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Abstract

The hard-scattering contributions to heavy-to-light form factors at large recoil are stud-
ied systematically in soft-collinear effective theory (SCET). Large logarithms arising
from multiple energy scales are resummed by matching QCD onto SCET in two stages
via an intermediate effective theory. Anomalous dimensions in the intermediate the-
ory are computed, and their form is shown to be constrained by conformal symmetry.
Renormalization-group evolution equations are solved to give a complete leading-order
analysis of the hard-scattering contributions, in which all single and double logarithms
are resummed. In two cases, spin-symmetry relations for the soft-overlap contributions
to form factors are shown not to be broken at any order in perturbation theory by hard-
scattering corrections. One-loop matching calculations in the two effective theories are
performed in sample cases, for which the relative importance of renormalization-group
evolution and matching corrections is investigated. The asymptotic behavior of Sudakov
logarithms appearing in the coefficient functions of the soft-overlap and hard-scattering
contributions to form factors is analyzed.
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1 Introduction

Weak-interaction form factors for exclusive heavy-to-light transitions at large recoil energy,
such as B — wlv with E; ~ mpg/2, are an important input to measurements of the parameters
of the unitarity triangle. The QCD description in this energy regime is complicated by the
competition between different scattering mechanisms and the resulting proliferation of relevant
energy scales. The tools of effective field theory provide an efficient means of separating the
contributions from different scales and setting up a controlled expansion in the small ratios
AQCD/E and AQCD/mb.

The appropriate theory in the present case is soft-collinear effective theory (SCET), which
is constructed to describe processes with both soft and collinear partons [1, 2, 3, 4, 5|. Using
SCET, it has been argued that there are two competing contributions to large-recoil heavy-
to-light form factors at leading power in Aqep/FE (ignoring scaling violations from Sudakov
logarithms), referred to as the soft-overlap (or Feynman) mechanism and the hard-scattering
(or hard spectator-scattering) mechanism [6, 7, 8]. In the first of these, the spectator quark
in the B meson is absorbed into the light final-state meson with no large momentum transfer.
For this to happen, both the initial- and final-state partons must be arranged in an endpoint
configuration with atypically small values of certain momentum components. In the second
mechanism, a large momentum is transferred to the spectator quark via hard gluon exchange.
The suppression due to the wave-function fall-off in the first case, and the suppression due to
hard momentum transfer in the second case, are of the same order in power counting.

In this paper, we present a renormalization-group (RG) analysis of the hard-scattering
contributions. In SCET this mechanism is described by non-local four-quark operators, whose
matrix elements factorize into products of leading-twist light-cone distribution amplitudes
(LCDAs) for the B meson and the light final-state meson. The matrix elements are multiplied
by calculable coefficient functions, and the resulting convolution integrals are convergent to
all orders in perturbation theory [7, 8]. The coefficient functions at an appropriate low-energy
hadronic scale may be computed to any order in «y by perturbative matching of QCD onto
the effective theory and subsequent RG evolution down to a low-energy scale. The analysis
applies also to more complicated decay processes such as B — nm and B — K*v, for which
QCD factorization formulae relate the decay amplitudes to the B — w or B — K* form
factors plus a residual hard-scattering term [9, 10, 11].

The soft-overlap contributions to heavy-to-light form factors can be defined in SCET in
terms of matrix elements of effective-theory operators obeying spin-symmetry relations ap-
propriate for a heavy-collinear transition current [8]. The relevant operators are rather com-
plicated and lead to “non-factorizable” matrix elements sensitive to endpoint momentum
configurations, transverse momentum components, and non-valence Fock states. However,
these soft overlap contributions can be described in terms of universal functions {3/ (F) that
only depend on the light final-state meson but not on the Lorentz structure of the currents
whose matrix elements define the various form factors. For instance, there is one function
(p(E) for decays into pseudoscalar mesons, and similarly only one function each, ¢y, (£) and
Cv, (E), for decays into longitudinally and transversely polarized vector mesons. This implies
spin-symmetry relations between different soft form factors, which were first derived in [12]
by considering the large-energy limit of QCD.



The presence of both a soft-overlap and a hard-scattering contribution is summarized by
the factorization formula [13]
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which is valid at leading power in Aqep/E. Here ¢p and ¢y are the LCDAs of the B-
meson and light final-state meson, and f); is the decay constant of the light meson. The
Wilson coefficients of the effective-theory operators, C;(E) and T;(E,w, u), may be calculated
in perturbation theory to any order in «g, and a RG analysis can be used to relate the
coefficients at different renormalization scales. However, the large-F behavior of the soft-
overlap contribution cannot be addressed satisfactorily in perturbation theory, since the long-
distance matrix elements, (j/(£), depend on the energy E in a non-perturbative way [8]. Thus
the issue of whether one of the soft-overlap or the hard-scattering contributions is enhanced
relative to the other in the formal limit £ — oo cannot be addressed using short-distance
methods. Phenomenologically, it appears that the soft-overlap terms are dominant for physical
values of the coupling and mass parameters. Although not a complete solution to the question,
the relative suppression of the coefficients multiplying the long-distance matrix elements may
be computed using perturbative methods. Studying the resummation of Sudakov logarithms
for these coefficients, we find that the soft-overlap contribution is suppressed in the formal
asymptotic limit £ — oo, but that this suppression is mild for realistic values of F.

Because the form factors involve three different physical scales, namely p? ~ m? (hard),
p? ~ mplqep (hard-collinear), and p* ~ Ay (soft), integrating out modes of progressively
smaller virtuality results in a sequence of effective theories. At the high scale p? ~ m?, the
effective theory is described by the usual QCD Lagrangian (with five quark flavors) plus an
effective weak-interaction Lagrangian obtained by integrating out virtual W and Z bosons and
top quarks. Integrating out modes of virtuality m? we arrive at an intermediate effective theory
containing soft modes and hard-collinear modes of virtuality p?. ~ myAqcp. In this paper we
are mainly concerned with this intermediate theory, called SCET] [2, 3, 4]. Integrating out the
hard-collinear modes of virtuality m,Aqcp yields the final low-energy theory, denoted SCET1,
consisting of soft and collinear modes of virtuality p?, p? ~ Agcp. In this case, soft-collinear
messenger modes are also required [14, 15].

In the following section we briefly review some relevant elements of SCET. Section 3 lists
the leading and subleading SCET; current operators, which are required for the discussion
of heavy-to-light form factors, together with the matching coefficients for these operators
obtained at tree level. For the example of the scalar current, we also calculate the one-
loop matching coefficients of the leading and subleading operators. Section 4 contains the
main result of the paper, i.e., the anomalous dimensions of the subleading SCET; current
operators. These quantities exhibit an interesting symmetry property, which can be traced
back to a conformal symmetry (at the classical level) in the hard-collinear sector. We briefly
review the constraints imposed by conformal symmetry in Section 5, and use these results to
diagonalize the non-local part of the evolution operator. We also present a formal algebraic
solution of the evolution equations for the currents and their Wilson coefficient functions. In
Section 6, we discuss the operator representation and renormalization for the hard-scattering
contributions in SCETy;. In two cases, namely for the form-factor ratios A;/V and Ty/T},
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we find that the spin-symmetry relations holding for the soft-overlap contributions are not
broken by the hard-scattering terms, and therefore, at leading order in 1/E and to all orders
in ay, only eight of the ten form factors describing B — P,V decays are independent. The
relevant matching coefficients (jet functions) can be related to two universal quantities J
and J,, which we compute including one-loop radiative corrections. As an application of our
results, we present in Section 7 a RG-improved analysis of the hard-scattering contributions
to the large-recoil heavy-to-light form factors, in which all single and double logarithms are
resummed. Section 8 treats the asymptotic limit of Sudakov suppression factors in the soft-
overlap and hard-scattering terms. In Section 9 we present our summary and conclusions.

2 Soft-collinear effective theory

In processes involving energetic light particles, such as the pion emitted at large recoil in
semileptonic B decay, it is convenient to introduce light-cone coordinates
g nt

p“:n-p7+ﬁ~p7+p‘iEpi+pi+pi, (2)
the second equality serving to introduce the vectors p, and p_. The light-like vectors n#, n*
satisfy n? = n? = 0 and n -7 = 2. As mentioned in the Introduction, depending on the value
of the renormalization scale the effective theory is described by hard-collinear and soft modes
(SCETY), or by collinear, soft, and soft-collinear messenger modes (SCET};). It is conventional
to quote the scaling behavior of the components (py, p_, p, ) with the energy in terms of a small
parameter A ~ Aqcp/E. The collinear and soft momenta of the partons inside the external
meson states in B — M transitions scale like p. ~ E(M\,1,\) and p, ~ E(\ )\, \). Hard-
collinear momenta are defined to scale as py. ~ E(), 1, \'/?), whereas soft-collinear momenta,
scale as py. ~ E(A2, A, \?2). Throughout this paper we will identify

E:v-p_:%(n-v)(n-p)>>AQCD (3)

with the energy of a collinear or hard-collinear particle. Strictly speaking, the energy v - p
differs from E by terms which can be neglected at leading and subleading power.
Fields in SCET; and their scalings with the expansion parameter A\'/? are [2, 3, 4]

Epe = @ he ~ )\1/2’ s ~ )\3/2’ B~ )\3/2’

AZC ~ ()\7 ]‘? )\1/2) ? Ag ~ ()\7 )\7 )\) Y (4)

where h is the heavy-quark field in heavy-quark effective theory (HQET) [16]. The leading-
order soft and hard-collinear Lagrangians are

EgO) = stiwsq$+7LiU'Dsha

= . . I
Egoc) = ghc % (’Ln . Dhc+s + Z@hcj_ in- Dn Z@hcj_) ghc . (5)
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Here iD# = i0" + gA" denotes the covariant derivative built with soft gluon fields, etc. For
the pure gauge sector we may write Ego) =L+ Eéoc), where L; is the usual gluon Lagrangian

restricted to soft fields, and cﬁfc’ is obtained from substituting :D* — D} + gA~L. into
the Yang-Mills Lagrangian. In interactions involving both soft and hard-collinear fields, the
soft fields are evaluated at x_. This rule also applies to the first term in the hard-collinear
Lagrangian, in which in - Dpeis = in - 9 4+ gn - Ape(x) + gn - Aj(x_). Corrections from the
multipole expansion ¢4(x) = ¢s(x_)+x, -0 ¢ps(x_)+... appear as higher-order terms in the
expansion in A/2. We shall also need the subleading interaction Lagrangian [4]

£«(12/2) = ghc i@th_th gs + h.c. , (6)

which transforms a soft quark into a hard-collinear one (and vice versa). Here W), is a hard-
collinear Wilson line in the n direction necessary to ensure gauge invariance. Additional terms
in the Lagrangian are required to describe the soft-overlap contribution in SCET] [6]; however,
they will not be of relevance to our discussion here.

The Lagrangian interactions are a special case of general gauge-invariant operators. Im-
posing homogeneous gauge transformations in the soft and hard-collinear sectors [17], which
strictly respect the SCET power counting, the “homogenized” hard-collinear fields are re-
stricted to appear in the combinations

xhc = Wf]:c ghc ~ )\1/2 ’ "Alftci = W}]:c (Z-DZCJ_WhC) ~ )\1/2 ) Wf]:c in - Dh0+8 th ~ )\ ) (7)

while soft fields may appear as s, h ~ A32 and iD# ~ \. This result follows from considering
the most general operator in the gauge where n - Ay, = 0, n - Ay = 0, and then returning to
an arbitrary gauge by using the transformation laws appropriate for the homogenized fields.
Derivatives acting on hard-collinear fields scale as in - 9 ~ 1 and i@ ~ A2, The O(1)
components in - 0 may appear an arbitrary number of times in operators of a given order
in the power counting. This is accounted for by smearing hard-collinear fields along the n
direction, i.e., ¢p.(rn) with arbitrary r. Until Section 6 we deal exclusively with SCET], and
from now on will drop the label “h¢” on the hard-collinear fields.

3 Flavor-changing currents in SCET;

Heavy-to-light form factors describing current-induced B — M transitions (with M a light
meson) at large recoil are subleading quantities in the large-energy limit, in the sense that the
transitions they describe cannot be mediated by leading-order SCET} currents and Lagrangian
interactions. For a leading-order analysis of these form factors, it is sufficient to include heavy-
collinear current operators through the first subleading order in SCET| power counting [6, 7].
These operators contain a heavy-quark field, a hard-collinear quark field, and (in the case of
subleading operators) transverse derivatives and gluon fields. They provide a representation
in SCET; of the QCD heavy-light current operators Jocp = qI'b, which we renormalize at
a scale pgep. (The vector and axial-vector currents are not renormalized.) At a given order
in power counting, a minimal basis is determined by first writing the most general gauge-
invariant operators constructed from the available fields and external parameters, and then
requiring invariance under small variations of the external parameters [3, 18].
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3.1 Determination of the operator basis

It is convenient to restrict attention to the case v = 0, where v denotes the B-meson velocity.

It follows that
a 1 nt
L (w - _) | (s)

n-v n-v

With this choice there are two remaining reparameterization transformations, which we con-
sider in their infinitesimal form. The first enforces invariance under the rescaling

n* — (1 + a)n”, nt — (1 —a)n (with o ~ 1). (9)

The second allows small changes in the perpendicular components, such that

nt —nt + €l " — o' — (nEL E (with e, ~ AY2). (10)
v

The power counting assigned to « and €, is the largest possible (i.e., providing the strongest
constraints) such that the scaling of hard-collinear momenta is unaltered. In both cases, the
variation of n* is determined by (8) and the variation of n*. An alternative approach would
be to introduce 7 and v as arbitrary vectors, subject only to the conditions 72 =0, n-n = 2,
and v? = 1. Then 7* would not transform under (10), and there would be an additional
reparameterization transformation

n* — nt, n—nt 4 e (with ey ~1). (11)

In this case a consistent power counting requires v; ~ (O(1), and many more operators appear
at a given order than when v, =0 [19]. At higher order it would also be necessary to impose
invariance under heavy-quark velocity transformations, v — v + dv with v - dv = 0. However,
these transformations enter only at O(\) and so are irrelevant for our leading-order analysis
of heavy-to-light form factors.

Requiring invariance under these transformations, it is straightforward to write down the
most general operators with given quantum numbers. The leading-order currents are O(\?),
and for the scalar case we find

JO(s,2) = e ™% X(x + sn) h(z_) | (12)

where the phase factor arises from the definition of the HQET field h, and only the first term,
h(z_), has been retained in the multipole expansion. In the form-factor analysis we can use
translational invariance to set x = 0 in the weak current operators, and so we restrict attention
to Jéo)(s) = Jéo)(s, x = 0). Similarly, for the vector and tensor currents we have

JE(s) = X(sn) DL R(0),  J4) " (s) = X(si) T4 h(0) (13)

with the Dirac structures
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Square brackets around indices denote anti-symmetrization. Note that all structures invariant
under the rescaling (9) are allowed at leading order, since the reparameterization transforma-
tions (10) enter only at subleading order.

Before writing the most general set of subleading operators, we first consider the variation
of the leading operators under (10). To first order in A\'/2, the fermion fields transform as

6X(z + sn) = X(z + sn) <%% — zn—; €1 -gAsL(x_)> :
Sh(z_) = ﬁé‘” e -0 h(z). (15)

The soft gluon appearing in the variation of X(x) arises from the field redefinition enforcing
homogeneous gauge transformations in the hard-collinear sector [17]. The combination X of
hard-collinear fields may be expressed as X = R (14 /4) 1} ., where 1/}, is the (unhomogenized)
hard-collinear fermion field in the gauge 7 - Ay, = 0, and R(x) is a soft, straight Wilson line
from x_ to x. Under the transformation (10), d¢;,. = O()), and the remaining variation of
X arises from the projection #7/4 and the homogenizing factor R. Next, we consider the
variations of the various Dirac structures under the transformation (10), finding

M
€

OoTH =0 oTH =0 oTH = L&

1 9 2 ) 3 n-v’

(v [, 1]

v v v € 7 v €,V

orH =0 OoTH =0 oTH = & OTHY = & 16
1 ) 2 ) 3 n-v’ 4 n-ov ( )

The variations of the subleading operators must cancel these contributions.

The subleading O(AY/2) operators must contain exactly one insertion of A/ or (—i@i“)
acting on the hard-collinear field f)_C, or x, - Dy, with the derivative acting on h. To determine
the most general form, we note the following transformation properties, working now to zeroth
order in A2

=

- w H n -
6Ali:O’ 6(&):_2 5($LDSL):_HELDSL (17)

—iﬁ~<5 2

Thus, (—zgi‘) and z, - D, are restricted to appear in specific reparameterization-invariant
combinations with the leading-order currents, and there are no constraints on the appearance
of AY. Inspection of (15), (16), and (17) allows us to deduce the form of the most general
operators through O(A/2). For the scalar current

—
Ji(s,2) = e7™v X (2 4 si) <1 S @f_ L + - DSL) h(z_),
in- 0 2

JE(s,r,x) = e ™" X(z + sn) AL (x +rR) h(z_). (18)



Again, using translational invariance we can specialize to x = 0 and define J&(s) = JZ(s,0)
and JE(s,r) = JEB(s,r,0). Similarly, for the vector and tensor currents at x = 0 we obtain

it(s) = om) (1 33 )t ko).

in -
Y 9 2 = ot
JA”s:xsn(l—i}_ﬁ)F”hO + — X(sn = h(0),
4(s) = (o) (1= P FITERO) + 7 X(sm) = h(0)
J\]/311f2,3(5> r) = D_C(Sﬁ) AL (rin) F/f,z,s h(0),
J54“(5,r) = 56(571) A’ (rn) h(0) , (19)
and
JAW(S):D‘C(sn)<1— 9L @)PW h(0)
T1,2 =5 |t )
- 0
_ o 2 _ Za[ﬂfyu}
JA”Vs:DCsn(l—Z f_ﬁ)f"wh@ +—X L L h(0),
A (s) = o) (1 P )T h(O) + 7 Kom) S (0
_ . _ '<_[H V]
I (s) = X(sm) (1 - i@)Fi‘”hmHimn)mli h(0),
in - 2 n-v in- o

Jf1721173,4(5> r) = D_C(Sﬁ) AL (rn) F!1L,V2,3,4 h(0),
TPl (s,1) = X(sn) AL (ra) T}, 5 h(0) . (20)

In the tensor case, one combination of the in“ ” is redundant in four dimensions, being propor-
tional to the anti-symmetric product vaivi}. This combination will be isolated in the next
section, when we define a new basis of current operators that are renormalized multiplicatively.

We will refer to the quark-antiquark operators as “A-type currents”, and to the quark-
antiquark-gluon operators as “B-type currents”. The A-type currents contain both leading
and subleading contributions, which are linked by reparameterization invariance. Pseudoscalar
and axial-vector currents are obtained from the above expressions for scalar and vector currents
by insertion of 75 next to the light fermion field. (This simple prescription holds only in the
“naive dimensional regularization” (NDR) scheme.) The results (18), (19), and (20) agree
with the basis of operators found in [19], specialized to the case where v; = 0. However, the
derivation presented here is much simpler. We also stress that our definition of the subleading
currents, in which the A-type currents contain 0, rather than a covariant derivative, will
ensure that the A-type (two-particle) and B-type (three-particle) operators do not mix under
renormalization.

The subleading contributions to the A-type currents containing perpendicular derivatives
on the hard-collinear fields do not contribute at leading order in the form factor analysis.
The extra derivatives yield an O()) suppression on top of the suppression factors already
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Figure 1: Two-step matching procedure for a hard-scattering contribution. The dashed lines
in the SCET| diagram represent hard-collinear fields, those in the SCETy; four-quark operator
denote collinear fields. In all cases, the heavy quark is depicted as a double line, and the wavy
line represents the flavor-changing current.

present when the leading currents mediate the decay process by either the soft-overlap or
hard-scattering mechanisms. A formal demonstration of this point can be found in [7]. The
remaining A-type currents (at z = 0) all take the form X(sn)I' h(0), differing only by their
Dirac structure I". Spin symmetries arising from the constraints #X = 0, yh = 0 may then be
used to relate matrix elements involving the same initial- and final-state mesons. Although the
SCET]; representation of the A-type currents is rather complicated [8], owing to the symmetry
relations the results can be expressed in terms of a small number of non-perturbative functions.
The A-type currents thus give rise to the first, soft-overlap term in (1).

In general, the B-type currents break the spin symmetries. When applied to form-factor
matrix elements, the hard-collinear gluon emitted from the current is absorbed by the spectator
quark, allowing the decay to proceed via the hard-scattering mechanism. Figure 1 illustrates
the two-step matching of a typical hard-scattering amplitude. In the first step, the QCD
current is matched onto a B-type SCET] current. In the second step, the hard-collinear
gluon is integrated out, and the hard-scattering amplitude is described in the final low-energy
theory by non-local four-quark operators. Section 6 examines this SCET}; representation,
where matrix elements take the form of the second, symmetry-breaking term in (1).

3.2 Matching calculations
We proceed to find the SCET| representations of the QCD scalar, vector, and tensor currents
S=qb, VE=gyh, T =(=i)go™b=qq¥b. (21)

The QCD operators S and T*" require renormalization and are defined in the modified minimal
subtraction (MS) scheme at a fixed scale pgep = O(my). The SCET] representations of these
operators, evaluated at position x = 0, are given by an expansion (summed over i, j)

qu—i/dséf@)ﬁﬂﬁ—k%ﬁ/ﬁﬁdséﬁ@nﬂiﬁ@nﬁ+.”

:@@ﬁ@+%/w@@mﬁw+” (22)
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with operators J#, JJB as determined in the previous section for the appropriate quantum
numbers. We denote coefficient functions in position space with a tilde. In the second line,
we have used translational invariance and defined the momentum-space coefficients (without

a tilde) as

(2

CAE) = /ds el CA(s),

CP(E,u) = / dr ds G TIRP GB (s 1) (23)

Here P = P, — Py, is the total hard-collinear momentum of external states (strictly speaking
this is a momentum operator), and £ = v - P_ = (n-wv)(n - P)/2. Reparameterization
invariance ensures that the momentum-space coefficient functions depend on the combination
(n-v)(n-P)=2F, not n-P. The variable u € [0, 1] is the fraction of the large momentum
component 7 - P carried by the fields in X (the dressed outgoing hard-collinear quark field),
and @ = 1 —u is the corresponding momentum fraction carried by the fields in A (the dressed
outgoing hard-collinear gluon field). The object J(u) in (22) denotes the Fourier-transformed
current operator

JP(u) =17 - P/ ;l—;j e~ JP(s,0). (24)
Note that both J/*(0) and J(u) also depend on the large energy scale E as well as on the
renormalization scale . These dependences will be suppressed for simplicity.

The matching conditions for the momentum-space Wilson coefficient functions C#* and cp
at tree level follow from an analysis of current matrix elements in QCD and SCET;. The
only subtlety is that a non-zero matching contribution is obtained from graphs where a hard-
collinear gluon is emitted from the hard-collinear quark line. This might seem surprising at
first sight, because the resulting propagator is close to the mass-shell. This contribution is
present because two of the four components of the hard-collinear quark spinor are removed
when QCD is matched onto SCET]. To see how it arises, consider the following diagram:

i

NIE
<2669

i1

1
= — —7T
7”2n~p

1
7# Zé r 7# 27 . D
For vanishing transverse momentum (p; = 0), the intermediate quark propagator takes the
form shown in the second line. In the effective theory, the first term on the right hand side is
represented by a graph where the gluon is emitted from a hard-collinear quark line. The second
one, however, corresponds to a graph where the gluon is emitted from the B-type current, and
contributes to the matching coefficient. Our tree-level results are given as follows.

Scalar current:
ca=1, C&=-1. (26)
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Figure 2: One-loop QCD diagrams contributing to the matching calculation for the subleading
scalar current. The external gluon can be attached at any of the places marked by a cross.

Vector current:
C\él =1, 062,3:07
ct =1, of=-2, Ccf=-2, C}=0. (27)
Tensor current:
C?l =1, 0?2,3,4 =0,
Ch=-1, Ch=-4, Cf=-2z, Cl;6=0, Cph=—4z. (28)

Here x = 2F/my,. Our results for the coefficients C#* agree with [1]. However, the values of
CE, and CE, disagree with the corresponding terms in [19].!

For the resummation of the leading logarithms, the tree-level Wilson coefficients are suffi-
cient. However, for the physical value of the b-quark mass the one-loop matching corrections
may turn out to be comparable to the effect of leading-order running. To address this ques-
tion, we evaluate as an example the one-loop matching corrections for the scalar current. We
calculate the decay of a b-quark to an energetic light quark and an energetic gluon at one-loop
order. Throughout this paper we use dimensional regularization with d = 4 — 2¢ dimensions
and employ the MS scheme to remove ultra-violet (UV) singularities. We use the background-
field method and perform the calculation in an arbitrary covariant gauge. The eight one-loop
diagrams contributing to the matrix element are shown in Figure 2. Each diagram involves
at least one heavy-quark propagator; diagrams involving only massless propagators vanish in
dimensional regularization once the external lines are put on the mass shell. Note that there is
again a contribution in Figure 2 corresponding to gluon emission from a nearly on-shell hard-
collinear quark line, which is decomposed as in (25). To correctly identify the two parts of the
QCD loop diagram, one first considers it for p*> # 0 and then expands around p? = 0. This
expansion must be done before performing loop integrations. This ensures that all effective-
theory loop diagrams vanish and only the hard part of the QCD diagram is left, which is
exactly the part that has to be absorbed into the Wilson coefficients. We set all perpendicular
components of the external momenta to zero and equate the effective-theory expression to the
QCD result for the three-point function. Depending on the polarization of the background
gluon field, we thus determine either the Wilson coefficient C'§ of the leading-order current
operator (for an A_ gluon), or the coefficient C¥ of the subleading current (for an A; gluon).

1Our values would correspond to BE? =2 in Eq. (104) of that paper.
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After MS subtractions, we obtain in the first case (again with x = 2E/my)

3—x _ 2
—— lnz—2Lix(1 — ) — ik

(29)
where a; = ag(p). The fact that this expression, which was extracted from a three-point
function, agrees with the result obtained from the heavy-to-light two-point function [1] follows
from invariance under collinear gauge transformations. Performing the calculation for the case

of perpendicular gluon polarization, we obtain for the coefficient of the operator J&

CFas

2F 2F
CL(E)=1+ l—2ln2—+5ln—+61nm—l—

T W W 2F 1—2z

Inz

CB(E,u) = —C{(E) + el Rl e

I -

x 1 3—=x ~ 22—x) Inau
T 1-aa {1+(1—xﬂ+1—x)ln(xu)} L 7}

+(CF—%)%{(21n£—1—|—lnu)2lilu—l— 2 1n(ani)—2hlu

Crav, { 2F o

2 ) Arm W U 1—zu U

+ 2 {(1 — zu) [LiZ(l —x) — Lig(1 — :L'u)} — Lig(1 — zu) + %2] } . (30)

Ul

where u is the fraction of the longitudinal hard-collinear momentum carried by the final-state
quark. We note that at the endpoints, C% diverges only logarithmically: C§ ~ In?u at u =0
and C§ ~ Inwat u = 0. Also, despite appearances, there is no singularity at x = 1 or x = 1/a.
The scale dependence of CF agrees with a direct analysis of operator renormalization given
in the following section. We postpone a detailed discussion on the relative importance of
matching and RG running until Section 5, when a solution to the RG equations is at hand.

As a final remark before ending this section, we note that the scalar current is not an
independent operator but can be related to the vector current using the equation of motion
for the quark fields, i0,V" = my(1qep) S(iqep), where S(pqep) denotes the scalar QCD
current in (21) renormalized at scale pqep, and m,(pqep) is the running b-quark mass, both
defined in the MS scheme. Applying this identity to (22), it follows that to all orders in o
and at leading order in Agcp/my

E My (Hqep)
C + <1_Eb> Cly+ Ciy = T?Cé’

> .
Cl+ <1 - %) Cl+ CPs = %2013) o8 (31)

where at this order there is no difference between the meson mass mp and the b-quark pole
mass my. It is readily seen from (26) and (27) that these relations hold at tree level. At

one-loop order
moltqen) _ 4 Oros (6 In—2 — 4) (32)
mp 4m HQCD
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Note that the dependence on the scale pgep cancels between the running mass m,(puqep) and
the scalar coefficients C4 and C% on the right-hand side of the relations in (31). The first of
these relations can be verified to hold at one-loop order using the results of [1]. In Section 7,
we will use these results to deduce the one-loop matching coefficients relevant to the vector
form factor Fy(q?), using only scalar-current matching calculations.

4 Anomalous dimensions

The matching results derived in the previous section can be trusted at a high renormalization
point u = pp ~ 2FE, at which the Wilson coefficients are free of large logarithms and so can
be reliably computed using fixed-order perturbation theory. In order to evolve the coefficients
down to lower values of 1, one needs to solve the RG equation for the SCET] current operators.

The currents J#* and JJB do not mix under renormalization. To see this, we first note that
the operators JJB cannot mix into J, as they are of higher order in power counting than
the leading terms of JA. In principle, the operators J# could mix into JJB via time-ordered
products of either the leading terms of J# with the subleading SCET; Lagrangian, or the
subleading terms of J/ with the leading SCET; Lagrangian. However, when vf = 0, in both
cases the resulting time-ordered products have a structure different from the JJB operators,
containing additional perpendicular derivatives acting on hard-collinear fields. Finally, the
various J operators do not mix among themselves, since time-ordered products with the
SCET| Lagrangian cannot mix the different Dirac structures appearing in their definition. As
a result, the effective-theory currents obey the integro-differential RG equations (summation
over k is understood in the second equation)

d a4 A
d JP(u) = —/1dva (u,v) JZ(v) (33)
dlnu J 0 Jk\™ k ;

and the corresponding momentum-space Wilson coefficients satisfy the equations

4 caE) = 4 CAE),

i

dlnp

d B _ ! B B
T CP () = / durP (u,v) CE(E, u) . (34)

The anomalous dimensions v and fy]Bk are calculated by isolating the UV divergences in SCET]
loop diagrams. The one-loop expression for ¥4 has been calculated previously [1], with the
result

2k 2E 4

In [20] it was argued that the first equality in (35) is valid to all orders in «,. The appearance
of In y in the anomalous dimension is explained by the theory of light-like Wilson loops with

7 = Leuspls) In o + () = CfT - (— It~ 5) +0(0?). (35)
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cusps. Only a single logarithm appears at any order in the strong coupling, with a coefficient
governed by the universal cusp anomalous dimension I'c,g, [21].

Unlike the situation for the A-type operators, the anomalous dimensions of the B-type
currents depend on the specific Dirac structure, and there is non-trivial operator mixing. The
renormalization properties of all B-type operators can be discussed by defining two operators

d1(s) = X(sn) AL (0) 'L R(0), Fa(s) = X(s7) ALu(0) Vv I R(0), (36)

and their Fourier transforms as defined in (24). It follows from the Feynman rules of SCET]
and the projection properties of the two-component spinor X that the two operators g; close
under renormalization. Defining renormalization constants via ;" = Z; Hl]?am, we obtain

A A
7 — 11 12 : (37)
0 le + 2(1 - €)Z12 poles

where, in the MS scheme, it is understood that only pole terms in the dimensional regulator
€ =2—4d/2 are kept in Z — 1. We define two anomalous-dimension functions
0

0
=79, y=20,-—2z9, (38)

=9 s
m @ Jag Oag

where ZW is the coefficient of the 1 /e pole in Z. Then, at one-loop order, the corresponding
anomalous dimension matrix determining the running of the currents J; reads

4! Y2
oo = . 39
Y11 P (0 ’71"‘2’}/2) ( )

At higher order, the O(¢) terms arising from the Dirac algebra have a non-trivial effect on the
anomalous dimensions, as discussed in [22].

In terms of these functions, the anomalous dimension of the scalar current is (from now
on all results refer to the one-loop approximation)

78 ="+ 2% (40)

For the vector current, we find the 4 x 4 anomalous-dimension matrix

Y1+ 279 0 0 0
0 Y1+ 22 0 0
Y = : (41)
0 0 Y1 + 27| 0
72 0 —Y2 N

The operators J51,2,3 are multiplicatively renormalized with anomalous dimension ~; + 27s,
whereas the operator J{, mixes with JZ and JZ;. For the form factor analysis, it will be
convenient to work with the linear combinations

JEr = JBr_ JBi = X(sn) AL (rR) 4" h(0)),

13



W = T = X(sn) A rm) v b(0),
/ — -~ -~ n‘u'
T = 08 = Xsn) A (r) —D(0),
Jo = 2001 — I3+ JP4 = X(sn) v AL(rR) h(0) (42)
which are multiplicatively renormalized. J‘?ng have anomalous dimension 7, + 27,, while J&,

has anomalous dimension ~;. The corresponding combinations of Wilson coefficients, which are

multiplicatively renormalized with the same anomalous dimensions as the respective currents
!
JJB , read

! 1 ! !
051 = 051 + 5 054> 052 = 052 ) 053 = 053 + 051 )
/ 1
054 = 5 054- (43)

Similarly, for the tensor current we find that the operators Jp, , 5, are multiplicatively renor-
malized with anomalous dimension 7; + 272, whereas the operators J7; ¢ ; mix with J72| 5.
As in the vector case, it will be convenient to change the operator basis, defining

T = TR 205 — 200 = X(sn) AL (ra) vy 1(0)

T = TR 4 I8 = X(sn) i (ri) vy R (0)
V]

mny v Y/ o — n[u’y
I = J7g = Xsn) A (r) ——= (0)

- B V]
Jziu = Jfﬁf = X(sn) AL(rn)

—h(0),

JEmw — _ggBm o gBm o gBm o B 9 B — X (sn) ALa(ri) 4y h(0),

T = =205 — T — R = X(sn) vt AL (ra) h(0),
V]

ny v v Y ( oin n[/b}/ =
TE = =20 — IR = X(sm) L () 1(0). (1)

. . . . ! . . .
These operators are multiplicatively renormalized, JZ ,,, with anomalous dimension 7; +

’ . . . . . . .
279, and J& .. with anomalous dimension ;. The corresponding combinations of Wilson
coefficients are

/ 1 / 1 / 1 1
CC]F31 = 0751 + §Cc]r35> Cf]r32 = 0752 - §Cc]r36> Cf]r33 = 0153 _2CC]F31 - 50155 - §Cc]r37>
01541207@4"‘207@1_01527
on = Lop cr = Lon cr=-teop Lleop (45)
T5 = T 5 YT5; T6 = T 5 YT6> TT T T MTT T g VT

Note that the tree-level matrix elements of the “evanescent” operator JZ vanish in d = 4
dimensions, and after additional finite renormalizations the same is true once loop corrections

14
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Figure 3: SCET] graphs contributing to the anomalous dimensions of the subleading heavy-
collinear currents JJB , represented by a crossed circle. Full lines denote soft fields, dashed lines
hard-collinear fields.

are included. This operator will not be relevant for our leading-order analysis, but it would
enter a next-to-leading order calculation employing dimensional regularization. We will men-
tion evanescent operators again in Section 6, when we discuss the basis of SCETy; four-quark
operators relevant to the hard-scattering contributions.

To calculate the one-loop anomalous dimensions, we evaluate the UV poles of the diagrams
shown in Figure 3 in dimensional regularization, treating the external gluon as a background
field. The resulting expressions for the integral operators v; and v, can be written as

7 (u,v) = uVi(u,v) + 6(u —v) W(E, u),
299 (u,v) = uVa(u,v), (46)

Vilu,v) = (c _%) o G%)

2 7w luwo |" (w—u) " (u—uv) Vil up
Vg(u,v):<C’F—%)%[<1+%+%)9(1—u—v)+%9(u+v—1)}
-%%{%(1 %)9(u—v)+—(1+—)e(v-u)],
W(E,u) = CF% <— ln% - g +lnu) - %% (m% - 1). (47)

For symmetric functions g(u,v) the plus distribution is defined to act on test functions f(v)
as

/ do [g(u, )] f(v) = / do g(u,v) [f(v) — F(u)] . (43)
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It is remarkable that the functions V;(u, v) are symmetric in their arguments. This fact is not
accidental, but can be traced back to a residual conformal symmetry in the effective theory
when interactions with the soft heavy quark are ignored. Also, since soft gluons are unable
to change the large component of hard-collinear momenta, the one-loop conformal-symmetry
breaking term d(u — v)W (E, u) is local with respect to u. Details of the conformal-symmetry
arguments will be presented in Section 5.3.

From (33), it follows that the evolution equation for the current eigenvectors JJB' takes the
form

d

J

1
I (u) = —/0 dvu Vi (u,v) J7 (v) = W(E,u) J7 (u), (49)
where Vr is a linear combination of V; and V5 determined by the anomalous dimension of the
operator JJB’. For reasons that will become clear later, we use the notation I" = ||, L and denote
Vi = Vi + V4 for operators with anomalous dimension v; + 27, and V| = V; for operators
with anomalous dimension ;. The corresponding equation for the eigenvectors C’JB/ of Wilson
coefficients reads

d B/ _ 1 B/ B/
dlnqu (E,v)—/oduuvp(u,v)C’j (E,u) + W(E,v)C} (E,v). (50)

To gain more insight into the structure of the conformal-symmetry breaking term W (E, u),
we may consider the field redefinitions [2, 15]

Ghe(w) = Su(w ) G0 (@), A(x) = Sp(z-) A" (2) S(x-),  h(z) = Sy(a) h<°><x>(, |
51
which decouple soft gluons from the leading-order hard-collinear and heavy-quark Lagrangians.
Here S,, and S, are soft Wilson lines in the n and v directions, respectively. From (7), it follows
that in terms of the new fields the B-type operators take the form

TP (s,r) = X0 (sn) AL (ri) T [S1 S,] (0) B(0) . (52)

The combination [S] S,](0) represents a closed loop with a cusp at = 0 formed by two
Wilson lines in the v and n directions. The anomalous dimension of this object is given by
the universal cusp anomalous dimension times a logarithm of the soft scale [21]. After adding
a contribution from the hard-collinear sector necessary to eliminate the dependence on the
infra-red regulator (—p?_) [15], the result is

2v - c —p2 2v - c
Tousp | In ——LueH o p2’w> = Tosp In 20 (53)
(—Phe) 1 1

with pp. a hard-collinear momentum. From these considerations, we conclude that to all orders
in perturbation theory

W(E, 1) = —Lawp(a) In o + w(u,a), (54)

with the one-loop expression for w determined from (47).
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5 Renormalization-group evolution in SCET;

The anomalous dimensions obtained in the previous section allow us to solve the RG evolution
equations (49) and (50) at leading order in RG-improved perturbation theory. At this order the
leading double and single logarithmic contributions are resummed to all orders in perturbation
theory. Technically, this means that one must compute the matching coefficients at tree level,
the anomalous dimension kernels V;(u, v) at one-loop order, and the cusp anomalous dimension
entering the function W (FE, u) at two-loop order. In practice, one wants to take matching
conditions for the coefficient functions C’JB’ at a high scale pj ~ 2F and run them down to an
intermediate scale j; ~ \/2EAqcp, at which SCET] is matched onto the low-energy effective
theory SCETy;. While the integro-differential evolution equations can be solved numerically,
we find it instructive to also discuss a formal analytic solution to these equations.

5.1 Eigenfunctions and eigenvalues of the evolution operator

It will be convenient to rewrite (49) and (50) in the somewhat obscure forms

L gy Bl) Oy ) F )
dlnp  uu 0 uv vo Ui
d CFP(E, 1 CP(E, CP(E,
;(Byu) :/dvv@z Ve(v,u) O 0) g SE B
dlnp u 0 uv v 0

Because of the symmetry property V;(u,v) = V;(v,u), it follows that the operator eigen-
functions [JP'(u)/ui] have the same form as the coefficient eigenfunctions [CZ'(u)/4a], but
come with eigenvalues of the opposite sign. We consider first the hypothetical case where
W(E,u) = 0 and focus on the non-diagonal terms in the evolution kernels, V;(u,v) with
1 =1,2. We will show that the general solution to the eigenvalue equation

1
Vi(u,
/0 i ) () = 5 (0 (56)
is given by
U (u) = \/ 1 PV (2u — 1), (57)

where P*) are Jacobi (hyper-geometric) polynomials, and the eigenfunctions v, are normal-
ized according to

(p|thm) = /0 duutt Y, (1) Y (1) = G - (58)

The eigenvalues for the kernels V; and V5 may be expressed in the closed form

_1\n+1
Al,nz(cF—%)%—( 2 —@%(1—2&“——1 )

2 T n+2 2w n+2
B Ca\ as (—1)"(n2+4n—|—5) Ca oy 2
Asn = (C 2 ) 7 (n+1)n+2)n+3) 2 7 (n+1)(n+3)’ (59)

17



where H,, = Y. _, 1/m are the harmonic numbers. Using the solution to the eigenvalue
equation for V;, we then present a formal algebraic solution to the evolution equation for the
SCET} coefficient functions.

Let us now prove the statements just made. From the eigenvalue equation (56) and the
symmetry of V;(u,v) it follows that eigenfunctions belonging to different eigenvalues must be
orthogonal in the measure uu? du on the interval 0 < u < 1, as shown in (58). To show that
the eigenfunctions take the form (57), we consider the integrals

a2 VZ(}’J_? U)

uv

1

Zin(v) = / duu (2u—1)". (60)
0

We will show below that Z; ,(v) is a polynomial in (2v — 1) of degree n. Hence, in operator

notation, with (un) = (2u — 1)" and (u|V;|n) = Z; ,(u), we have

n

m=0

with (V;)mn = 0 for m > n. In particular, |0) is an eigenfunction with eigenvalue (V;)go. By
induction, for each n > 1 there is a corresponding eigenvalue given by the diagonal matrix
element (V;),, with eigenfunction proportional to the linear combination of |0),...,|n) that
is orthogonal to each of |0),...,|n — 1). The result (57) follows since the Jacobi polynomials
P,Sz’l)(Qu — 1) form the unique extension of the constant function to a basis of orthogonal
polynomials with measure u#? du on the unit interval. As a byproduct of this analysis, the
coefficient of (2v — 1)" in the expansion of Z;,(v) is identified with the n-th eigenvalue \; .2

To evaluate Z; ,,, it is convenient to introduce new variables + = 2u — 1 and y = 2v — 1.
The resulting integrals yield

. _% % . n+1 - m_l—]‘ m
IL"‘(C 2)7r( D) Z(n+1)(n+2)y

m=0

n

_%%[(1_2Hn+1)yn+ij[l‘l'(_l)n_m] (m‘l‘l)ym_ m—+1 )ym

2 (n—m)(n+1) (n+1)(n+2 ’

m=0

Igm == (C - %

) s (=" -
2 ) m2n+1)(n+2)(n+3)

Z (=)™ + 9+ 4(n+m) + 2nm] y"

m=0

n

C Qg 1 n—m m
S TS 2 6 2 3 2m] g 62

m=0

Inspection of these results reveals that the coefficient of ™ in Z; ,, indeed vanishes for m > n,
while the coefficient of y™ gives the eigenvalues (59).

2Similar reasoning was used in the analysis of the evolution equation for the pion LCDA [23].

18



5.2 Solution to the evolution equation

Due to the presence of the conformal-symmetry breaking term W (E, u), the eigenfunctions
of the full anomalous-dimension operators v; + 27, and 7, cannot be written in closed form.
We will now show how a formal algebraic solution can be obtained. We begin by isolating
the strong p dependence of the coefficient functions due to I'cysp, Writing the solution to the
evolution equation (55) as

2k

apn ) 1 /
) oSt ) / dv Ur (u, v, pin, 11) C (B, v, ) (63)
[t 0

cF (B = (

where

Cl(s(;U'Q) da @ dO/
S - — — 1—‘cusp o4
) == [ st [ 2 (6

with B(as) = das/dIn p is a universal Sudakov factor, and

QS(;UQ) da
o, ) = / A0 (@) (65)

Note that S(f1, pe) is negative, since Ieysp(ats)
perturbation theory one finds [20]

r 4 1 r
S(pn, ) = 4—508 [th) (1 o —lnrl) +ﬂ In%r, — (F_(l) — %) (r1 —1 —lnrl)} ,

L'y
a\pp, b)) = —55- lnrla 66
(i) = =52 (66)
where 71 = as () /as(pun) > 1. The relevant RG coefficients arising in the perturbative expan-
sion of the cusp anomalous dimension and the ( function,

n+1

B0 = =20, 308 (2) ™, Taglo = 300, ()™ (67)
n=0 n=0

are [y = 4Cp, T1 = 4Cr (T — Z) C4 — D Tpny), and fy = 2L Oy — 2 Teny, B = 3035 —
% CyTpny — 4CpTpny. We take ny = 4 as the number of light quark flavors, even at low
renormalization scales.

The remaining evolution is governed by a function Ur(u,v, up, ) with initial condition
Ur(u, v, pin, pr) = 6(u — v) at the high-energy matching scale p = py,. From (55) we find the

corresponding RG equation

d U ! i U U
I‘(U,U_, :uhwu’) — / dy yy2 F(_y_, U) F(yuv_, :U’hvlu’) +’UJ(U) F(uuv_v :U’hvlu’) 7 (68)
dnp 0] 0 yu y U
where w(u) is defined via (54). As before, the subscript I' = ||, L serves as a reminder that we

must distinguish two cases of evolution functions corresponding to the different eigenvalues of
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the anomalous-dimension matrices. A formal solution of this equation may be constructed by
expanding Ur(u, v, uy, 1t) on the basis of eigenfunctions v, (u),

U,
M an )t (0, s 11) (69)
where )
U
g ) = [, () L 021 (70)
0

follows from (58). Inserting this expansion into the evolution equation, and projecting out the
coefficients u,,, we obtain

d
3@57;?mn(vjuh,ﬁo = A0 U (V, i, 1) +'§;:7Unwzun(UaUhaﬂ)> (71)

where Ar,, = A1, + A2, OF Ap, = Aq,, depending on the anomalous-dimension eigenvalue, and
the quantities w,,, are given by the overlap integrals

Wy = /0 dv V0% Y, (V) (V) Y (V) (72)

Collecting the elements w,,, into an infinite-dimensional matrix w, and the eigenvalues Ar,
into the diagonal matrix Ap, we can write the formal solution to (71) in the form

as () o
U (U, oy, pt) = Zm_) (V) [P exp </ - ﬂcéoz) [Ar(a) + w(a)}) : (73)

n mn

where the initial condition at the matching scale = yy, follows from (70).> The symbol “P”
denotes coupling-constant ordering, with Ar(a) +w(«) appearing to the left of Ap(a’)+w(o)
when a > «/. Combining this result with (69) provides a complete solution for the evolution
function.

For a leading-order solution, we may expand the anomalous dimensions and 3 function to
one-loop order, defining as usual
aS

—aw® 4 (74)

Qg 0
Ain(os) = . )\Z(Tz +..., w(ay) = y

Then the ordered exponential in (73) may be written as

as(p) ) 0y ..
P exp </ da [Ar(a) + w(a)}) = U exp [— Ar_+ W) ding Inr U, (75)

s(kn) ﬁ(a) 250

3The expansion of Cf}/ (u)/@ on the truncated basis of eigenfunctions {,,(u), 0 <n < N} converges in the

limit N — oo, with the norm (58), provided that foldu ui® |CP (u) /u)? < oo. Since it is only the convolution

over the product of OJB " with the jet functions and meson LCDAs which appears in the final expression for the
form factors, cf. (142) and (146), this condition is more restrictive than necessary on the endpoint behavior of
the coefficient functions, and this “norm” sense of convergence is stronger than we require.
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Figure 4: Functions Ur(u, pp, 1) in (77) for p, = 4.8GeV and p = 1.55GeV. The curves
correspond to RG evolution with v, + 272 (dotted) and 7, (dashed). The left and right plots
show results derived by using 20 and 40 basis functions v, respectively. The solid lines were
obtained by numerical integration of the evolution equation.

where U is the unitary matrix that diagonalizes )\(FO) + w®, ie. )\(FO) + w® = U()\(FO) +
w(o))diag U~'. Since )\(FO) + w© is a real symmetric matrix it can be diagonalized with
real eigenvalues, which we collect in the diagonal matrix ()\%0) + w®)ging. Finally, we can
simplify the answer further by using that at tree level the initial conditions for the Wil-
son coefficients at the matching scale = py collected in (26)—(28) are independent of w:
CJB/(E,u,,uh) = C’JB'(E, tr). We then obtain the final result (valid at leading order in RG-

improved perturbation theory)

o 9 [\ Uknt) St -
Cj (E7 U, M) = <E) ek UI‘(U, Hh, :u) Cj (E7 ,U/h) ) (76)
where
1
UF(“,Mh,M) = / dv UF(U,U,,U,h,,U,) (77)
0

_ = 2 (A%O) + w(o))diag -1
_;uwm(u)\/(n—l—l)(njLQ)(n—l—?)) (Uexp [— 2 lnm]U )mn.

In practice we will truncate the basis of eigenfunctions, so that /\(FO) + w® becomes a finite-
dimensional matrix, which can be diagonalized without much difficulty.

Figure 4 illustrates the effects of RG evolution. We show numerical results for the two
evolution functions Ur(u, up, i) corresponding to the cases with anomalous dimensions 7, +27,
(dotted curves) and ~y; (dashed curves). The plots are obtained with p, = 2FE = m;, = 4.8 GeV
and p = p; = V2EAN, = 1.55GeV, where A, ~ 0.5 GeV serves as a typical hadronic scale. In
addition to the solution obtained with 20 and 40 basis functions, the figure also shows results
derived from a numerical integration of the evolution equation (solid lines). For the numerical
solution, the evolution to a lower scale is performed in discrete steps of Alnu = 0.02. To
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calculate the change in Ur(u, up, 1) in the evolution step from g, to 11, the convolution
integral with the evolution kernel is evaluated for one hundred different u values, and the
function Ur(u, fin, fins1) is obtained from a fit to these values. The results from the two
different methods agree nicely: the curves obtained with a finite number of basis polynomials
oscillate about the numerical results, the number of turning points being equal to the order
of the highest basis polynomial. The amplitude of the oscillations decreases once more basis
polynomials are included. To obtain the Wilson coefficients at the low scale, these results
must still be multiplied with the universal Sudakov factor (2E /) ##) eSWni) ~ (.89 (for
our choice of parameters). We observe that the additional, u-dependent resummation effects
described by the functions Ur(u, up, pt) are very small for the coefficients with anomalous
dimension 7; + 272, whereas they are more sizeable for those with anomalous dimension v,
reaching about —20% for the smallest values of wu.

To summarize our results, we compile the Wilson coefficients for the B-type current op-
erators obtained at leading order in RG-improved perturbation theory. We introduce the
short-hand notation Cr(E,u, i) = (2E/juy,)*#nr) eSWnt) Up(u, g, 1), where T' =1 or T' = L
depending on whether the anomalous dimension is y; +275 or 71, respectively. We will see later
that these two cases are in one-to-one correspondence with the nature of the light final-state
meson in B — P,V transitions. The case I' = || applies for transitions into a pseudoscalar or
longitudinally polarized vector meson (P or Vj), while the case I' = L applies for transitions
into a transversely polarized vector meson (V). Our results are given as follows.

Scalar current:

C5 (1) = —C)(E,u, ). (78)
Vector current:
Cr(p) = Cy(E, u, ), Cia(p) = —2C)(E, u, ),
Clyn) = 2o Cy(Baup), Cyln) =0, (79)

Tensor current:

Ch(p) = =Cy(B,u,p),  CPy(p) = —4CY(E,u,p),  CPs6(n) =0,

AE 8E
Crs(n) = ~o CLlE u ), Cry(p) = ~ o Cu(Byu ). (80)

The corresponding Wilson coefficients in the primed basis follow from (43) and (45). At
leading order, the results for the primed coefficients 051’274 and 051'72,576 are given by the same
expressions as in the original basis, i.e. C?" = CP, while C5(n) = (1 — 2E/my) C(E, u, ),
and CPy(n) = CF, (1) = 2C)(E,u, p), CF(p) = (AE/my) CL(E, u, ).

Figure 5 illustrates our results for the scalar current. While one should use tree-level
matching combined with one-loop running for a consistent treatment at leading order in RG-
improved perturbation theory, the figure also shows results obtained by including the one-
loop matching corrections presented in (30). We solve the evolution equation (50) by direct
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u

Figure 5: Results for the Wilson coefficient C¥(F, u, ;) at E = m;/2. The dashed lines
represent the tree-level (gray) and one-loop (black) coefficients at the high scale u;, = 4.8 GeV.
The solid lines are obtained after evolving both coefficients with the leading-order anomalous
dimension down to the intermediate scale p; = 1.55 GeV.

numerical integration, expanding the cusp anomalous dimension entering W (E, u) to two-loop
order, but using one-loop expressions for V;(u,v) and the remaining terms in W(E, u). We
again take u, = 2E = my and p; = 2EA, (with A, = 0.5GeV). The dashed curves give
the one-loop matching results at the high scale pj, while the solid lines show the result of
RG evolution to the intermediate scale p;. Comparing the black and gray curves, we observe
that the one-loop matching corrections are of the same order of magnitude as the effects of
RG evolution. This fact provides motivation for an extension of our anomalous-dimension
calculation to the two-loop order, which would be necessary for a systematic treatment at
next-to-leading order in RG-improved perturbation theory.

For completeness, we briefly discuss also the solution to the RG equation for the coefficients
of the A-type currents, given in the first line in (34). The solution is

N 9 [\ Uknh) al) o N
ctwa = (20) e s+ [ S| e, 6
20 as(pn) /G(a)
with S(un, 1) and a(up, 1) as defined in (64) and (65). At leading order in RG-improved
perturbation theory we may use the expansions (66) together with

as(w) do :YO
—— (o) = —=—1Inry, (82)
where §(ay) is expanded similarly to (67), and 79 = —5Cp. As an illustration of the size

of one-loop matching corrections, we may consider again the scalar case, where at tree level
C# = 1. At leading order in RG-improved perturbation theory, with tree-level matching, we
find C4(F, p;) ~ 1.097 at p; = V2EA;, and E = m;/2. From (29), the coefficient at the high
scale i, = 2F = my, including one-loop corrections is C4(FE, uy) ~ 0.934. Leading-order RG
evolution to the intermediate scale then yields C§ (E, ;) ~ 1.025.
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5.3 Constraints from conformal symmetry

The conformal invariance of QCD at the classical level can be used to simplify the solutions
to the evolution equations for the hard-scattering kernels and light-meson LCDAs. As a
consequence of this approximate symmetry, the evolution equations become diagonal at leading
order once they are written in a basis of eigenfunctions of definite conformal spin. In the case
of the pion LCDA, these basis functions are the Gegenbauer polynomials 32 [23]. For
the heavy-light current the situation is more complicated: the conformal symmetry is not
only violated by quantum effects, but broken explicitly by the presence of the heavy quark.
Interactions with the soft sector of the effective theory thus destroy the conformal invariance
of the hard-collinear sector. However, since the soft interactions do not change the large
momentum fractions of the hard-collinear particles, the breaking of the symmetry can only
occur in the local part of the anomalous dimensions, i.e., in the term 6 (u—v) W(E, u) in (46).
We focus here on the hard-collinear sector of the effective theory, showing in particular that
the eigenfunctions of the non-local terms V;(u,v) in (46) must take the form (57). For the
remainder of this section we will refer to hard-collinear modes simply as “collinear”.

Before discussing the properties of heavy-light currents in more detail, we briefly recall some
aspects of conformal symmetry [25]. The full conformal algebra consists of the generators P,,,
J ., of translations and Lorentz transformations, augmented by the generators D of scale
transformations, z# — Az#, and K, of special conformal transformations,

T + atx?

H ) 83
v _>1+2a-:c+a2:c2 (83)

The action of the generators on a field of scaling dimension [ and arbitrary spin is
ilPy, ®(z)] = 0,0(x) ilJ w, ()] = (240) — 2,0y — X)) (), (84)
ilD,®(x)] = (z-0+1)®(z), i[K,, o)) = (2z,.2 0—2°0,+2lz, —22"%5,,) ®(z).

The spin operator ¥, on scalar, fermion, and vector fields is given by

7
E,ul/ ¢ =0, E,uz/ TP = iguu w ) E,uz/ A, = Gva Au — Jua A, . (85)

The collinear part of the SCET operators is given by products of fields smeared along the light
ray " = raf, i.e. ®(x) = ®(rn) = ®(r). The SL(2, R) subgroup that maps this light-ray onto
itself is called the collinear conformal group. It is obtained from the four generators n - P,
n- K, n*n"J,,, and D. To classify operators under this group, it is convenient to work with
the linear combinations

L—i-l:_iﬁz'P) L—lzin.K9
i 1 i 1
Ly = 5(D + 50" Ju), B =5 (D= on'n’Jw). (86)

The generator E counts the twist ¢ and commutes with the remaining three generators, which
fulfill the angular-momentum commutation relations

[L+1, L_l] — 2L0 y [L(], L:I:l] — :l:L:tl . (87)
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The action of these operators on the fields ®(r) is

(L1, ®(r)] = =0, @(r),
[L_y, ®(r)] = (r* 0, + 2jr) ®(r),
[Lo, ®(r)] = (r 0, +j) @(r), (88)

where the quantum number j is referred to as conformal spin. The twist ¢t and the conformal
spin j of a field ® are related to the scaling dimension [ and the spin projection s through the
relations t = — s and j = %(l + s), where s is defined by

N0 =atntY,, =50, (89)

N

To express the SCET fields in terms o
we introduce the field-strength tensor

(primary) conformal fields of definite spin and twist,

gguy = WTQG,LWW - i[Dm DI/] 5 (90)
where D, = 0, — iA,. In particular,
n-0AN =09 9Gas = g6 . -0n- A =1"n"9Gus = 90 . (91)

Then for the collinear SCET fields at the origin, we find for the twist and conformal spin
eigenvalues

(B, X(0)] = X(0), Lo, (0)] = X(0),
(B, G2, (0)] = G2, (0). [L0,G2. (0)] = 5 6. 0).
(B, G20 (0)] = 26,,(0) Lo,Gn(0)] = G (0). (92)

In the following, we want to decompose a given operator into components with definite
conformal spin. The construction of the corresponding basis is done in two steps. First,
one identifies the operator of minimal conformal spin Oy, i.e., the operator at the bottom of
an irreducible conformal tower, defined by [L_;,Oy] = 0. The complete basis of conformal
operators is then given by repeated application of the raising operator L., to the highest-
weight operator Op:

O =Ly, [Lyy, [, [L+Lv Ool... ] (93)
k times
A trivial example of this procedure is the expansion of the operator X(r) into operators with

definite conformal spin. In this case the highest-weight operator is Oy = X(0), and the raising
operator L, acts as a derivative with respect to r. The expansion of the operator X(r)

41t is standard terminology to refer to the operator of minimal conformal spin as the highest-weight operator.
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in collinear spin thus coincides with the Taylor expansion about r = 0. As a slightly more
complicated example, we consider the decomposition of the product of two fields, which we
assume have individual conformal spins j; and js, into operators of definite conformal spin.
We first rewrite each of the two component fields ®;1(r;) and ®jo(r2) in the conformal spin
basis. In other words, we expand the product in a Taylor series about r; = ro = 0. At the
n-th order, this leaves us with operators of the form

0:}118:}22 (bjl(rl) (I)jg(’f’g)} (94)

ri=ro=0"
where n = n; + ny. In general, these operators do not have definite conformal spin. The
minimal conformal spin of an operator built from two fields of conformal spin j; and j, with n
derivatives on the fields is j = j; + jo +n, and the highest-weight operator for this case is [26]

—
Oén,j17j2)(r) _ a:z{q)jl (7’) P1§2j1—1,2j2—1) O — % <I>j2 (7“)} . (95)
Or + O,

The Jacobi polynomials pled appear as the Clebsch-Gordan coefficients of the collinear con-
formal group.

As an illustration, the operators relevant for leading-twist light meson LCDAs have the
form X(r;) T (7/2) X(r5). In this case the highest-weight operators are

- - — AP
oY (r) = (in - a)”{x(m) pfpoy( 0= 0 X(m)} . (96)
2 in-0+in- 0

For example, with I' = 75, taking the pion-to-vacuum matrix element yields a moment of the
pion LCDA,

1
(010§D (0)|r) /0 du P8 (u — @) r(u, ) (97)

which projects out the component of ¢, (u, ) proportional to uu P,gl’l)(Qu —1), where PY o
C¥?. Similarly, we may expand the collinear fields A’ (r1) X(re) appearing in the current
operators JJB into operators of definite conformal spin. The highest-weight operators in this
case are

o2V (r) = (in - 8)“{[m LA AL (rR) P2 in-0—in - 2 x(rﬁ)} , (98)
in-0+in- 0

and the corresponding eigenfunctions for J JB are proportional to uu pE (2u—1), in agreement
with (57). From the discussion following (55), it follows that the eigenfunctions for the Wilson
coefficients CP are proportional to ﬂP,(LZ’l)(Qu —1).

In the conformal-symmetry limit L?, Lo, and E are conserved charges, and operators with
different conformal spin or twist therefore do not mix. For the collinear fields appearing in
the heavy-light currents the situation is especially simple, since there is only one operator for
a given set of quantum numbers. Operators with different collinear field content or with 0
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or n - 0 derivatives on one of the two fields have higher twist. Also, by construction, each one
of the operators O,g"’z’l) has unique quantum numbers, namely

.00 = (” * 5) (” " 5) oY,

n 5 n
[Lo, O0>Y] = (n +k+ 5) oY (99)
To the extent that conformal symmetry is preserved, the operators O,i"’z’l) are thus multi-

plicatively renormalized. This explains why the eigenfunctions of the non-diagonal part of the
leading-order evolution kernel take the form of Jacobi polynomials Pr(f’l), as was shown by
explicit computation in Section 5.1.

6 Renormalization-group evolution in SCET;

After RG evolution down to the scale p; ~ /2EAqcp, the intermediate effective theory
SCET] is matched onto SCETy;. In this section, we present a complete operator basis for the
hard-scattering contributions in SCETy; and compute the corresponding tree-level matching
coefficients (called jet functions). To investigate the size of loop corrections, we also present
the complete one-loop matching corrections to these coefficients and show that they can be
expressed in terms of only two universal functions. We then consider resummation in SCET;
and present the general solution to the RG equation. In the following Section 7, we will
apply these results to obtain RG-improved expressions for the hard-scattering contributions
to B — P,V form factors.

6.1 Low-energy representation of the B-type operators

Below the intermediate scale p; ~ \/2EAqep, the effective-theory description is in terms of
soft, collinear, and soft-collinear messenger modes of SCETy; [5, 14]. The Lagrangian in the
soft sector is the same as in (5), while the collinear Lagrangian becomes

L, = EC% <m D, + D ! 5 upd) £ (100)

mn -
Soft-collinear messenger modes may be decoupled via field redefinitions in the leading-order
soft and collinear Lagrangians and in the four-quark operators representing the hard-scattering

terms [15], and we do not display them here. In terms of the decoupled fields, it is convenient
to introduce the gauge-invariant combinations [5, 27|

Xe = [Wchc] ~ A, Qs = [STQS] N)\3/2’ H= [STh’] N>\3/27
Al = WHEDEW,) ~ (3%,0,8), AL =ST(IDLS) ~ (0,4, )), (101)

where W, and S are collinear and soft Wilson lines in the n and n directions, respectively.
To account for non-localities generated by integrating out hard-collinear modes, collinear and
soft fields are smeared along light-like directions, i.e. ¢.(sn) and ¢4(tn) [5].
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Form factors arising in semileptonic and radiative B decays derive from current operators
in the effective weak Hamiltonian mediating the decay of a heavy b quark into a left-handed
light quark. The relevant operators are

Vii=gr' (1 =)b, T = (=) qo" (1 +75)b= g7y (1 +)b.  (102)
We find it instructive when discussing radiative corrections to consider also the scalar current,
SL=q(1+7)0, (103)

which can be related to the vector current by QCD equations of motion. In the NDR scheme
with anti-commuting s, the preceding analysis of operator mixing and renormalization is
unchanged by the insertion of (1 + ;) next to the light quark. From now on, the replacement
g — G (14 75) in the SCET] currents JJB' will be understood implicitly. The B-type current
operators of SCET| then match onto four-quark operators in SCETy; of the form [5, 6, 7, §]

P .(0) Qufem) (1) B 1, 90(0). (104)
The chirality of the field Qy is the same as that of X, which in turn is determined by the Dirac
structure I'. ;. We restrict attention to the case where the matrix elements of these operators
are evaluated with an initial-state pseudoscalar B meson. We then construct a basis of four-
quark operators in which the soft component fields arise in the combination Q, (147s) (7/2) K
(In a more general case, operators containing v/ next to Q,, and structures with more than
one perpendicular Lorentz index, would also have to be considered.) For the scalar current
S, there is only one possible structure,

Oi(s,t) = Xe(sn) (1 +75) T

v TS
SIS

Os =X (1+75) 5 Xe Qi (1+75) 5 5, (105)

while for the vector current we find the three operators

nt -
Oy, = mx (1+s)

DO S

x Qs (1 +75)

=

Oy = V"X (1+75) 5 Xe Qs (1+75)

no TS

OIS OIS oI
S

DO [ TSL
=
(e}
0!
V)
N
|
)
i

Ofs = Xe(l+75)74 (106)

For the tensor current we only keep terms that are non-zero when contracted with ¢,, where
q with ¢, = 0 is the momentum transfer. This yields

, nlegvl _ % %
om — 7, ﬁx 3, (1 %{
T2 T T (1 +”Y5)7¢ 9 (1—1s) 9
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O = ol X, (14 5) V]%DC Q(l—vg,)%f}{. (107)
Color octet-octet operators have vanishing matrix elements between physical meson states, and
also do not mix into the color singlet-singlet sector [15]. We may therefore restrict attention
throughout to color singlet-singlet operators.
In constructing the most general basis, we notice that adjacent v, matrices can always be
avoided. Using

{11} =241", (108)
any such structure can be reduced to combinations of ¢/ and totally anti-symmetric combi-
nations,

it = (109)

1. 0123 _ ~1)

In four dimensions ~/ vanishes for n > 3, while for n = 2 (we use €

el QEWP%WJ (% _ @) — (M _ VZ_%) v (110)

In dimensional regularization, so-called “evanescent” operators containing structures ~/**"

for n > 3 appear once radiative corrections are taken into account. A regularization scheme
including the effects of these operators must be employed for the calculation of two-loop anoma-
lous dimensions. This is the two-dimensional analogue, in the space of transverse directions,
of the procedure employed in four dimensions [28, 29, 30].

6.2 Matching calculations

We introduce the momentum-space coefficient functions
Di(E,w,u,p) = /ds dt e"nvt gusmP D (s o) (111)

where [)Z-(s,t, ) is the coefficient multiplying the operator O;(s,t) in (104), and the depen-
dence of D; on - P and n - v is only through the product (7 - P)(n-v) = 2E. The final
step of matching SCET; onto SCETY; is described by so-called jet functions J;; defined via
the relation

1
2Fw

2Fw
dij (u Yy, In —5- 2 ,uz) CP(E,y, ), (112)

Di(E,w,u, ;) =
where CJB are the coefficient functions of the SCET} currents JJB, and j; ~ 1/2EAqgcp denotes
the intermediate matching scale. Since all interactions between collinear fields and the b quark
have been integrated out already in SCET], the jet functions are independent of the heavy-
quark velocity v. Dimensional analysis and rescaling invariance then imply that they depend
on w only through the dimensionless ratio (7 - P)(n - v)w/u?. Furthermore, since p; only
appears logarithmically, the same must be true for this ratio of scales, to any finite order in
perturbation theory [20]. This explains why above we have written the third argument of the
jet functions as L = In(2Ew/u?).
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For the calculation of the jet functions, it is convenient to work in the primed basis of
current eigenvectors JJB' defined in (42) and (44). From the structure of these currents, as well
as the structure of the resulting four-quark operators in SCET}; displayed in (105)—(107), we
notice that

nt nlty]

Ou = — OS Ou =t OS O/W = OS
vi T o YS V2 , T T ,
7 [1q)V]
Bu n B B'u B Buv nwv B
JV3 = —'n,~’U ']S y JV2 —'UMJS y ']T4 = v JS y (113)

so that the SCETy operators Oy 2, Or; and their SCET] counterparts J‘%Q, JB, are related
to the scalar operators Og and JZ simply by overall factors involving n* and v*. It follows
that, e.g., the jet function arising in the matching of J# onto Oy is precisely the same as
that arising in the matching of J£ onto Og. Similarly, we find that

1 14 4 v
Oy = — nlt Ov]s g O3 = ol OV]?, )
n-v
!/ ]_ / / /
Buv B'v] Buv B'v]

I = mn[ﬂjm , Jrg" = U[”Jw , (114)
so that the matching of JE (JE) onto Ory (Ors) is precisely the same as that of JZ, onto
Oys. The operators J{% and J%,?) match onto SCETy; four-quark operators with vanishing
projection onto the B-meson, while J751l75 contain two perpendicular vector indices. These
operators are therefore not relevant to the B — P,V form factors, and we have thus not
listed the corresponding SCETy; operators in (106) and (107). Collecting the elements J;
into matrices J, these observations imply that the jet functions can be expressed in terms of

only two functions Jj and [J,. The result is

0 0] 0 00070 0 0
Ts=J. Jy=[0g 00|, Jr=|000 00 0J, |, (115
0 0 OfJ. 000 007, 0

where the primes remind us that these results refer to the basis of the SCET| currents JJB'.
At tree level, we find

ArCras(p;) 1
N 2Fu

In order to study the effect of next-to-leading order matching corrections, we now calculate
the one-loop matching corrections to the jet functions [ and J.. The relevant diagrams are
depicted in Figure 6. Contributions involving soft gluons cancel in the matching once the
corresponding SCET}; diagrams are evaluated, so that only hard-collinear SCET; diagrams
need be considered. We perform the calculation in Feynman gauge. The UV 1/e poles are
canceled by the renormalization constants of the SCET| and SCET; operators. Details of this
calculation will be presented elsewhere [31]. The results take the form

AnCrag(p;) 1 s

‘7“ (u7 v, L7 ,U/i)troe = jl(ua v, Lv ,U/i)troe = -

o(u—v). (116)

<j1(u,v, L)+ ja(u, v, L)) + O(a?)} :
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Figure 6: SCET] graphs contributing to the matching of the currents JJB' (crossed circle) onto
the SCETY; four-quark operators O;. Full lines denote soft fields, dashed lines hard-collinear
fields. Diagrams with soft gluons or scaleless loops are not shown.

ArCrag(p;) 1

jJ_(u>'UaLaui) = N 2FEU

[—5@ o)+ 0‘1(7‘:") ji(u, 0, L) + O(ai)} , (117)

where L = In(2Ew/p?), and the functions j; and j, are given by

i v, L) = 6(u—v) {Tan [29—0 - % (L+1nu)]
+ (C — %) [—(L+1nu)2 —3(L+1na)+8— %2}

Ca ., 13 80
—7[(L—|—lnu) —§(L+1nu)+§—€]}

vV—Uu u—v

+<C _%){—2[M(L+ln(v—u))+9(u_v) (L+ln(u—v))}

+

2v

uv U wuv

FoL—u) |

<L+lnv(1—u—v))+2(1—u—v)]
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u V—U

0l — ) [3 (L+ In(v—u)) +

uv U— v Uuv v uv

+60(u —v) {z_ (L+1In(u—v))+

Y (A Y (ML)
e ()
e e REl
a0 [ e oo -0 0 (2w OZIN g

The plus distribution is defined as in (48). At one-loop order there are also matching coeffi-
cients onto evanescent operators. We assume that a renormalization scheme is employed such
that the matrix elements of these operators between physical states vanish [28], and so do not
list their matching coefficients here. Note, however, that the evanescent operators can mix un-
der renormalization into the physical basis. Their effects would therefore have to be included
for a consistent next-to-leading order analysis involving two-loop anomalous dimensions.
While the numerical impact of the one-loop matching corrections to the jet functions will
be studied later, it is interesting at this point to use the explicit expressions in (118) to learn
something about the “natural scale” to be used in the expressions for the jet functions. The
BLM scale-setting prescription is to collect the terms proportional to Gy = % Cy— %Tan
in the next-to-leading order corrections, corresponding to vacuum-polarization insertions, and
absorb these into a redefinition of the scale used in the coupling constant of the leading-order
terms [32]. In the present case, this means that (for fixed u and w values) we should replace
as(p;) — as(puprm), where ]
paia =€ 3 - 2uEw (119)

for both jet functions, which agrees with previous results reported in [33]. When applied to a
specific process, such as the hard-scattering contributions to heavy-to-light form factors to be
considered in Section 7, the BLM scale setting should be done after the convolution integrals
over the LCDAs have been performed, which is equivalent to using mean values @ — e{®®
and w — ™) weighted by the corresponding tree-level amplitudes, to define an effective
scale for each decay process. The resulting BLM scales, while parametrically of order puy,
are numerically rather low, typically ugpy &~ 0.7 GeV or less. The smallness of these scales
appears to suggest a poor convergence of the perturbative expansions of the jet functions.
However, a more careful analysis shows that the BLM prescription cannot be trusted in the
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present case. It follows from (112) and (117) that, in the limit where we neglect the mild
y-dependence of the coefficients CJB/(E, Y, i), the convolution integrals relevant to the hard-
scattering contributions governed by the longitudinal jet function J| yield

«

/Oood;w ¢p(w, 1) /Ol%u O (u, i) s (prs) [1 - % /Oldyj1+2(u,y, ln(QEw/,uf))}

as(p;) [4 /, 5 2FEw 19 72 2Fw
)el+——=1=(1 -+ — 1 .32 12
ocas(m){ + = [3<H 2 )t st (e +3.32] ¢, (120)

where ji1o = j1 + jo for brevity, (...) denotes an average over the B-meson LCDA ¢g(w, p;)
with measure dw/w, and for simplicity we have assumed the asymptotic form ¢y (u, p;) = 6uw
for the LCDA of the light meson. The corresponding result for the jet function 7, is obtained
by replacing ji,1o — j1, in which case the coefficient of the single logarithm changes to (—6—|—%2),
and the constant term changes to 1.39. If scale p; is chosen such that the logarithms appearing
in this expression are not too large, then (at least through one-loop order) the perturbative
corrections are of moderate size. For comparison, keeping only the BLM terms of order Bya?,

we would obtain o .-
s (114) {1 + O‘z(“i) {—3 <ln 2“> + 26.39] } (121)
™ i

instead of the expression in the second line of (120). We conclude that the BLM prescription
overestimates the size of the O(a?) corrections by large amounts. The perturbative expansions
of the jet functions at a scale u; = V2EA, ~ 1.5 GeV appear to be reasonably well behaved.

6.3 Sudakov resummation in SCET;

Having performed the matching onto SCETy;, we now wish to evolve the momentum-space
coefficient functions D; in (111) from the intermediate scale p; ~ /2EAqep down to a
hadronic scale p, which is independent of the large energy E. This can be achieved by solving
the integro-differential RG equation [15]

d
dnp

o0 1
Di(E,w' ', u) = / dw/ duryr(w, W' u, ', 1) Di(E,w,u, 1) . (122)
0 0

The anomalous dimension v depends on the spin-parity quantum numbers of the light final-
state meson M. As before, we must distinguish two cases: I' =|| for M = P, V|, and I' = L
for M =V, . The anomalous dimension may be decomposed as

yr(w, ' u, s p) = 6(w — W) Kr(u,u') + 6(u — ') H(w,w', 1), (123)
where
vo Kr(u,v) = Cra, { - {uﬂ A Chll) + vt A Gl U)} + L ut §(u — v)
T v—u u—v |, 2
—cr [u@ O(v —u) +vub(u— v)} } + O0(a?), (124)
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with ¢j = 1, ¢, = 0 is the Brodsky-Lepage kernel [23], and

H(w,w' p) = [Fwsp(as) 1ng + 7(045)} w—w)+wl(w, o a) (125)

_ Cra, { (mﬁ - g) B — o) —w [9(“"”" I Cl) ] } + 0(a?)

T w ww—-w) (W —w)

is the corresponding kernel governing the evolution of the B-meson LCDA [20, 35].

As a consequence of the conformal symmetry of QCD at the classical level, the kernel
v0 Kt (u,v) is symmetric in v and v, and K is diagonalized by Gegenbauer polynomials (cf.
(96) in Section 5.3). We write

1
/ du Kr(u,v) @, (u) = krpnon(v), (126)
0
where at one-loop order
Craog 1 cr
n= 2Hpy1 — 1)+ = — . 127
st = O (20 1)+~ (121)

We choose the normalization of ¢,, such that they are orthonormal in the measure u du on
the unit interval,

After expanding the coefficients D;(FE,w,u, ) on the basis of eigenfunctions ¢, (u), the RG
equation for each Gegenbauer moment is solved as in [20]. The result reads

1 w _a(uivu) s . N
Di(E,w,u,pn) = Yo (;) StHHi) Z(pn(u) (129)
n=0

)
n=0

LB b , 280\ i
x [ dyCy (B y, ) | deaZon(x) T(x,y, Vy, i) ) e o (o
0 0

i

where S(p, 11;) and a(u;, pt) are given in (64) and (65), the jet functions J; in the primed basis
are obtained from (112) by replacing 2Fw/u? — V,,, and

as(p) da
Vi (s 1) = / —

) ﬁ(a) lf(ﬁ - Cl(:uia ,U(CY))’ Oé) + Kp,n(a) + ’y(a):| , (130)

with
Y R Can (£
F(n,as) = /0 dw W' T'(w, W', ag) (w’>

= Tl (o) [0(1+ ) + (1 = n) + 298] +O(a?) (131)
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For a complete leading-order solution, we require the two-loop expression for I'w,s, appear-
ing in S(pu, 11;), one-loop expressions for the remaining anomalous dimensions in a(gu;, 1) and
Ven(pis i1, m), and tree-level matching conditions for the jet functions. At this order, the
relevant expansions are

I R £ ST A WA
S(M’M)_él—ﬁg[m(l r2+lnr2)+2601n o (Fo /60) (7“2 1+lnr2)},

r
CL(,UZ,,U) = _2—00 lIl’f’Q,

F(l — ;700 In 7”2) FO 1 0)
Ven(pis 11, 0) = In —vg— Inry — — <l€nn + *yo) Inry, (132)
F(l + 2%)0 1n7’2) Bo 200
where ry = as(p)/as(p;) > 1, and as usual we have expanded
(0) Os Qg
m = — 4., =Y%-—+.... 1
kr, Rrm o+ V=Yoo o (133)

7 Application to heavy-to-light form factors

In this section we apply our results to obtain resummed expressions for the hard-scattering
contributions to heavy-to-light form factors at large recoil energy. We begin by recalling the
definitions of the ten form factors describing B decays into pseudoscalar and vector mesons.
Equating these definitions to the corresponding effective-theory expressions shows that at
leading order in 1/F only eight of the form factors are independent. As shown in (1), in this
approximation the form factors are given by the sum of a soft-overlap contribution, expressed in
terms of universal non-perturbative matrix elements (y;(£) (where M = P, V}, V| depending
on the spin-parity quantum numbers of the light final-state meson), and a hard-scattering
contribution, given by a convolution integral over meson LCDAs. We focus on the second term
and present general, resummed expressions for the corresponding hard-scattering kernels. The
results are particularly simple when hard matching corrections are ignored. In this case, for
a given final-state meson M, the hard-scattering contributions to all B — M form factors
can be parameterized in terms of a universal quantity Hj;. The Sudakov suppression factors
are mild in all cases. In order to investigate the relative importance of running and matching
corrections, we apply our previous one-loop matching results for the scalar current to obtain
the one-loop corrected hard-scattering contribution to the vector-current form factor Fj, and
to the form factor F, at maximum recoil (¢* = 0).

7.1 Form-factor definitions and factorization formulae

We begin by recalling the definitions of the form factors parameterizing B decays into pseu-
doscalar (P) and vector (V') mesons, following the conventions of [13] (we use the sign con-
vention €% = —1):

m% 2 m% —m3 p

(P()|g~"b|B(p)) = Fi(q”) (p” + - T_zmp q”) + Fo(q?) —a
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iFr(q°)

(P(p)|qo™ q, b| B(p)) = [ (" +p") — (mp —m3) ¢"]

mp+ mp

A 21V (¢%)
V / ,ubB — ,uz/po * "
V', m)|av"b|B(p)) e —— 1, Py Do

i) = 2 Ao T (m ) ) (37~ T )

* 2 2

- q mas—m

— Ay L (p“ +pt - LT q“) :
mp+ my

(V(p',)lqo™q, b B(p)) = —2T1(q%) "7 pl, s ,

(V' mlaa* 75 ¢, 0| B(p)) = =i To(q®) [(mE —mi) n™ — 0" - q (p" + p™)]
2 ¢
—iT |t "+ ") . 134
5(¢°)m qlq mgB_m%(p p)] (134)
Here ¢ = p —p’ is the momentum transfer, and n denotes the polarization vector of the vector
meson, which satisfies n-p’ = 0 and n - n* = —1. The polarization vector for longitudinally
polarized vector mesons is given by
Lo my E nt

Vo = T (135)
my n-p my n-v

For the evaluation of the hadronic matrix elements entering the hard-scattering contribu-
tions to the form factors, we need the definitions of the leading-twist LCDAs for the light
mesons in terms of SCETy fields. They are [9]

<P(p')|9_Cc(sn)F%3Cc(O)|0) pr n-p tr( %%) /0 du ™™ $p(u, ),

X.(0)0) - —”j%w (050 [ o .

0

(Vi (@) Xe(sn) T 5

:
2
et %m0 52010 = L9 (0 5 e o o) 130)

where the ¢); are normalized according to foldu ¢a(u, ) = 1. Note that the transverse
vector-meson decay constants are scale dependent. Below, we will sometimes write fy/(p) as a
generic notation for the light-meson decay constants, keeping in mind that a scale dependence
is present only in the case of fi, . The LCDA for the B-meson is defined as [34, 35]

©012.(tm) £ r3¢0)15,) = B (ﬁ pley 75) / T o ), (137)

2 2 2

where B, denotes the B-meson state defined in HQET, and F is related to the asymptotic
value of the B-meson decay constant in the heavy-quark limit (see below).
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For completeness, we list also the soft-overlap contributions to form factors, parameterized
in terms of the universal matrix elements (s [13]. At leading order in 1/FE, we define®

(PO T T hBy) — 2B Cp(E) tr (% ﬂ) ,

2
6% PhlB) = —2B () (BT LY 50
L)% T B =286 (8) o (o 5 T3 ). (135)

The definitions are given in terms of SCET] currents. As shown in [8], the functions (y/(E)
can be decomposed further into matrix elements of SCETy operators. These operators all
satisfy the same symmetry relations, and the linear combinations contributing to the form
factor behave under renormalization in precisely the same way as the SCET| operators used
in the definitions (138).

To simplify the factorization formulae, it proves convenient to write the coefficient functions
in the form
1 4Kp(p)
w mpfp
which serves as a definition of the hard-scattering kernels 7T;. Here Kp relates the HQET
parameter F' in (137) to the physical B-meson decay constant, fp\/mp = Kr(1) F'(1t), up to
corrections of order Aqep/myp. At next-to-leading order

Di(E,w,u,u) =

Ti(E,w, u, ), (139)

Kp(p) =1+ CFZ‘*W(“) (3 ln% - 2) . (140)

With all of the definitions in place, it is now a straightforward matter to equate QCD
matrix elements to the corresponding SCET expressions. For the scalar and pseudoscalar
currents, for example, we obtain

(PO gHB() = 2 CHE. ) ColE. )

2E [*®d !
+ m_BA %QSB(Q),,U)/O dufp¢p(U,M)TS(anau>M)

2F
e
_ 1)

M UBE) = = [Cd Gy + 65 @ fy v, © Ts]. (141)

mp

[C4Cp+ 05 ® fpop@Ts),

where in the second line we have introduced a symbolic notation for the convolution integrals.
(In general, the scale p in the soft-overlap terms could be taken different from that in the

50ur definition of (v, differs from the corresponding function § in [13], such that all (ps functions have
the same power counting. This requires (v, = (E/my)§.
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hard-scattering terms.) Similarly, from the matrix elements of vector and tensor currents we
find the relations

E E
Fy = (C\él + m—BO‘% +C\é3) Cp+ o5 ® frop® (Tv1 + m—BTvz) )

mpg 1) FE
ﬁFO: [Cél+<1_m—3)0é2+cég] <P+¢B®fP¢P®|:TV1+<1—m—B)TV2:|,
o Fr = 0741—10742+10144 CP+¢B®fP¢P®1TT1
mp+ mp 2 2 2 ’
A= ot +(1- e, + o B
o= |Cy+ (1 Cya+ Cys | Qv + 08 ® fv, ov ® [Ty + (1 Tya|,
mp mp
mp-+m
32E VAl:Célng“‘QﬁB@fleﬁvl@Tvg,
mpg A
Py - T
mp + my Cyi Qv + 0@ fv, ov, @Tys,
v (mpEmy) = C’v1+m—BOV2+OV3 Qv + &8 @ fv, v ® Tv1+m—BTV2 ,

1 FE 1
= [Cﬁ —3 (1 - m—B) Cpy — B C?s} Cv,

1 E
— §¢B ® fv, v, ® [Tn + (1 — —) TT3] ;
mpg

mpg 1 1) 1
ﬁTz = [Cﬁ ~3 (1 - m—B) Cpy — 50?3} Cv,

1 FE
— §¢B ® fv, ov, ® {Tn + (1 — —) TT3] ;
mpg

mply — 2K T: 1 1 1
o2 °= (C% - 50?2+§C?4) v + 5@ fry oy ®§TT1‘ (142)

2mv

We have dropped terms of relative order (my;/E)?, where myy is the light meson mass. (Recall
that we have defined £ = v - P_, which differs from the true energy by an amount of order
m3,;/E.) Also, at leading order in Aqcp/my there is no difference between mp and m;. The
general results (142) establish that the form-factor relations

2Pms vy ) = 2L e, (143)

2\ _
Al(q ) - (mB +mv)2 mp

are rigorous predictions of QCD at leading order in 1/FE, and to all orders in ay. These

relations were conjectured in [36], and they were shown to hold at one-loop order in [13].
The scalar and pseudoscalar currents may be related to the vector and axial-vector currents

using the equation of motion for the quark fields, as in (31). When applied to the matrix
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elements appearing in (134) and (141), it follows that (setting as previously the light quark
masses to zero)

D) ()l ) B = (1 - 22 ) Fol?) = Ful )+
my CD _ _ 2my np - ) )
% Vi@l b (aen) | Bp)) = —% M) =~ 22 () + o (an

where the dots represent terms of order m3,/m%. Comparison with (142) shows that to all
orders in perturbation theory

E My (14QeD)
C + <1_Eb> Cyy+ Cfs = 7QC§4>

my
E m
Ty + (1 - —) Tyy = TolHQcD) 1o (145)
my my

These are the SCETY; realizations of the SCET] coefficient relations found in (31).

7.2 Sudakov resummation for the hard-scattering contributions

We now apply the results of Sections 5 and 6 to obtain completely general, resummed expres-
sions for the hard-scattering kernels 7; in the form-factor relations derived above. Starting
from the defining relation (139) for 7}, and combining it with the result (129) for the coefficients
D;, we obtain

T-(E w,u ,u) = msJp Vi) g s v el e (1) +S (ks i)
T 8E  Kp(pn) \ tn [

0 1 1
x Z%(U)/O dy/o dv Ur(y, v, pin, 1) C7 (E, v, )
n=0

1 2E n
< [ e o) Tyt Vyn) (252) eietian (146)
0

i

n=0

We have used (63) to express the coefficients C']B/(E .Y, i) at the intermediate scale, which
enter in (129), in terms of their matching conditions at the high scale pj. Also, we have
rewritten Kp(u) = e”VEWnt) Kp(uy), where

Q’S(M) dO{ fyFO
V:—/ — vp(a) = = Inriry +... 147
g as (i) B() 77(@) 203y v (147)

is the solution to the evolution equation

d
dnp

s

> n+1
Ke=vKp, Y=Y 7Vrn <—> ; (148)
n=0
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with vpg = —3CF. As previously, 1 = as(wi)/as(un) and ro = ag(p)/as(u;). In (146) all
large logarithms are resummed into the various evolution functions. The matching coefficients
Kge(pn), C’JB’(E,v,uh), and J/;(z,y, Vy, ;) can be calculated reliably in fixed-order pertur-
bation theory. The expressions for the kernels 7; are formally (to the order we are working)
independent of the two matching scales pj and p;. A dependence on the low scale p remains,
which will cancel against the scale dependence of the hadronic matrix elements of the SCET;
operators.

The general result (146) simplifies considerably when hard matching corrections at the
high scale pj, ~ my, are ignored. In this case Kp(uy) = 1, and using the fact that the tree-level
matching conditions for CJB/(E , v, pu,) are independent of v, it follows that

1
/ dv UF(yu U, Uh, MZ) C]B (E7 v, ,U/h) = UF(y, Hh, /’I’Z) CJB (E7 :uh) ) (149>
0

where the functions Ur(y, pp, pt;) have been studied in Figure 4. Using the tree-level matching
conditions compiled in (26)—(28) along with the relations (43) and (45), it is straightforward
to evaluate the products J;; C#'(E, u,) for the various kernels T;, with the matrices J;; as
given in (115). We find

TS L= II s
2F
Ty, (1 — —) T\ Tyvo: —2J), Tys: 0,
myp
4F
TTl : 2‘7” y TT2 . H jJ_, TTg - 0. (150)
b

It follows that the convolution integrals for the hard-scattering contributions to the form
factors in (142) may be written in terms of three universal functions

H Lfs <2E)a(uh7ui) S(pnpts)+S (pspi )+ Vi (pn10) EOO /ld ( )f ( )¢ ( )
—t e sHq sHq 5 U n U u,
M omp \ 2 J, 2 M) Ppm\U, b

% dw w —a(pi,p)  p1
X / — ¢B(W7 M) <—) / dy UF(ynU/hv,U/i)
0o W 2 0

1 n
2F
X / dx xZ o, (z) Jr(x,y, Va, 1) (,u—zw) e Vim (1 p1.m)
0

7

(151)

n=0

where I' = || for M = P or V|, and ' = L for M = V. We have extracted a factor —(mp/2E)?
from the expression in (146) so as to remove any non-logarithmic E dependence from the
quantities Hjy; and ensure that they are positive. (Recall that the tree-level jet functions are
proportional to —1/FE.) Note that in (151) the u dependence of the kernels T; cancels against
that of the hadronic quantities ¢g, ¢as, and fp;. We repeat that this expression neglects hard
matching corrections at the scale u, ~ my, but it allows for arbitrary corrections to the jet
functions. If only the tree-level matching conditions for the jet functions given in (116) are
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retained, the result simplifies further to

a(penspi) 0o 1
"Crou(m) fs (25 o
Hy = —7F—F— | — (th o 1td ) +S (1145 du o,
’ A me e ; | duenu) fulp) oalu, 1)

% Ju w —a(pi,p) pl
x eVF (nott) TV n (isps0) / — ¢p(w, 1) (—) / Ay y o (y) Ur(y, pins i) - (152)
0o W M 0

From (142) and (150), it is easy to read off the hard-scattering contributions AF; to the
various form factors. For the three B — P form factors, we obtain

2
AF+:(@) <£—1)HP, AFy =28 1,

2F mp :ﬁ
__(™mB)? me
AFy = <2E> <1+mB)Hp. (153)

The corresponding results for the seven B — V' form factors read

mpg 2
Mo = (55) Hy, A=AV =0,
2my, mp\3 [ 4F
AA:—7<—> — — 1) Hy,, 154
2 mp — my 2K (mB ) Yi ( )
and
m
ATl == 2—EB HVL 5 ATQ == HVL y
mpg mymp
ATy = 22 (HVL + HV”) . (155)

7.3 Numerical results

We are finally in a position to study the phenomenological implications of our results. For the
leading-twist LCDAs of the light mesons, we take for simplicity the asymptotic forms

op(u) = oy (u) = ¢v, (u) = 6u(l —u). (156)

Then only the n = 0 term contributes to the sum (151), where oo(u) = v/6. To proceed
further we require some information on the B-meson LCDA, which is poorly understood at
present. As an illustrative model, we adopt the form [34]

2
¢5(w, po) = )\ig e Ap = 3 (mp —myp) = 0.32GeV, (157)
B

where 1 is a low hadronic scale, at which the model assumes the stated functional form. The
relevant convolution integral resulting from (152) at u = pg is then

/OOO Y (w0 (%) e i r(1—a) (i_i) - (158)
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Figure 7: Leading-order resummed results for the hard-scattering contributions to heavy-to-
light form factors evaluated at 2E = mp, in units of the tree-level expressions for H{ in (161).
The bands reflect the sensitivity to the choice of the two matching scales py, (dark band) and
i (light band). They are the result of varying 0.5m? < uz < 2m? and 0.5myA, < p? < 2myAy,
respectively.

Combining all pieces, we find at leading order in RG-improved perturbation theory

HM _ 37TCFOés(,ui) .foM(:uZ) (%)a(uh’ui) <)‘_B) “elno) es(ﬂh,ﬂi)—FS(uo,ui)
N mpAB Kh Ho
1
x eVrlumpo) Vo lpoto) / dy 2y Ur (y, ftn, ji) - (159)
0
The quantity
r
Vol i, o) = 1nr(1 - 2—60 1117"2) . < ﬂ—g + 27—50) 7y, (160)
Vro

where now 9 = o (o) /as(pi), results from the product of the I' function in (158) times e
from (132), after the term involving ’f(ro has been used to cancel the scale dependence of
far(p), replacing it with fa/(p;). We expand the RG factors a(pn, p;) and S(up, p;) according
0 (66), a(u;, o) and S(po, p;) according to (132), and Ve (up, ) as shown in (147).

It is convenient to present the results in terms of the tree-level expressions, which we define
at a fixed reference scale p; = v/myAy, with A, = 0.5 GeV,

3rCras(vVimuhn) fpfau (Vi) . (161)

Htree =
M N mBAB

As an example we may consider the pion (with f; = 131MeV) and the p meson (with f, =
198 MeV and f,, (vmpAp) = 152 MeV [37]) as representative pseudoscalar and vector mesons,
respectively. Then with fp = 180 MeV and Ap = 0.32 GeV, we obtain H&®* ~ 0.021, Hﬁee R~
0.032, and Hyf*® =~ 0.025. In Figure 7 we plot the dependence of the quantities Hj; on the
model parameter po and investigate their sensitivity to the matching scales u; and p;. We
observe that the results are rather stable for a wide range of u values. If ¢ can be modeled
accurately by (157) for some value of py within this range, then the results are relatively
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Figure 8: Hard-scattering contribution to the form factor Fy including one-loop matching
correction, in units of the tree-level expression AF§* = 2L Hpe. The solid and dashed
curves correspond to a low-energy scale o such that ag(pg) = 0.5 and 1.0, respectively. The
black lines are obtained with matching scales u, = 2F and u; = /2EA, with A, = 0.5GeV,
the gray lines with p, = my and p; = Vmpy,.

insensitive to the precise value of pg. At py = 1 GeV, the sensitivity to the matching scales is
approximately £20% for the considered range of p;, and £5% for the considered range of j,.

In order to investigate the size of one-loop matching corrections, we return to the example
of the scalar current. Using the one-loop jet functions calculated in Section 6.2 in the general
relation (146), it is straightforward to project out the relevant moment of the light-meson
LCDA. The second relation in (145) then yields the hard-scattering contribution to the form
factor Fjy including leading-order resummation effects and next-to-leading order matching cor-
rections. Figure 8 shows the energy dependence of AFj for two different values for the model
parameter po. In Figure 9 we restrict attention to maximum recoil energy, £ = mpg/2. In
this case F,(0) = Fy(0), so that our analysis applies to both vector form factors. We again
observe a mild dependence on the model parameter g, and a slightly reduced (with respect
to the leading-order results in Figure 7) sensitivity to the matching scales py, and p;.

As a final note, we emphasize that the numerical results presented above depend on the
model used for the B-meson LCDA primarily through its first inverse moment, Ag. However,
the statement that leading-order resummation effects are encoded by universal functions Hyy,
which are the same for all form factors with the same light meson in the final state, is inde-
pendent of any model assumptions. The one-loop matching analysis for the sample case of
the form factor F provides some insight into the size of next-to-leading order corrections and
the convergence of the perturbative expansion of the jet functions. The one-loop matching
corrections at the hard scale u; modify the tree-level expression for Fy(0) by ~ 10%. With
1o = 1GeV, the corrections arising from matching at the intermediate scale p; amount to a
change of ~ 30%. Our calculation also confirms the convergence of the hard-scattering con-
volution integral in a non-trivial case, as required by the factorization theorem (1), and as
proved on general grounds in [7, §].
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Figure 9: Hard-scattering contribution to the form factor F;(0) = Fy(0), including one-loop
matching corrections, as a function of the model parameter pg. The bands reflect the sensitivity
to the choice of the two matching scales py, (dark band) and p; (light band). They are the
result of varying 0.5m? < u? < 2m? and 0.5mA;, < p? < 2myAy,, respectively.

8 Asymptotic behavior of Sudakov logarithms for
heavy-to-light form factors

An interesting question to ask is whether one of the soft-overlap or hard-scattering contri-
butions to the form factors is suppressed relative to the other in the formal limit £ — oo
with fixed ratio E/m,. As already noted in [8, 15|, this issue cannot be entirely addressed
in perturbation theory, since the matrix elements for the soft-overlap contribution depend on
FE in a non-perturbative way. Still, it is interesting to investigate the relative suppression of
the Wilson coefficients multiplying the hadronic matrix elements at some low renormalization
scale o, assuming that the matrix elements at a low scale have only a mild energy dependence.
In that way, one takes into account all short-distance logarithms arising from RG evolution
between the scales p, ~ 2F and pp.

In order to isolate the dominant Sudakov factor, we concentrate on only those terms in
the RG evolution equations involving I'cys,. They are sufficient to resum the leading Sudakov
double logarithms to all orders in perturbation theory. In SCET], the evolution of the A-type
and B-type operators is then identical,

d
dnp

d
dnp

CZA(E7/’L) = [Fcusp(as> In %] CZA(E,/L),

2F
CHE ) = [Fawpla) 22| CH(E ) (162
so that the leading Sudakov suppression factor from SCET] running is the same for the two
types of currents. Our new result (54) for the cusp contribution to the anomalous dimensions
of the B-type currents is a crucial ingredient to this conclusion. In SCETYy, the leading-order
heavy-light currents contributing to the soft-overlap terms obey the same evolution equation as
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Figure 10: Asymptotic Sudakov suppression of the Wilson coefficient of the soft-overlap con-
tribution to a heavy-to-light form factors relative to the coefficient of the hard-scattering
contribution. The three curves correspond to different choices of the low scale p, such that
as(pp) = 0.5 (solid), 0.75 (dashed), and 1.0 (dotted). The intermediate matching scale is
taken to be pu; = 2EA, with Aj, = 0.5 GeV.

in (162) [8]; however, the hard-scattering contributions now derive from four-quark operators,
whose coefficient functions obey

d @
I Di(E,w,u, 1) ~ [Fcusp(ozs) In " D;(E,w,u, 1)
2F 2F
_ lrcusp(as) In == — Tap(,) In M—;" Di(E,w,u, ). (163)

If not for the term involving the intermediate scale 2Fw ~ EAqcp ~ w2, the running would
again be the same for both contributions. For a low value p ~ py ~ Aqcp, the effect of this
term is to reduce the Sudakov suppression of the hard-scattering contributions relative to that
of the soft-overlap terms. It follows that, at a low scale pg < p;, the soft-overlap contribution
to a heavy-to-light form factor is suppressed relative to the hard-scattering contribution by a

factor )
astho) dey @ do/
exp |—2 / —— Teusp(@) / — 2S(pismo) (164)
[ as(pi) ﬁ(a) ’ s (i) ﬁ(a/)

where the leading-order expression for S(u;, fi0) is obtained from (66) by replacing u, — p;
and p — p. For realistic values of parameters this suppression is very mild. This is illustrated
in Figure 10, where we show the energy dependence of e?3(#:#0) for 11, = \/2EN}, and different
choices of .

9 Discussion and conclusions

Our analysis completes the leading-order description of large-recoil heavy-to-light form fac-
tors in SCET, including Sudakov resummation effects. The main focus was on the struc-
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ture of SCET] currents, which divide naturally into two classes (denoted A- and B-type),
contributing respectively to the soft-overlap (spin-symmetry preserving) and hard-scattering
(spin-symmetry breaking) terms.

Two interesting complications arise in the RG analysis in SCET;. The first, common
to both types of operators, is the explicit scale dependence of the anomalous dimensions.
The non-trivial result that the scale dependence appears to all orders in a4 only as a single
logarithm times the universal cusp anomalous dimension follows from the cusp structure of the
Wilson loops appearing in the effective-theory operators. The resulting Sudakov suppression
is the (formally) dominant effect of RG running. The second complication, specific to the B-
type operators, is the mixing of operators having different hard-collinear momentum fractions.
The structure of this mixing is constrained at leading order by a conformal symmetry in the
hard-collinear sector of the effective theory. The corresponding (multiplicatively renormalized)
operator eigenfunctions are expressed in terms of certain Jacobi polynomials. The heavy quark
breaks the conformal symmetry, introducing an additional local term in the evolution equation.
An approximate, but arbitrarily precise solution to the RG equation may be obtained by matrix
methods with a truncated basis of conformal eigenfunctions.

To complete the form-factor analysis, we have matched the intermediate effective theory
onto SCETY, where the B-type currents are represented in terms of non-local four-quark op-
erators. The projection properties of effective-theory spinor fields severely restrict the possible
Dirac structures appearing in the four-quark operators. As an immediate consequence of ex-
pressing the original QCD currents in the SCET]; representation, we found that for two cases
the spin-symmetry relations holding between the soft-overlap contributions to different form
factors are not broken at any order in perturbation theory by hard-scattering corrections. In
the remaining cases, when matching corrections at the high scale p; ~ my are neglected, the
resulting hard-scattering contributions can be related to a single factor H);, the same for all
B — M transitions involving the same light final-state meson M. This universality implies
that certain form-factor relations, e.g. those between the B — P form factors Fy, Fj, and Fr,
are exact up to corrections of order a,(m;) and Agep/my. We have presented results for the
perturbative expansion of the quantities H,; through one-loop order.

Because of the factorized form, the RG analysis of the hard-scattering terms in SCETy;
reduces to the renormalization of the B-meson and light-meson LCDAs. Using previous results
for the relevant evolution equations, we have presented a complete leading-order resummation
of Sudakov logarithms. At this order, after resumming all single and double logarithms,
the result is described by a universal RG factor, identical for all form factors describing
the same light final-state meson. In order to investigate the size of matching corrections,
we have performed the one-loop matching necessary to analyze the vector form factors Fy
and Fy at maximum recoil. Contributions from matching at the high scale p; ~ 2E ~ my
give ~ 10% corrections to the tree-level expressions, while matching contributions at the
intermediate scale y; ~ \/2EAqep yield modifications of ~ 30%. A complete next-to-leading
order solution, which controls scale dependence through O(ay), will have to await the extension
of our anomalous-dimension calculations to the two-loop order. Such an analysis would also
require the three-loop coefficient of the cusp anomalous dimension I'cysp(vs), which has been
calculated very recently [38].

One of the dominant uncertainties in the phenomenological analysis of heavy-to-light form
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factors results from our ignorance about the functional form of the B-meson LCDA ¢g(w).
The scale of the hard-scattering contribution to form factors is set by the quantities Hy; =~
(A7 /3) asfpfaur/mpAp =~ 0.02-0.03 (for as ~ 0.3 and Ag ~ 0.3GeV). Since ¢p(w) and, in
particular, its first inverse moment Ap are ubiquitous in the effective-theory description of
exclusive B decays, there is hope that experiment can provide significant constraints, to be
checked against the present knowledge based on QCD sum rules [34, 39, 40].

The effective theory does not predict the relative size of the soft-overlap and hard-scattering
contributions to the form factors, other than saying that they are of the same order in Aqep/E
(neglecting Sudakov logarithms), namely of order (Aqcp/E)*?. To explore this question
further, we have investigated the asymptotic forms of the Wilson coefficient functions in the
formal limit £ — oo with fixed E/m;. We have found that the soft-overlap coefficients are
suppressed relative to the hard-scattering coefficients in the asymptotic large-energy limit,
but that this suppression is ineffective for realistic energies attainable in B decays. This
conclusion is, however, tempered by the fact that the non-perturbative soft-overlap matrix
elements have a long-distance sensitivity to the scale E, which cannot be controlled using
short-distance methods. Therefore, the behavior of the Wilson coefficients alone does not
necessarily give a reliable prediction for the asymptotic behavior of the form factors themselves.
Phenomenologically, it appears that the soft-overlap contributions to B — M form factors are
significantly larger than the hard-scattering terms.

The results presented in this paper will be relevant to more complicated decay processes.
For example, QCD factorization formulae relate the decay amplitudes for rare exclusive pro-
cesses such as B — 7w or B — K*y to the sum of a B — M form-factor term plus a
hard-scattering contribution [9, 10, 11], both of which are described in the effective theory
by operators already present in the form-factor analysis. The universality of the jet functions
discussed in the present work may have interesting implications when applied to these cases
[41]. Finally, using the SCET formalism it should also be possible to analyze heavy-to-light
form factors beyond the leading order in the large-energy expansion.

Note added: While this paper was in writing the work [42] appeared, in which the one-loop
hard matching corrections to the subleading SCET; currents are computed. Our operator
basis is more convenient for studying RG evolution than the one adopted in that paper, since
with our choice the two-particle (A-type) and three-particle (B-type) currents do not mix
under renormalization. Our matching coefficient CF in (30) agrees with the corresponding
result in [42]. We have also checked that the second equation of (31), relating the coefficients
of the scalar and vector B-type currents, is satisfied by the one-loop expressions in [42].
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