal relationships in Eq. (6) or (7) (a sum of three complex numbers
is equal to zero) can be represented as a closed triangle of vectors in the complex
plane. These are called the Unitarity triangles. Notice that the angles in any of
these triangles, that is the relative phases of the terms in any one of the sum rela-
tionships, cannot be changed by any set of phase redefinitions of the quark fields;
they are rephasing invariant quantities. In fact, all these triangles are related; the
true rephasing invariant statement that there is only one independent CP-violating
parameter in the matrix is the condition that all these triangles have the same area,
J/2, where J is called the Jarlskog invariant, for Cecilia Jarlskog who first proved
this fact.[8] J is proportional to the area of the unitarity triangles. Obviously J is
zero if all couplings are relatively real.
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While all the triangles have the same area they come in three distinct types.
Consider the case for Eq. (6) with i = d and j = s. Then two of the terms are of
order λ and the third is of order λ5. The area of this triangle is thus of order λ6,
however its small angle is of order λ4. Asymmetries proportional to such a small
parameter are extremely unlikely to be measured. For the case i = s and j = b one
finds two sides of order λ2 and one of order λ4, again an area of order λ6. Here the
small angle of order λ2, difficult but perhaps not impossible to measure. Finally for
the case i = d and j = b we find all three sides are of order λ3 and thus all angles are
of order 1.

This last is the interesting case for CP violation studies, which measure quantities
directly proportional to the angles of the triangle. While the overall effect is order λ6

here we have CP asymmetries of order 1 in rare processes, as compared to the first
case where the CP asymmetries are of order λ4 but could occur in leading weak decay
rates. In B physics, when people talk of “the unitarity triangle” they mean this last
triangle. Conventionally it is drawn with the sides rescaled by the quantity VcdV

∗
cb so

the base is real and of unit length and the apex of the triangle is the point ρ, η in the

complex plane where ρ = ρ(1 − λ2/2), and η = η(1 − λ
2
/2).

The angles of this triangle have, unfortunately, two conventionally used sets of
names, they are either α, β, γ or φ2, φ1, φ3, where the first named is at the apex and
the order is clockwise around the triangle. One can of course determine this triangle
by measuring the lengths of its sides, all of which are CP-conserving quantities. The
match between the angles determined by measuring sides and those found by mea-
suring CP-violating quantities is a test of the Standard Model. In the next lecture
we will discuss how, and how well, these various quantities are measured.

1.5 Quantum states of neutral flavored mesons

There are a number of pairs of neutral but flavored pseudoscalar mesons, K0, K 0;
D0, D 0; B0, B 0; and Bs, Bs. In each case there are two distinguishable quark flavor
eigenstates. Let us use the notation P 0, and P 0 to denote any such pair of particles,
with the phase convention chosen so that CP P 0 = P 0. However these flavor eigen-
states are not mass eigenstates . In general the two mass eigenstates can be written
as

PH(L) = pP 0 ± qP (8)

with the constraint p2 + q2 = 1. The subscripts H and L denote mass, H for the
heavier and L for the lighter, with mass difference ∆M .

The mixing of a P 0 and P 0 that determines these mass eigenstates arises from
two-W quark box diagrams, as seen in Fig. 1. If the quark-W couplings were all
relatively real this would give mass and width differences but no CP violation effects.
If CP were an exact symmetry then the two CP-eigenstates (P 0 ± P 0)/

√
2 would

have to be the mass eigenstates, and thus |q/p| = 1. Phase differences between the
couplings that contribute for different intermediate quarks in the box diagrams can
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Figure 1: Diagrams for B0 ↔ B 0 mixing.

lead to mass eigenstates for neutral but flavored mesons that are not CP-eigenstates
(and cannot be made so by any set of phase redefinitions). The decay of the KL

state to two pions showed that this is the case for the neutral K system. (KL is
one of the two mass eigenstates; in the K case it is conventional to label the two
eigenstates S and L for short- and long-lived as the lifetime difference dominates the
mass difference in their phenomenology.) This decay was the first a clear indication
of CP violation. Any value of |q/p| 6= 1 gives CP violation in the mixing.

These two meson systems have interesting quantum mechanics. Production, decay
and interactions with matter are flavor dependant, but the mass eigenstates are not
flavor eigenstates. The effects has been well explored in the case of the kaons. For D
mesons the effects of mixing are as yet undetected, as these mesons decay so rapidly
on the scale of their mass differences that the initial coherent superposition of the two
mass eigenstates scarcely has time to evolve. For the Bd mesons the width difference
is expected to be small compared to the mass difference; most treatments of Bd decays
ignore width difference effects. For Bs mesons the two effects are expected to be of a
similar magnitude.

1.6 Three Types of CP violation

We can define three types of CP violation. (We have already mentioned two of them.)
The first type is a CP-violating difference in the magnitude of the amplitude A for
any process and the amplitude A for the CP-conjugate process (and thus a difference
in the rates), as described above in Eq. (2). This is generally known as direct CP
violation, though a better description is CP violation in the decay. This can occur
for both charged and neutral particle decays.

Direct CP violation has historically been a topic of considerable theoretical and
experimental attention, chiefly because it distinguishes between a class of theories
called “superweak” that predict no such effect, and all others. Its magnitude depends
on strong interaction phases, which are notoriously difficult to calculate. Thus, it
is generally very difficult to use an observation of direct CP violation to pin down
theoretical parameters or otherwise test the Standard Model theory. One exception is
obvious: those cases where the Standard Model predicts no, or very small, direct CP
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violation effects. In such cases observation of significant direct CP violation would
be a clean signature that some new physics effect is contributing to the amplitudes.
Hence such channels are important to identify and to study.

The remaining two types of CP-violating effect are peculiar to the neutral flavored
meson systems discussed above. The second type is called CP violation in the mixing,
|q/p| 6= 1. In that case the mass eigenstates cannot be the CP eigenstates.

The third type of CP violation can occur even when |A/A| = 1 and |q/p| = 1.
It occurs for decays of neutral pseudoscalar mesons to a CP eigenstate final state
f when such a state is accessible both from decay of P 0 (with amplitude Af ) and

that of P 0 (with amplitude Af = ηfAf where CP | f〉 =
∣

∣

∣ f
〉

= ηf | f〉). The CP
quantum number ηf = ±1 depends on the particular state f under study. A particle
that is P 0 at time t = 0 can decay to f either directly, or by first mixing to P 0 and
then decaying to the final state. These two paths interfere to give a time-dependent
CP-violating effect a difference between the rate for an initial P 0 and that for an
initial P 0 to produce the state f . Let us define

λf =
qAf
pA

. (9)

One finds a contribution to the rate difference that is proportional to
sin(∆Mt)Imλf . This third type of CP violation occurs whenever the weak phase
of the decay amplitude is different from the weak phase of the mixing amplitude. In
addition there is a possible direct CP violation contribution to this rate difference,
proportional to cos(∆Mt)(1 − |λf |2). The quantity λf is one we see over and again
in discussions of CP violation in neutral B decays, so it worthwhile remembering its
definition.

This third type of CP violation is particulary interesting in the case where the
other two are not present, |λf | = 1. Then the imaginary part of λf directly measures
the phase difference between the mixing and the decay amplitudes, a quantity that
is cleanly predicted in the Standard Model. In this case the magnitudes and strong
phases of the decay amplitudes do not enter the asymmetry result (the difference of
rates divided by the sum), so there are no hadronic physics uncertainties in extracting
CKM phases from such a measurement.

The case ψKS (where ψ here stands for any cc resonance, including the ηc type)
is an example of this type; in this case the asymmetry is proportional to sin 2β where
β (or φ1) is the bottom right-hand corner of the b-decay unitarity triangle, the angle
between VcbV

∗
cd and VtdV

∗
td. (We will shortly examine generic B decays to see why this

is so.)
All three types of CP violation have been observed. In K decays the quantity ǫ′

is the first type—direct CP violation or |A/A| 6= 1. The quantity Re(ǫ) measured in
the decays KL → ππ is the second type, CP violation in the mixing or |q/p| 6= 1. The
asymmetry in B decays to ψKS (and ψKL) is of the third type, asymmetry due to
interference between decay with and without mixing, or Imλf 6= 0.
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1.7 Quark-level b decay processes and B meson decays

We next study the generic processes that contribute to B decays. We need to look at
the processes that occur for decay of a b-quark. We include both leading order (tree)
and one-loop (penguin) quark decay diagrams.

b q''

q

q–'

W
W

b q

q'

q–'

g,z,γ

u,c,t

(a) (b)

11-2002

8657A3

Figure 2: Quark level tree (a) and penguin (b) graphs for weak decay.

These two types of quark-level process are the underlying structure for all possible
decay amplitude contributions. One then draws all ways of getting from the initial
quarks within the B meson to the valence quarks of the final meson. Note however
that the diagrams one obtains in this way are not Feynman diagrams. The many soft
gluons, and even possible hard gluon exchanges, are not drawn. One must therefore
be somewhat wary of language about B decay processes that uses these diagrams as
a way of specifying the various contributions and their relative sizes. This language
is imprecise and even counts the same process in more than one way. The diagrams
and names for the various diagrammatic topologies are a useful way to categorize the
processes and to compare various channels, not a tool for precision calculation. In
the third lecture I will talk a little about the formalism that is being developed to
move from a schematic diagrammatic description to a well-controlled calculation, at
least of the leading terms in a ΛQCD/Mq expansion.

Two major factors govern the general size of an amplitude contribution where the
second quark of the B meson becomes a valance quark of one of the final mesons. One
is the size of the CKM coefficient that appears in it, the more factors of λ there are the
smaller the contribution. The second is whether it is a tree or a loop diagrams. Loop
diagrams have an additional factor of order αS(mq)/4π, due to the gluon emission.
Thus, for heavy flavor decays they are suppressed relative to trees.

Topologies where the second quark in the B meson participates in the becomes
one of the legs of the quark diagrams in Fig. 2 are generally considered to be sup-
pressed contributions, because they require the two quarks in the B meson to be a
short distance apart on the scale of ΛQCD. These are called exchange or annihilation
contributions.
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One strategy to search for new physics in B decays to look for channels that are
forbidden at the tree level, or have only CKM-suppressed tree contributions. Since
any new physics process is, by definition, mediated by heavy particles, it is unlikely
to compete with unsuppressed tree-level Standard Model processes. However such
effects could be large compared to a rare or forbidden Standard Model contribution.
Hadronic corrections introduce uncertainty in the size of the Standard Model contri-
bution, but for such channels the discrepancy arising from new physics effects could
be large even compared to this uncertainty. In B-decays processes that occur only
via loop diagrams are B → sγ, and b → sss (such as B → φKS). Since these are
rare decays both the rate and the size of the time-dependent CP violation in any such
channel are interesting places to search for new physics.

4-2004
8693A1

d

b d

c d

d

4-2004
8693A2

d

b d

c c d

d

Figure 3: Two ways of thinking about the same thing. (a)penguin diagram (b)tree
diagram plus meson exchange.

None of the diagrams for B decay to few meson final states are Feynman dia-
grams, as they all involve a lot of hidden physics of the strong interactions. Even
the distinction between a “tree” and a “penguin” process is not unique, as shown
by comparing the two diagrams in Fig. 3. In the first, a gluon is explicitly shown
(and thus implicitly assumed to be hard), whereas in the second, the same quark
lines appear with no hard gluon. Here the gluon is implicit, inside the exchanged
meson, and thus implicitly a soft gluon. However there is no sharp way to distinguish
these two contributions until a whole formalism for explicitly separating the hard
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and soft gluon effects is applied. Similarly some so-called annihilation contributions
can equally well arise as flavored-meson exchanges. Such “rescattering” effects are
probably somewhat suppressed, but it is not easy to calculate by how much. All this
is a warning to take arguments based on different magnitudes of diagrams as rough
rules of thumb, rather than firm predictions.

1.8 Consequences of unitarity

The Unitarity relationships are the residual effect of the initial gauge symmetry. Thus
they protect the theory form divergent contributions. Let us look at this for the case
of a penguin graph contribution to B decay, as shown in Fig. 2b, say for the process
b→ ccs.

The internal quarks in the loop in Fig. 2 can be any one of the three up-type
quarks. The sum of all such diagrams is given by

Pccs = Σi=u,c,tVisV
∗
idf(mi) . (10)

Here the quantity f(mi) represents the Feynman integral over loop momenta for the
diagram containing the i-th up-type quark in the internal lines of the loop. Notice that
this is a divergent integral, so in fact f is not well-defined unless I introduce some
regularization prescriptions. If all three up-type quarks had equal mass, then the
Unitarity condition (Eq. (6)) would say this amplitude vanishes. The divergent term
in the integral does not depend on the quark mass. Thus the Unitarity relationship
guarantees that the divergences cancel. One way to make this explicit is to use the
unitarity relationship to eliminate one set of CKM coefficients, say VtsV

∗
td. This gives

Pccs = VcbV
∗
cs[f(mc) − f(mt)] + VubV

∗
us[f(mu) − f(mt)] . (11)

The divergence cancellation is now explicit in the differences of the f(mi). Further-
more we have now arranged this amplitude so that we see that the first term has the
same CKM coefficient (the same weak phase) as the larger tree graph contribution.
The second term is suppressed by an additional two powers of the small parameter λ.
Thus we can see that the amplitude for a b→ ccs decay is very strongly dominated by
a single weak phase and hence, for any CP eigenstate f |Af/Af | = 1 up to corrections
that are at most a few percent.

This same unitarity pattern is used over and over again in the Standard Model to
combine terms from similar diagrams with three different internal quarks to give two
manifestly finite contributions. In addition to demonstrating divergence cancellations
it is a useful way to group terms both to display the CKM phase structure and discuss
the relative size of the two terms. There is no fixed rule on which term to eliminate,
so that choice may be made differently in different papers. Shorthand notation often
labels the entire contribution that includes both tree and penguin parts as the “tree
piece” and the term with a different weak phase as the “penguin”. This is fine if
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you are just keeping track of weak phases, but if you want to use other processes to
determine the magnitude of a particular contribution you need to keep track of all
the pieces explicitly. That is why diagrammatic analyses include many more than
two terms, even though only two distinct weak phases appear.

1.9 Time-dependent B decay formalism

Now we turn to the general formalism that is needed to discuss experiments to measure
time-dependent CP violating effects in B decays. Let us define M = (MH +ML)/2,
and ∆M = MH −ML, and similarly for Γ and ∆Γ, where the subscripts H and L
denote the heavier and lighter mass eigenstates respectively. (Another warning about
conventions is needed here; there are, unfortunately, two of them floating around.
With the convention defined above ∆M is obviously positive, however the sign of
Re q/p is a physical quantity to be explored. The other convention labels the two
states as 1 and 2 and defines q/p to be positive; 1 is the state with +q, and 2 has −q
in the superposition Eq. (8). In this alternate convention the sign of ∆M is a priori
undefined. I use the first of these two conventions.)

We define the states B0(t) (B 0(t)) as the time-dependent superposition of a B0

and a B 0, (or, equivalently, of a BH and a BL) which at time t = 0 was, or will be,
a pure B0 (or B 0 respectively).

B0(t) = g+(t)B0 +
q

p
g−(t)B 0

B 0(t) =

(

p

q

)

g−(t)B0 + g+(t)B 0 . (12)

The functions g±(t) can readily be found by writing the state B0(t = 0) as a su-
perposition of BH and BL and allowing that state to time evolve. A little algebra
gives

g+(t) =
1

2
e−(Γt/2)eiMt

{

cos
∆Mt

2

(

e−(∆Γt/4) + e+(∆Γt/4)
)

+i sin
∆Mt

2

(

e−(∆Γt/4) − e+(∆Γt/4)
)

}

(13)

→ e−(Γt/2)eiMt cos
∆Mt

2
for

∆Γ

Γ
→ 0

and

g−(t) =
1

2
e−(Γt/2)eiMt

{

i sin
∆Mt

2

(

e−(∆Γt/4) + e+(∆Γt/4)
)

+ cos
∆Mt

2

(

e−(∆Γt/4) − e+(∆Γ|t|/4)
)

}

(14)

→ ie−(Γt/2)eiMt sin
∆Mt

2
for

∆Γ

Γ
→ 0 .
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From here on we use the approximation ∆Γ
Γ

→ 0 to simplify our equations, for Bd

it is a good approximation. Note that the states B(t) are perfectly well-defined for
t < 0. What this means physically is that superposition of B0 and B 0 which, if it
does not decay, would evolve to be pure B0 (or pure B 0) at time t = 0. (The state so
defined has norm greater than 1 at t < 0 in order to arrive at time t = 0 with norm
1. This is a bit artificial, in any real case we normalize the state for any particle at
production time and then evolve that state with a decaying exponential.)

In an e+e− B factory the initial system is produced in a coherent state which
remains exactly B0B 0 until such time as one of the particles decays. Better said,
both particles oscillate, but they do so coherently, so that the probability of finding
two B0 particles or two B 0 particles vanishes at all times, as long as both are present.
However once one particle decays the other continues to oscillate until such time as it
decays. If one B decays to a flavor-tagging mode and the other decays to a CP-study
mode we have an event that can be used to reconstruct the time dependence of the
asymmetry. We find the rate for the production of such events is given by

R(ttag, tf ) ∝ e−Γ(ttag+tf )/2
∣

∣

∣Atag

∣

∣

∣

2 |Af |2

×
{

1 + |λf |2
2

∓ cos ∆m(tf − ttag)

(

1 − |λf |2)
2

)

(15)

± sin ∆m(tf − ttag) Imλf

}

.

The CP asymmetry for a final state f is thus

af =
R(Btag) −R(Btag)

R(Btag) +R(Btag)

= [cos(∆Mt)(1 − |λf |2) − 2 sin(∆Mt)Imλf ]/(1 + |λf |2) . (16)

In this last equation we have set t = tf − ttag. In an asymmetric B factory we can
measure this time from the physical separation of the two B-decay vertices, since the
pair is produced with known large momentum in the direction of the higher-energy
beam. (This time difference is negative when the tagging decay occurs later than the
CP-eigenstate decay.)

Eventually we will also have B physics results from hadron colliders. The two
types of experiments have different advantages and disadvantages; both are needed
to carry out the full program of B physics measurements. One can produce many
more B-mesons per hour in a hadron collider, but along with them one also produces
many other hadrons, and many more events that do not contain b-hadrons. For each
decay mode one must devise a way to trigger on the events of interest, separate the
particles produced from the B decay from other hadrons, and from backgrounds that
fake a B event, and tag the initial flavor of the B meson. Each of these steps is
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somewhat more difficult, and less efficient, in the hadronic environment. How much
more difficult depends on the mode in question. However since one is starting with
a much higher production rate, lower efficiencies can be acceptable. In addition, all
types of b-hadrons are produced, so a hadron collider can study processes that are
inaccessible at an e+e− collider-based B factory, which makes only Bd type mesons
when running at the Υ4s resonance. Bs mesons are not accessible to the current B-
factories; their decays are as interesting for testing the Standard Model as those of Bd

mesons. Conversely, the mode B → π0π0 is important and cannot be readily studied
except at the e+e− B factories. [These are examples to show why both approaches
are needed; they are not the only cases.] In these lectures I focus chiefly on the
electron-positron colliders, because those are the currently active experiments.

Note that, in the case of a coherent B0B 0 state a single CP-violating term survives
if |λf | = 1. It is proportional to an odd function of time, and hence would vanish if
one were to integrate over all times. This quantity is particularly interesting because
it gives us a result that directly measures the difference of weak phases of the mixing
and decay terms, and thus the relative phases of certain CKM matrix elements, with
no uncertainties from hadronic physics effects.

There are many channels where the pattern of tree plus penguin amplitudes leaves
gives |λf | 6= 1 and the relationship between Imλf and any CKM parameter is more
complicated. In some cases we can use further inputs, measured in other related
channels, to determine or constrain these shifts. My third lecture will focus on such
examples.

1.10 B → J/ψKS

An example of a decay with |λf | = 1 to very high accuracy is the decay f = ψKS. At
the quark level this is a b→ ccs decay, which I showed above is dominated by a single
CKM matrix element and has |λf | = 1 up to corrections at the few percent level.
Thus the third type of CP violation, interference between decay with and without
mixing is the only one that can play a role here. For the two decay paths to interfere
we need both B mixing and K mixing. The phase measured here is

arg(q/p)B arg(A(ψKS))

A(ψKS) arg(q/p)K
= 2argV ∗

tbVtb arg(VcbV
∗
cs) arg(VcsV

∗
cd)

= 2 arg V ∗
tbVtbVcbV

∗
cd = 2β . (17)

This decay is clean both theoretically and experimentally, a rare situation! The
channel is readily recognized, for example by the two-lepton decay of the ψ-type
resonance and the two-charged-pion decay of the KS.

The results from both BaBar and Belle now show a clear CP violation in this
channel.[9] The extracted value for sin(2β) is in good agreement with the value given
by measuring the sides of the triangle. Figure 4 shows these results, and that from CP
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violation in K decays, as well as the allowed regions for the apex given by measuring
the sides. The figure is taken from the CKM Fitter website: ckmfitter.in2p3.fr/ .[10]
The website describes in detail what measurements have been used for each quantity
in this figure and how they are combined to give the allowed region. You can see that
there is a common region for the apex that is consistent with all these measurements.
The Standard Model has survived yet another test!

It will take some years more work on B decay physics to complete the next set
of tests to a comparable level of accuracy. There are many interesting channels to
study. Few of them have sufficient statistical accuracy as yet to give refined tests of
the theory.

Modes where a similar analysis predicts no CP violation because the decay weak
phase cancels the mixing weak phase provide a good test of the theory. This is the
case for example, up to few percent corrections, for the channel Bs → ψφ. A large
observed CP violation this channel would be a clear indication of physics beyond the
Standard Model. However the existing B factories cannot study it, so this and other
Bs results await a good B-physics detector at a hadron collider.

1.11 Other sin(2β) modes

There are a number of other modes that should have the same asymmetry as the
J/ψKS mode in the Standard Model. Any CP eigenstate mode dominated by the
quark level decay process b → sss falls into this class; the precision with which this
statement applies must be estimated separately for each mode.

The quark transition B → sss is pure penguin, and can, like the b→ ccs transition
amplitude, be written as a sum of a term proportional to VcbV

∗
cs and a λ2-suppressed

term proportional to VubV
∗
us. In the ccs case the first of these terms was further

enhanced by the presence of a tree graph contribution, whereas in the sss case the two
coefficients multiply similar penguin type contributions, differing only by replacing
the mass of the c quark by the mass of the u-quark in the integrand of the loop
diagram. Thus the impact of the second term is slightly larger here, naively the
ratio of the two terms is about 5%. Thus, to be conservative, we can say that the
mode φKS should have the same asymmetry as that for J/ψKS with less than 10%
theoretical uncertainty in the Standard Model.

The current experimental situation is tantalizing. Both BaBar and Belle have
measured the asymmetry in this mode. The most recent numbers for the coefficient
of the sin ∆Mt term are [9, 11, 12]

ImλψKS
= 0.736 ± 0.049

ImλφKS
= −0.96 ± 0.50+0.09

−0.11 Belle (18)

ImλφKS
= 0.47 ± 0.34+0.08

−.06 BaBar .

The Belle result shows a significant discrepancy from the Standard Model. If this
were the only measurement one could get quite excited at this. However the BaBar
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Figure 4: This plot, taken from the CKM fitter site, shows that, to date, all measure-
ments are compatible with a single choice of CKM parameters.
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result is consistent within errors with the Standard Model. The two experiments are
marginally consistent with one another. This leaves a quandary, either someone is
making a mistake, or, with more data the results will converge. We could eventually
have a result that is quite interesting. Given the numbers, it will take at least three
times the present data to clarify this situation. Theorists of course are actively
exploring models that would explain such a discrepancy, see for example.[13]

The modes η′KS and ηKS also have significant sss contribution, but they also
get contributions from b → dds and b → uus. This last introduces tree terms pro-
portional VubV

∗
us. Thus the CKM-suppressed term is somewhat enhanced by the tree

contribution in these decays and the uncertainty in the expected match of the asym-
metry to that for J/ψKS is larger. However these modes are interesting to study, as
any new physics that affects φKS will also play a role here.

2 LECTURE 2: DETERMINING CKM MATRIX

ELEMENTS

2.1 Magnitudes from B physics

The Wolfenstein parametrization encodes some of what is known about the magni-
tudes of CKM matrix elements in terms of powers of the Cabibbo quantity Vus = λ,
which is well measured. The remaining parameters A, ρ, and η (or equivalently

ρ = ρ(1 − λ2/2), and η = 1 − λ
2
/2) enter into B-physics. These are less well known.

This lecture is about how, and how well, one can determine them that is, determine
the magnitudes of the CKM matrix elements in which they enter. An excellent review
of this subject is included in the particle data book.[14]

In almost all cases the largest uncertainty comes from the theory. Theory uncer-
tainties have two unfortunate features, first they are difficult to quantify, and second
they are generally not statistical, so it is not clear that one treats them correctly
by adding them in quadrature. (These two statements apply also to many types of
systematic errors in experiments.) This is why results are typically quoted nowadays
with three terms in the error: first the experimental statistical uncertainty; second
the systematic error that is intrinsic to the experimental measurement; and third the
systematic error that arises when one tries to interpret the result as a measurement
of some parameter in the theory. The difference between the second and third terms
is not always well-defined. For example one measures a particular branching fraction
but must impose some cuts to reduce backgrounds. The cuts introduce an uncer-
tainty already at the level of a branching fraction result because one must use some
theoretical input to determine the impact of the cut on the branching fraction. Often
a Monte Carlo model is used, but that model is built using some theory, as well as
data inputs. This kind of uncertainty is usually called an experimental systematic
uncertainty. When one makes the step of using a measured branching fraction to
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extract the value of a CKM parameter another set of theoretical inputs are needed.
One must calculate the ratio of the branching fraction (or other measured quantity)
to the desired parameter. The uncertainty in this last step is what is usually called
the theoretical uncertainty.

2.2 |Vcb|

The transition b → clν is proportional to the b → cW coupling and thus the mix-
ing matrix element Vcb. There are two ways to try to extract this quantity, in-
clusive measurements and exclusive decays to particular channels. As a first guess
you might think it obvious that the inclusive hadronic semileptonic decay rate mea-
sures the quark level semileptonic decay rate; after all, if the quark decays then the
hadron must. This idea is called quark-hadron duality, or to be more precise local
quark-hadron duality (as opposed to the more rigorously defendable “global quark
hadron duality” that applies for example for the energy-averaged cross-section for
e+e− →hadrons).[15]

Certain effects can be seen quite clearly, for example the fact that the initial
and final states are mesons not free quarks alters the phase space available. The
question is then how much does the environment affect the decay rate for a b-quark
in a hadron? The naive guess—not much—seems a good one. One would not expect
the energetics of the decay to be greatly changed by the confinement of an additional
light quark around the heavy b-quark (certainly no exclusion principle forbids the
decay, as occurs for neutrons in stable nuclei). This argument is compelling but not
rigorous. Its biggest flaw is that it does not tell us how to calculate the size of the
error we are making in carrying out an approximate treatment of the effect of the
environment. How big is “not much”?

The formal treatment that gives some improvement over the naive statements is
the operator product expansion. The physical idea behind this approach is that we
can separate the hard (or short-distance) physics and its time scale from the soft
(long-distance effects). This is a weak form of the quark-hadron duality assumption,
it assumes that the environment is properly accounted for in the matrix elements, and
does not affect the short-distance or hard part of the physics. The hard physics gives
us a set of local operators (products of fields and their derivatives) that are generated
by the quark-level weak decay vertex and the hard QCD corrections to that vertex.
At each order in an expansion in αS(mq) and ΛQCD/mq further operators can appear.
The coefficients of these operators are calculated from the weak decay and hard QCD
corrections to it; these are quark and gluon level diagrams. The soft physics gets
lumped into the matrix elements of the operators. These are not perturbatively
calculable. However, there are a finite number of such matrix elements that appear
in inclusive B decays at each order in ΛQCD/mq. The hope is that these can be
determined by combining several sets of measurements that, according to this theory,
depend on the same set of matrix elements. In some cases the needed matrix elements
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can be calculated using lattice QCD calculations.

To take the path of using other measurements, note that the same quantities
that determine the spectrum of the meson weak decay rate, weighted integrals over
quark distributions in the B meson, also govern the charmless hadronic spectrum seen
in the decay B → Xsγ where Xs denotes any final states containing non-cancelled
strangeness. Here we know the relevant coupling constant. So eventually, with enough
data for both processes, and assuming the expansions in ΛQCD/mq and αS(mb) con-
verge well enough, we should be able to fit for the leading set of unknown quantities
and Vcb simultaneously. (The method of choice is to use moments of the spectra in
both experiments and to parameterize these in terms of heavy quark expansion pa-
rameters). The impact of terms that we have dropped via our heavy-quark and QCD
expansions can be estimated on the basis of the sizes of the terms that we have kept.
Indeed, with sufficient data, the parameters of the leading and next-leading terms
can be over constrained, so the basic assumptions of the method can be tested by
checking for self-consistent results.

In defining the operator matrix elements and their coefficients we introduced an
artificial scale, the division between what we call a hard gluon and what we call
a soft one. Both the operator coefficients and the matrix elements depend on this
scale. If we could treat both exactly there should be no dependence on it in the final
result. The calculations also depend on a second scale, which is the scale at which
we choose to renormalize the strong coupling constant. Again this scale should not
enter into the final result if the calculation is done consistently, but can do so when
approximations are made. Both scales appear in a similar form in the results; they
are usually chosen to be equal. Scale dependence appears both because we truncate
the perturbative calculation of operator coefficients at some low order, and because
we do not have exact methods to determine the matrix elements of the operators.

Additional scale dependence appears because of the dependence of the rate on
another unphysical parameter, the mass of the b-quark. Quark masses cannot be di-
rectly measured. There are a number of different perturbatively-defined prescriptions
for what we mean by the quark mass. These prescriptions introduce some further
scale dependence. Care is needed to ensure that a consistent definition is used for all
parts of an analysis of data.

If you recall the calculation for muon decay, semileptonic decay rates scale as the
mass of the decaying particle to the fifth power. The situation is not quite that bad,
as three of the five powers of mass are actually phase-space factors, which scale as the
mass difference mb−mc. This is more readily determined; it is given by the difference
of B- and D-type meson masses up to corrections suppressed by ΛQCD/mc.

The true answer for any physical parameter should not depend on the artificially-
introduced scales at all. However, all calculations yield results that do have some scale
dependence because approximations are made that do not correctly treat these details.
What scale should we choose to define the answer? What theoretical uncertainty
arises because of this choice? The usual prescription in b-decay physics is to say the
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right scale is the mass of the b quark, since this sets the physical scale of energy release
in the problem. The uncertainty due to scale-dependence is typically estimated from
the amount the answer changes as the scale is varied from mb/2 ≤ µ ≤ 2mb. Clearly
this prescription is quite arbitrary! Fortunately, scale-dependence is much decreased
when higher-order QCD effects are calculated, and when the choice of mass definition
is sufficiently physical. Then there is a range of choices for the scale around mb over
which the result is quite stable. It is generally assumed that this gives the correct
scale-independent result with small uncertainty.

Recent experimental results include calculation of the higher order perturbative
corrections and the use of moments of the hadronic spectral distribution to determine
the non-perturbative parameters (the operator matrix elements that appear up to the
first two powers of the ΛQCD/mq expansion). The parameters so determined include
mb (in whatever prescription is used). This approach shows promise of giving a very
accurate value (less than 5% uncertainty) for Vcb. [16]. A recent BaBar paper using
this approach quotes the result as 41.4 ± 0.04 ± 0.04 ± 0.06. [17] Here the first error
is statistical, the second is the theory uncertainty due to higher order corrections to
the heavy quark expansion and error, the third is an estimate of the remaining theory
uncertainty.

The alternative determination of Vcb comes from the exclusive decay to D∗lν. The
fact that both the b and c quarks are massive on the scale of ΛQCD gives us a very
nice situation. (For the moment let us put aside the concern that the charm quark
is not really so very massive on this scale, and talk as if this is a good limit.) In this
limit both the B and the D mesons can be pictured as a massive static quark around
which the light quark is located in a distribution with a size (and thus a light-quark
momentum) scaled by ΛQCD. We don’t know a lot about this distribution; so it is
often referred to as “the brown muck”. However we do know that QCD is flavor
blind, so, up to terms of order ΛQCD/mq, the light-quark distribution is independent
of which massive quark is at its core. Indeed, it is also independent of the spin
orientation of the massive quark, so, in the heavy quark limit, it is the same for the
B, B∗, D and D∗ mesons.

Now consider the weak B → D∗lν decay at the kinematic point where the D∗-
type meson is at rest in the B rest frame. The rate is the quark decay times the
matrix element of the operator between the meson wave functions. But the heavy
quark limit tells us that the meson wave functions are identical at this particular
kinematic point! So we know the matrix element. The operator simply switches
the core quark type (and perhaps also its spin) and the wave function overlap is 1.
Of course there are corrections to this statement, for finite mass quarks. It turns
out that for the transition B → D∗lν the corrections begin at order (ΛQCD/mq)

2,
while for Dlν the first correction is of order ΛQCD/mq. This makes the D∗lν decay
a particularly good way to fix the parameter Vcb, since even for the charm quark the
second order correction is small. In addition there are calculable perturbative QCD
corrections.
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There is a catch however. The situation in which the leptons carry off all the energy
of the b → c transition is clearly a kinematic endpoint. The cross section vanishes
at this point, because of phase space factors going to zero! So, in actuality, one
must measure at some distance from this end point and then extrapolate to it. This
introduces some theoretical uncertainty in the relationship between the measurement
and the parameter Vcb. We must postulate and fit how the wave-function overlap
changes as we move away from the known end-point. The uncertainty from this fitting
can be reduced if the measurement is made closer to the end-point, but of course the
rate is smaller there. So there is an interplay here between theoretical uncertainty
and statistical uncertainty. In such a case more data can shift the result to smaller
uncertainty. Currently the accuracy obtainable by this method is also at the 5− 10%
level, with the range depending on how one combines various non-statistical sources
of error.[18]

2.3 Determinations of Vub

The situation for the parameter Vub is in principle quite similar to that for Vcb; one
can pursue either an inclusive or an exclusive semi-leptonic measurement to fix this
quantity. Additional difficulties arise in both cases.

In the inclusive case the problem is to discriminate the rare b → u decays from
the much more copious b→ c decays (including the effects where the c-quark decays
to a d-quark, so no strange particles flag its presence). This requires kinematic cuts
to exclude any region reachable via a charm quark decay. Then one must determine
what fraction of the b→ u events is excluded by this cut. This determination depends
on theoretical modelling of the spectrum. At the quark level the spectrum is readily
calculated, but the hadron level spectrum has a different end-point. There are also
noticeable effects from hadronic resonant states near the end-point. These do not
appear in the quark-level calculation.

In addition, because of the unseen neutrino, there are several different choices for
how to impose the cut to exclude charm decays. One can use the charged lepton
momentum, or the hadronic invariant mass, or some combination of these two. As
in the case of charm decays the assumption of quark-hadron duality can be more
reasonably applied for a set of a few moments of the spectral function, than for the
detailed spectrum itself. The calculation of Vub can be given in terms of such moments.
The moments of the quark distribution in the B meson obtained from B → Xsγ can
also be used to fix some of the non-perturbative quantities that enter the extraction
of Vub.

Like the inclusive determination of Vcb, this method is based on the assumption
that quark-hadron duality correctly gives the total rate and leading moments of the
spectrum, though not the all details of the spectrum. It is difficult to quantify the
residual theoretical uncertainty that comes from that assumption. One test is to check
whether the result is stable as the choice of cuts is varied. Again this is currently a
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work in progress; it holds promise for accurate results.
For exclusive decays such as B → ρℓν or B → πℓν one cannot use the heavy

quark limit to constrain the transition matrix element. The heavy quark theory
suggests that one could use comparison with the corresponding D decays in matched
kinematic regions for the transition matrix element, but the ΛQCD/mc corrections
can be large and, at least to date, are not well-controlled. Furthermore data on both
the B and D decays is quite limited at present. The alternative approach is to fix
the transition matrix element by a lattice calculation. At present such calculations
have only been done in the “quenched” approximation, which means that the effect
of internal light-quark loops is set to zero. Furthermore, the quark mass used for the
light quarks is generally large compared to the physical value, so an extrapolation in
that parameter is also needed. Both effects are sources of theoretical uncertainties.
Both these issues can be clarified with sufficient computing time available. Methods
to treat the quark-loop effects, and the computing power to calculate with lighter
quark masses are beginning to appear, and certainly will be developed over the next
few years. Perhaps by the time there is sufficient data to give a statistical accuracy of
order of 5% for these decays there will also be sufficiently good lattice determinations
of the transition matrix elements to give an overall 5% level accuracy for Vub. However
that day is at least a few years in the future.

2.4 The third side of the triangle

Like Vub, the quantity Vtd is of order λ3, so the prospect of measuring it directly in
top-quark decays, where it must compete with the order 1 leading t → b decays is
remote at best. Instead we must use loop effects that are dominated by top-quarks in
the loop to fix the magnitude of Vtd. The mass (and width) differences in the neutral
B meson systems, in other words the effects due to B-B mixing, provide the best
option. These are mediated by diagrams like those of Fig. 1, with external b and d
quarks for Bd and b and s quarks for Bs, and internal up-type quarks.

We can look at any one quark line and write the contribution to the loop integrand
for this line, summing over all three up-type quarks in the intermediate state. This
gives

Q(k,mt,mc,mu) = VtbV
∗
tiD(k,mt) + VcbV

∗
ciD(k,mc) + VubV

∗
uiD(k,mu) (19)

where the functions D(k,m) are the quark propagators. We use the unitarity rela-
tionship Eq. (6) to eliminate the term proportional to VcbV

∗
ci. This gives

Q(k,mt,mc,mu) = VtbV
∗
ti (mt −mc)D(k,mt)D(k,mc)

+VubV
∗
ui(mu −mc)D(k,mu)D(k,mc) . (20)

Since the top quark mass is so much larger than the others and the typical loop
momentum k is large, the first term dominates (in the case i = s the second term
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is also CKM suppressed). There are two such quark lines in each diagram, so the
dominant contribution to the mixing amplitude is proportional to V 2

ti . This quantity
multiplies a known coefficient times the matrix element of a local four-quark operator
between the B and B meson states.

For the Bd system the mass-difference between the two mass-eigenstates is well-
measured, so the dominant uncertainty in the extraction of Vtd comes from the uncer-
tainty in the theoretical calculation of the operator matrix element. Lattice calcula-
tions for this quantity are steadily improving, but the resulting theoretical uncertainty
is still quite large.

Vts is strongly constrained by unitarity hence a precise measurement of the Bs

system mass difference can give Vtd from the ratio of Bd to Bs mass differences. In
this ratio much of the uncertainty in the matrix element cancels, since, up to the
effect of the mass difference between an s and a d quark, the two matrix elements
are the same. The largest difference in the two cases is that the non-leading terms
in the box graph are CKM suppressed in the Bs case, but not in the Bd case; the
uncertainty in the correction to the ratio due to these contributions thus affects this
determination of Vtd. There are also calculable perturbative QCD corrections; these
are well understood. Further corrections arise from SU(3)-breaking effects, where the
SU(3) in question is the flavor symmetry of the three light quarks. The uncertainty in
these corrections gives the predominant uncertainty in this method to fix Vtd. So far,
only an upper limit on the mass difference for the Bs system has been established.[19]
The next round of experiments at the TeVatron should yield an actual value for the
Bs mass difference. Even the upper limit currently available significantly improves
the constraints on Vtd.

The three measurements Vcb, Vub and Vtd are in principle, sufficient to determine
the unitarity triangle. The uncertainties in their values at present are quite large.
In particular, if these measurements were all we had, it would be difficult to say
with certainty that the CP-violating parameter is non-zero in the Standard Model.
Of course, we know it is, because we observe CP violating effects in both K and B
decays. The K decay result gives a constraint on a combination of ρ and η. The
constraint has a large theoretical uncertainty, but excludes η = 0 which would give
a vanishing rate for KL → ππ. The theoretical uncertainty arises from the matrix
element for the K-mixing operator, which is calculated on the lattice.

3 LECTURE 3: Some other two body modes

3.1 Why two body?

Given the large mass of the B compared to charmed and, even more so, to charmless
mesons it is relatively rare for the final state of B decay to be a two-body or quasi
two-body state (one with one or two unstable particles in the two body “final” state).
So you may wonder why all the discussion of CP violations focuses on these relatively
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rare states. This is because we need to be sure we are studying a CP eigenstate.
Even if the set of final particles is CP self-conjugate, multiparticle states are typically
an unknown admixture of CP odd and CP even states. Since these contribute to
the coefficient of sin(∆Mt) with opposite signs, we cannot extract any information
on CKM parameters unless we can determine the admixture. The cases where we
can do this are two body states. If one of the two final particles has spin zero then
there is a unique orbital angular momentum allowed so the state has definite CP. If
both particles have non-zero spin we can often use an angular analysis of their decays
to separate out the CP-odd and CP-even final states. (The CP state is angular
momentum correlated because of the (−1)L factor for the parity of a state of orbital
angular momentum L between the two particles.)[20]

There is by now a large literature of suggestions of particular modes that can be
analyzed to give constraints on Standard Model parameters. In the first lecture I
talked about modes that measure sin(2β). Another theoretically clean set of modes
are the modes that are pure tree that give gamma by interfering processes fed by
b→ cuq with b→ ucq, where q is either an s or a d quark. The modes are B → DK
and B → Dπ.[21] The interference can occur even though the mixing of D0 to D 0 is
small; it occurs when one selects a CP eigenstate final state s for the D decay that
are common to the two D-type mesons, such as ππ. Because there is not yet much
data on these modes I will not discuss them further. They will eventually provide
some interesting results. The detailed issues of limits to the accuracy of the analysis
are different for the two cases.

In all b → ccd and buud cases there are two CKM coefficients of comparable
magnitude and different weak phases contributing to the amplitude (after we use
unitarity to remove one of the original three). This leads to |Af/Af | 6= 1 and thus
to |λf | 6= 1. If we could argue that penguin diagrams are insignificant compared to
tree diagrams we could ignore the purely penguin term compared to the term which
also has a tree contribution and then these modes would directly measure sin 2β
and sin(2α) respectively. However this is not the case. So then the question is how
to constrain or remove the impact of the penguin term on the calculation of CKM
parameters from the measured asymmetries in these modes. The remainder of this
lecture discusses issues related to this problem.

3.2 Methods for extracting information when |λf | 6= 1

If we could reliably calculate the relative magnitudes and the relative strong phases
of all the tree and penguin amplitude contributions the problem would be solved.
Because of the soft hadronic physics contributions, that cannot be done without
making further approximations and/or assumptions. Given any such approach we
then must estimate the theoretical uncertainties that remain. When reading theory
papers with suggestions for analyses it is important to ask when the paper was written,
because early papers tend to be over optimistic about the accuracy obtained using
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what we now know are rather crude assumptions. More recent papers are more
cautious, but it is well to review a variety of estimates rather than accepting any one
at face value.

The technology of theoretical calculations has had approximately three stages,
first naive factorization interpretation of diagrams, in which the spectator quark and
the quarks from the b-decay become the valance quarks of the two final state particle,
second two sets of attempts to develop systematic λQCD/Mq and αS(Mq) expansions
(QCD factorization and perturbative QCD), and most recently the more detailed anal-
yses of these expansions in the language of Soft Collinear Effective Theories (SCET).
None of these analyses is completely predictive, all try to reduce the problem to a
finite number of unknown matrix elements that appear in multiple processes. Even-
tually, if the number of measurements is greater than the number of unknowns, the
system becomes predictive and can determine CKM parameters. In some cases matrix
elements can be determined by lattice calculation.

Differences in predictions between the two intermediate methods, QCD factoriza-
tion in perturbative QCD, came chiefly from different assumptions about the relative
importance of some of these matrix elements. These issues are clarified by the more
recent SCET analysis, but unfortunately not in a way that leads (as yet) to strong
predictive power for the cases of interest here. However the work is ongoing and
has clarified many of the issues that were confusing when two competing calculations
apparently starting with the same tools led to quite different results. As discussed in
the previous lecture it has also led to better control of uncertainties in extracting the
parameters Vcb and Vub from inclusive semileptonic decays.

Like the earlier approaches the SCET approach begins by organizing the calcu-
lation as a sum of operators, with coefficients defined in powers of λQCD/Mb and
αS(Mb). However the operator matrix elements are then further broken down, ex-
plicitly including further QCD effects as collinear factors (impacts of gluons collinear
to hard quarks, and soft factors (infra-red sensitive gluon effects). These latter must
be carefully combined with appropriately-defined wave functions (or, more precisely,
light cone quark distribution functions) to ensure cancellation of infra-red divergences.
Both the collinear and the soft factors are universal in the sense that they do not
depend on the flavor of the quark line or meson in question.

Two types of contribution appear, those where the spectator is not involved in
the hard process, and those where it is. The first type involves a transition matrix
element similar to that which enters a semileptonic decay. The second type can
be written as a convolution of a hard six-quark kernel with wave functions for the
initial and final mesons. Since wave functions are process independent, and the same
transition matrix element appears in more than one process, there is a hope that this
method can give some clean predictive relationships among multiple measurements.
This hope is still being explored.

For the case of B → uud we have another possible tool to separate tree contribu-
tions from penguin contributions and that is the use of isospin. Isospin is a symmetry
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between up an down quarks if we neglect electromagnetic corrections (charges) and
their mass differences, which are small compared to the scale ΛQCD (though not small
compared to their average mass). Isospin is not a symmetry of weak interactions but
we can classify amplitude contributions by the change in isospin in the weak decay
∆I and the isospin, I, of the four quark final state (this includes the spectator quark
as well as those that result from the decay of the b-quark.)

For B → ππ or B → ρρ this gives us a way to untangle the tree and penguin
contributions. (There is no similar separation available for b → ccd channels.) The
tree amplitude has both ∆I = 1/2 and ∆I = 3/2 contribution, while, because a
gluon is flavor blind, the penguin diagrams contribute only to ∆I = 1/2. When we
add in the spectator quark we can have, at first glance I = 0, 1 or 2 for the final
state Bose statistics removes the I = 1 possibility when the two final particles are in
a total J = 0 state, as they must be in a B decay. (For the two ρ case this is true
because combined the space-spin state is always even parity for any L. Technically the
result only applies for two identical ρ particles, the impact of the broad ρ resonance
gives an experimentally distinguishable contribution that has I = 1 but vanishes
when the mass of the two ρ states seen are equal, in the rest of this discussion I
ignore this complication.[23]) Thus we have three types of amplitude contributions,
∆I = 1/2, If = 0 occurs for both CKM coefficients and ∆I = 3/2, If = 2 only for tree
coefficient VubV

∗
ud. If we can effectively isolate the impact of this latter contribution

we can measure α directly from the CP asymmetry in B → π+π− or B → rho+ρ−

with angular analysis to separate the definite CP final states.
It turns out that one can in principle do this, up to a discrete set of ambiguities, if

one also measures the isospin-related channels B− → π−π0 and B0 → π0π0 and their
CP conjugates with sufficient precision.[24] Isospin tells us that the charged B → ππ
amplitude is pure I = 2, and so has no penguin contribution. It also tells us that
there is a particular sum of the two neutral channel amplitudes that is equal to the
charged amplitude. Thus the three amplitudes, appropriately summed form a closed
triangle in the complex plane.

A+−/
√

2 + A00 = A0 . (21)

The three CP conjugate rates form a different triangle, but, up to an overall phase,
the two triangles have a common side. The charged rates, being pure tree, must be
equal in magnitude for B+ and B−. Figure 5 shows the triangles reoriented to a
common base.

This figure, along with the measurement of the CP violating asymmetry param-
eters C and S (coefficients of cos(∆Mt) and sin(∆Mt) for the π+π− channel, gives
sufficient information to extract the value of alpha. C gives us a measurement of |λf |
and

S =
2|λf |

1 + |λf |2
sin(2α− δ) (22)

where δ is the angle so labelled in Fig. 5. Because the relative orientation of the
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Figure 5: Isospin analysis triangles for two pion decays.

two triangles is not defined by measuring the magnitudes of all the sides, there is a
fourfold ambiguity in the value of δ.

The neutral rates B0 → π0π0 and B 0 → π0π0 are not yet separately measured,
so this analysis cannot yet be carried out in full. However, given the sum of these
two rates, one can set an upper bound on the shift of Imλf for f = π+π− from
sin(2α).[26] Unfortunately this leaves a large uncertainty in α. We will need the
separated measurements, which requires about ten times the present data, to get a
good value for α from ππ channels.

The same analysis can be used for ρρ, in conjunction with an angular analysis to
separate out the states of definite CP. Angular analysis shows that both the ρ+ρ−

and the ρ+ρ0 final states are very strongly dominated by helicity zero. So far there is
only an upper bound on the B → ρ0ρ0 rate, but it is small enough to give a relatively
good value for α once the CP asymmetry in B → ρ+ρ− is measured. (At the time of
this lecture only CP-averaged rates were published, but a recent paper has changed
that.[25])

Isospin-breaking effects introduce uncertainties in the results from this analysis,
but it is still a significant improvement over the approximation of simply neglecting
the penguin contributions to B → ππ or b → ρρ. The dominant isospin- breaking
effect is π0 mixing with η states, (or ρω mixing for the ρ case).[27] What this means
is that the physical π0 or ρ0 states are not precisely the third member of the isospin
triplet, so the possible contribution coming from the isospin singlet parts of these
particles has to be considered. At present this effect is small compared to other un-
certainties but with sufficient data it will be the factor that determines the ultimate
accuracy of this approach. More precise studies of these issues, using the latest cal-
culational methods, need to be done to get a more precise idea of just what that limit
is. In the ρρ case if one can also measure the asymmetries for ρ0ρ0, the relationship
between these asymmetries and those for two charged ρ’s could put some constraints
on isospin breaking effects. For two neutral pions the time-dependent asymmetry
measurement is not feasible.

The full SU(3) symmetry of the u, d and s quarks, or its subgroup known as u-spin,
which relates d and s quarks, can likewise provide useful information. It can be used,
for example to calculate the penguin contribution to ππ by measuring Kπ modes
that are predominantly penguin driven. (In the calculations such as those referred to
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above as perturbative QCD, such relationships are used.) Again one must assign an
error due to symmetry breaking effects. For SU(3) symmetry, in some cases, these
are quite large. The classic example is the ratio of fπ to fK , where we see symmetry
breaking of order 20%. Where appropriate this particular SU(3) breaking effect can
be explicitly included in the calculation. Other SU(3) breaking contributions are not
known and not well constrained. Thus it is not generally very effective to use SU(3)
to constrain a dominant contribution. However, if the contribution being constrained
by SU(3) is sub-leading, the impact of the uncertainties from SU(3) can be small
enough in the final result that the constraint is useful.

None of my emphasis on theoretical uncertainties should be construed as saying
one cannot test the Standard Model in heavy flavor decays. One can do so, but one
must to it carefully.
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