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Abstract

Methods for analysis of fluid-structure interaction using high fidelity simulations
are critically reviewed. First, a literature review of modern numerical techniques for
simulation of aeroelastic phenomena is presented. The review focuses on methods
contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling
computational fluid dynamics codes to computational structural mechanics codes. The
review treats mesh movement algorithms, the role of the geometric conservation law,
time advancement schemes, wetted surface interface strategies, and some represen-
tative applications. The complexity and computational expense of coupled Navier-
Stokes/structural dynamics simulations points to the need for reduced order modeling
to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin
projection approach for building a reduced order model (ROM) is presented, along
with ideas for extension of the methodology to allow construction of ROMs based on
data generated from ALE simulations.
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Methods for Simulation-based
Analysis of Fluid-Structure
Interaction

1 Introduction

Aerodynamic loading of flexible structures is an important aspect of many engineering
disciplines, including aeroelasticity of flight vehicles, and wind turbine aerodynamics. Ad-
vances in computational mechanics algorithms, along with continually growing compu-
tational resources, are beginning to make feasible the analysis of coupled fluid/structure
problems using high-fidelity computer simulation. Simulation of fluid-structure interac-
tion has been a rapidly growing area in the computational sciences arena, as indicated by
the results of a recent bibliographic database search shown in Figure 1. Nonetheless, de-
velopment of the computational building blocks necessary to perform these simulations,
and how they are pieced together to enable a coupled physics simulation, are formidable
problems. Further, the use of such simulation tools for real engineering systems with com-
plicated geometries cannot be considered routine. Maximum benefit will be derived from
the simulations if strategies for their efficient employment are mapped out beforehand.

This document contains two parts aimed at addressing each of these issues. The first
part is a focused survey of the current state-of-the art in coupled fluid/structure simulation
capabilities. The primary applications of interest are static and dynamic aeroelastic phe-
nomena for flight vehicles and wind turbine blades at high Reynolds number. The review
is, therefore, biased towards methods suitable for simulation of such phenomena. It also
ignores much of the important research carried out on aeroelasticity before numerical sim-
ulation with the Navier-Stokes equations was even an option. This prior research formed
a basis of understanding that is essential for proper interpretation of the results from the
high-fidelity simulation methods surveyed here.

The second part of this report addresses reduced order modeling as an enabling tech-
nology for high-fidelity simulations. Generally speaking, a reduced order model (ROM)
is a relatively inexpensive mathematical model of a physical system that is derived from
experimental data or simulation data. In the present context, the ROM is a system of ordi-
nary differential equations, derived from simulation data and the governing partial differen-
tial equations (PDEs) of a fluid/structure system, that has many fewer degrees of freedom
(DOF) than the discretized PDEs. The goal of the ROM is to accurately reproduce behavior
of the original system of PDEs over a range of system input parameters at a small fraction
of the cost of solving the PDEs. This section is partly a survey of existing ROM technology
and partly an exposition on new ideas and possible research directions for reduced order
modeling of fluid/structure systems.
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Figure 1. Results of a bibliographic database search on “fluid
structure interaction” AND (“numerical” OR “simulation” OR
“computation”). Paper counts are scaled by the total number of
papers in the database relative to the period 1995-2004.

2 Literature Review of Coupled Fluid-Structure
Simulation Methods

2.1 Overview

This review is designed to inform the reader on the existing numerical methods available
for simulation of aeroelastic systems. Most of the methods are based on the Arbitrary
Lagrangian-Eulerian (ALE) formulation of the equations for the fluid motion [23], and a
Lagrangian description of the motion of the structure. The ALE formulation provides for
solution of the fluid problem on a moving mesh by recasting the equations in a reference
frame relative to the mesh motion. In a finite volume scheme, this means accounting for
the changing cell volumes and additional flux terms due to the mesh motion. An alter-
native to the ALE formulation is to keep the grid fixed in an Eulerian reference frame
and only move the fluid-structure interface. This requires a means of applying the inter-
face boundary conditions for arbitrary interface positions, such as the immersed boundary
method [59, 53]. The interface itself is tracked by an appropriate technique, such as the
level set method [50]. Some adaptive grid capability is needed in conjunction with the im-
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mersed boundary method in order to maintain tightly spaced grid points within the bound-
ary layer. Immersed boundary methods for computational aeroelasticity problems are not
as mature as ALE-based methods, and are not discussed in this review.

A wide variety of structural models may be used, varying in complexity from simple
modal descriptions to highly detailed finite element models. The level of fidelity depends
on the problem at hand, namely the geometric complexity, and the degree of linearity of
the structural response. The aerodynamic loads may be described by either a linear (e.g.
incompressible potential flow) or nonlinear (e.g. the Euler equations) model. Linear aero-
dynamic models and models based on the transonic small disturbance equations currently
comprise most of the workhorse methods in industry-based analyses of aeroelasticity. This
review focuses on the emerging technology of coupling fully nonlinear models for the fluid
flow (Euler and Navier-Stokes equations) with a structural model. The nonlinear behavior
of fluid motion, particularly for compressible flows in the transonic regime, is an essen-
tial aspect of many aeroelastic phenomena of interest. Nonlinear aeroelastic analysis can
be used to tackle problems such as transonic flutter, limit cycle oscillations (LCO), and
aeroservoelastic problems involving control surface deflections.

The remainder of this review is comprised of sections treating the major technical as-
pects of fluid-structure simulations in the ALE framework: mesh movement strategies, ge-
ometric conservation laws, time advancement schemes, and fluid-structure interface strate-
gies. The final section gives an overview of a few recent applications in computational
aeroelasticity that represent the current state-of-the-art.

2.2 Mesh Movement

The ALE formulation requires a scheme for moving fluid mesh points as the domain bound-
aries translate, rotate, and deform. There are currently three established categories of mesh
movement strategies: 1) the spring analogy, 2) the elastic medium analogy, and 3) re-
meshing. This section reviews each of the three categories, citing references to important
work in development of each of the methods. At the end of the section, an attempt is made
to assess the different methods in terms of their cost, complexity, robustness, generality,
and parallelizability.

In the spring analogy method, the mesh is viewed as a structural system described by
some combination of lineal and/or torsional springs. Batina [8] applied a lineal spring
method to solution of the Euler equations for a rigid pitching airfoil. In the lineal spring
method, the element or control volume edges are treated as springs with stiffness inversely
proportional to the edge length. The static equilibrium equation solves for the grid point
displacements whenever the mesh needs to be moved. The lineal spring analogy prevents
edges from collapsing, but does not prevent collapse of elements or grid line crossing.
To remedy this situation Farhat e al. [26] added torsional springs (in addition to the lin-
eal springs) to the grid nodes, demonstrating improved robustness over the lineal spring
method on several two-dimensional model problems. Murayama et al. [56] extended the

7



torsional spring scheme to three dimensions and modified the implementation in the inter-
est of computational efficiency. To maintain robustness, however, Murayama et al. added
heuristic near-surface functions that increase the spring stiffness to infinity near a solid
surface. Bartels [7] modified the lineal spring analogy to prevent the case of grid collapse
around convex surfaces, demonstrating the improved method on the simulation of spoiler
actuation in two dimensions. Bartel’s improved method uses transfinite interpolation as an
initial algebraic mesh initialization step, followed by the spring-based smoothing opera-
tion. It is, therefore, limited in scope to structured meshes. Lohner and Yang [45] proposed
a method related to the spring analogy that is based on a Laplacian smoothing with variable
diffusivity based on distance from the surface.

The elastic medium analogy can be viewed as a refinement of the spring analogy. Now
the grid is viewed as embedded in a continuous elasto-static medium. The compressive and
shear moduli of the medium, along with the numerical method used to solve the elasto-static
equilibrium equations, define the grid deformation scheme. Johnson and Tezduyar [40] ap-
plied a finite element method to solve the linear elastic equilibrium equations for a finite
element fluid mesh. Deformation of small (near body) mesh elements is kept small by
scaling the allowable mesh deformation by the element volume. Some examples of a rigid,
oscillating 2D airfoil using a hybrid mesh are given. The chord Reynolds number of 1000 is
relatively low for aeroelastic computations. For problems with large mesh motions the au-
thors admit a need for re-meshing when the grid quality becomes too poor. Essentially the
same dynamic mesh procedure has been applied to much more complicated fluid-structure
interaction problems, e.g. the simulation of flow past a parachute and the simulation of
large numbers of spheres falling through a viscous medium [41]. For such complex prob-
lems the linear elastic method only goes so far before some type of re-meshing is required.

Chen and Hill [19] recognized that the linear elastic static equilibrium equations could
be solved more efficiently using a linear boundary element method (BEM). The bound-
ary element method actually provides for both the mesh movement for general grid types
and gives the interpolation matrix for the fluid/structure interface. The mesh movement
capability is demonstrated on a 3D wing with ten degree twist deformation at the wing tip.

The linear elastic analogy was applied in the context of aerodynamic shape optimization
by Nielsen and Anderson [57]. In their work the mesh material stiffness is proportional
to the cell aspect ratio so that the near-body mesh does not deform as much as cells fur-
ther away from the body. The numerical method for solving the pseudo-structural grid
system is not described. Improvement in mesh quality and robustness of the movement
is demonstrated for several two-dimensional airfoil problems. A three-dimensional prob-
lem is presented for deformation of a wing; this example required ten incremental steps to
accomplish the mesh motion.

The linear elastic pseudo-structural analogy fails to give valid meshes when the mesh
deformations become too large. The method of Bar-Yoseph et al. [6] proposes to solve
this issue by making the material properties nonlinear, implying a nonlinear stress-strain
relation. In their work, the material properties of the grid medium are functions of the
local element quality. The element quality is a scalar quantity that gives some measure



of mesh distortion. The resulting pseudo-structural equations are solved using a finite ele-
ment method. Examples of mesh movement are given, but the grids appear coarse and the
demonstration is unconvincing. Gao et al. [32] also apply a nonlinear structural medium
analogy, but solve the resulting equations using a nonlinear boundary element method. The
parameters that define the nonlinear stress-strain relation are found by solving an optimiza-
tion problem. Robustness and grid quality are demonstrated for a 20 degree airfoil pitch
problem that was solved incrementally in 5 degree steps. Measures of computational cost
are not quoted, but the authors’ comments suggest that the method may be expensive for
dynamic mesh applications. Solution of the nonlinear BEM problem also appears to be
significantly more complex than solution of the linear BEM problem [19].

Re-meshing of the volume mesh is an alternative to the spring and structural analogy
methods. Re-meshing techniques generate a new mesh each time the boundary moves
based on the prescribed boundary motion and the geometry of the problem, rather than on
any type of structural analogy. Morton et al. [54] applied an algebraic re-meshing scheme
for structured, overset meshes that maintains grid line orthogonality near a surface and also
maintains grid point position in the grid overlap regions. This method was demonstrated
on an elastically mounted, freely vibrating circular cylinder problem. Melville [51] devel-
oped a mesh movement scheme based on the proximity of a grid point to nearby surfaces.
The surface point movement influences the interior grid point directly, without reference to
the underlying grid topology or connectivity. The method relies on several heuristics for
determining the influence of the surface movements on the interior mesh point movement.
It was successfully demonstrated on Euler [51] and Navier-Stokes [52] aeroelastic simula-
tions of an F-16 fighter plane. Baker [5] used a linear elastic structural analogy to move
the mesh, then applied a mesh coarsening/enriching procedure to maintain grid quality.
Martineau and Georgala [49] have developed a two-step mesh movement algorithm that
first initializes the mesh based on a rigid-body motion procedure, then applies a smoothing
operation. This procedure seems cumbersome due to the fact that the distance to the two
nearest surfaces must be tracked for each mesh point or element. Although re-meshing may
seem inelegant and overly complex at times, it is important to keep in mind that strategies
relying solely on spring or structural medium analogies are usually only demonstrated on
relatively simple geometries. Complex geometry and/or large deformations often require
at least periodic re-meshing. This is especially the case when thin boundary layers are
resolved with very tightly spaced grid cells near the fluid-structure boundary.

Some comparisons of the robustness of mesh movement strategies have been pub-
lished [14, 26, 32, 73], although they are far from comprehensive. The lineal spring analogy
is generally discredited on all but invsicid problems with relatively small mesh movements.
The torsion spring improvement leads to enhanced robustness, but will still generate meshes
of poor quality for large-enough deflections. The linear elastic medium approach generally
shows a dramatic improvement over lineal spring analogies and a less pronounced, but
measurable, improvement over the torsional/lineal spring method. Addition of variable
linear elastic material properties further improves robustness for large rigid body motions.
Nonlinear modeling of the grid pseudo-structure can allow for larger mesh deflections but
this is gained at an unspecified increase in computational cost.



It is difficult to compare the cost of the different mesh motion strategies, mainly due
to the lack of published timings in the literature. It can be reasonably assumed that the
cost increases with increasing robustness and effectiveness of the method. One potentially
significant cost savings could be realized by solution of the pseudo-structural equilibrium
equations by a boundary element method rather than a finite element or other volumetric
approach.

Most of the mesh movement methods may be applied to structured or unstructured ele-
ment types. The exceptions are the methods of [7] and [54], which apply only to structured
grids. Ease of parallelization of the methods is difficult to assess. The spring methods re-
quire the solution of a large matrix system; parallel methods for such a system are readily
available. A method that solves the elasto-static equilibrium or similar equations needs a
parallel finite element algorithm or something similar. The BEM methods are, in theory,
easily parallelized. They have the advantage of not requiring grid point connectivity infor-
mation since the grid displacements depend only on a surface integral evaluation. Global
parallel re-meshing, particularly using those methods that require tracking of proximity to
nearby surfaces, poses formidable algorithmic challenges.

2.3 Geometric Conservation Law

The geometric conservation law (GCL) states that a method for solving a fluid flow on
a moving and/or deforming mesh exactly preserves a uniform flow. The corresponding
mathematical expression for a cell volume AV; with cell boundaries moving at grid velocity
W is

d
— dv = w-dS. 1
dr /AVi v M

The terminology and idea of geometric conservation was originally due to Thomas and
Lombard [70], who used it to construct improved finite difference schemes on moving
meshes. Equation (1) may be derived from the flow conservation equations, assuming a
uniform flow. In order to satisfy the GCL in a discrete sense, the numerical approximations
of the left and right hand sides of (1) should balance exactly.

Although violation of the GCL clearly introduces an additional error related to mesh-
movement, it is not immediately clear whether this error should be of concern. A review
of the literature on this topic suggests that the treatment or disposal of the GCL can have
an impact on accuracy in certain cases, and has a stronger connection to numerical stability
of a time advancement scheme. Only a weak theoretical connection has been made con-
cerning accuracy. Guillard and Farhat [33] proved that for a given scheme that is p-order
time-accurate on a fixed mesh, satisfying the corresponding p-discrete geometric conser-
vation law is a sufficient condition for the scheme to be at least first-order time-accurate
on a moving mesh. Enhancement of accuracy has been practically demonstrated on test
problems, e.g. in [43].

Perhaps more important than accuracy is the relation of the GCL to numerical stability.
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Stability analysis of time marching schemes that obey and violate the GCL has shown that,
in general, satisfying the GCL is not a necessary or sufficient condition for a time advance-
ment scheme to be stable [31, 11]. These studies used a finite element discretization of
a linear advection diffusion model problem, and so considered only the linear stability of
the schemes. It was, however, shown in both of these studies that satisfying a first order
GCL is a sufficient condition for unconditional stability of the backward Euler implicit
scheme. Farhat et al. [28] investigated the nonlinear stability of a nonlinear scalar hyber-
bolic conservation law in multiple dimensions. The nonlinear stability criterion is based on
the maximum principle, which should be satisfied for a monotone flux scheme that is time-
integrated in a stable fashion. Satisfying the GCL is a necessary and sufficient condition
for nonlinear stability for all the schemes examined, which included an explicit scheme, a
first order implicit scheme, and a second order implicit scheme. The stability results are
verified for a uniform flow, a 1-D shock tube problem, and the aeroelastic response of a
fighter plane configuration. Because of this demonstrated connection to numerical stabil-
ity (and accuracy), Farhat and co-workers have advocated time-advancement schemes for
coupled fluid-structure problems that obey the GCL [43].

2.4 Time Advancement Schemes

There are three classes of methods for advancing a time-accurate fluid/structure simulation
forward in time: the monolithic approach, the fully coupled approach, and the loosely
coupled approach.

In the monolothic approach for aeroelasticity problems [9, 54], the fluid and structure
equations of motions are viewed as a single equation set and solved using a unified solver.
From the computer code’s point of view, a structural element is differentiated from a fluid
element or control volume only by the difference in variables and spatial representation
scheme for each type of element. The primary advantage of a monolithic approach is that
fully consistent coupling is preserved; that is, the fluid and structure are perfectly syn-
chronized while advancing a single time step. This usually leads to enhanced robustness,
stability, and larger allowable time steps.

The fully coupled approach also synchronizes the fluid and structure systems at each
time step, but does so using a partitioned scheme. In a partitioned scheme, the fluid and
structure code modules are separate, with fluid loads and structural displacements trans-
ferred back and forth within a single time step. The solvers for the fluid and structure sys-
tems are entirely separate and may be constructed for efficiency in each case. In the fully
coupled approach, subiterations are performed until the entire system is fully converged.
The fully coupled approach retains the synchronicity property of the monolithic scheme
but also has the advantages of a partitioned scheme, namely improved code maintainability
and algorithmic flexibility for physically disparate systems.

The loosely coupled approach is similar to the fully coupled approach because it, too,
is a partitioned method. However, the fluid/structure system is not sub-iterated to full con-
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vergence at each time step. Instead, the fluid and structure system exchange data one, or
maybe two, times within a time step. The fluid and structure solution updates are lagged,
or staggered, resulting in lower computational cost per time step than a fully coupled ap-
proach. The two systems are never fully in phase, and this introduces a temporal error
in addition to the truncation error of the fluid and structure integration schemes. Care
must be taken to maintain both accuracy and stability when constructing a loosely cou-
pled scheme. Bendiksen [9] argues that a lagged approach not only introduces additional
error, but may also result in a system that is not dynamically equivalent to the physical
system. Unless the time lag is sufficiently small, spurious numerical solutions may exist.
However, loosely coupled approaches have been successfully demonstrated on an array
of aeroelasticity problems and the dynamic equivalence argument does not appear to be of
great practical importance. In addition to the already mentioned advantages of a partitioned
approach, the primary (potential) advantage of a loosely coupled scheme is the relatively
small computational expense per time step.

The remainder of this section discusses only fully and loosely coupled approaches. The
SIERRA programming environment [67], in particular, is set up to support a partitioned ap-
proach. The monolithic scheme, while it has certain advantages mentioned above, presents
the difficulty of integrating fluid and structure solvers into a single solver. It is not a sim-
ple task to start from existing single-physics codes and accomplish this integration (and
maintain the resulting software efficiently), although promising research is underway to
alleviate some of the obstacles to this approach [38].

An example of a fully coupled approach is the work of Alonso and Jameson [1], who
coupled a two-dimensional Euler code with a linear modal pitch/plunge structural model of
an airfoil. The Euler equations were solved with a second order implicit temporal scheme
with multigrid acceleration, while the modal equations were advanced using a separate
solver. Information between the two domains was exchanged at the end of each pseudo-
time iteration and the entire system was fully converged at each physical time step. Weer-
atunga and Pramono [72] used a similar method but with the 3D Euler equations and a
beam/shell finite element model for the structure. Several subiterations were employed
for each physical time step rather than requiring full convergence. Savings in computa-
tional cost of more than a factor of three over a standard loosely coupled approach were
demonstrated, due primarily to an increase in the allowable time step for the fully coupled
approach. Recently, Cebral and Lohner [18] review an underrelaxed predictor/corrector
scheme that iterates on fluid/structure solves, passing underrelaxed fluid loads and struc-
ture displacements and velocities between the solvers. Their approach can be viewed as a
Jacobi iteration for solving the complete fluid-structure system.

Analysis of the stability and accuracy of loosely coupled schemes has been carried out
in a series of papers by Charbel Farhat and co-workers [43, 61, 60, 44, 29]. Energy-norm
stability of various schemes was examined in Piperno et al. [61]. The Conventional Se-
rial Staggered (CSS) scheme involves a structural predictor step, followed by a fluid mesh
movement and fluid solve, followed by a structural update. The Conventional Parallel Stag-
gered (CPS) procedure contains no predictor/corrector steps, so that the fluid and structural
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solves are performed in parallel. The CPS scheme has the advantage of facilitating cou-
pling on parallel computers, at the expense of accuracy and numerical stability. Piperno et
al. [61] also point out that in aeroelasticity problems, the time step required for accurate
resolution of fluid phenomena is often less than that required for the structure. This is be-
cause flutter and other dynamic aeroelastic modes usually have a relatively low structural
frequency. It is sometimes more economical to subcycle the fluid solver within a single
structural time step. Care must be taken in averaging the fluid loads from the subcycle
solutions and transferring them to the structure in a way that maintains numerical stability.

Two improved loose coupling procedures, the Improved Serial Staggered (ISS) and Im-
proved Parallel Staggered (IPS) were presented in [44] and [29]. The ISS procedure adds
a non-trivial structural displacement predictor step, and is constructed so that the fluid and
structure states are one-half time step out of phase. The IPS procedure passes fluid loads
to the structural solver at one-half time step, then uses updated structural displacements
to advance the fluid system to the next full time step (this is done in parallel with a new
structural update). The performance of the improved methods are compared to the CSS
and CPS methods for a wing flutter prediction validation case. The improved procedures
allow a coupling time step that is 20-46 times larger than previously used time steps with-
out degradation of accuracy. The ISS algorithm allowed a time step several times larger
than the IPS method for this problem.

The importance of obeying the discrete form of the geometric conservation law, Equa-
tion (1), in maintaining temporal accuracy and stability was investigated in Ref. [43]. The
discrete geometric conservation law (DGCL) is satisfied by evaluating fluxes at particular
intermediate mesh configurations between time level n and n+ 1. In general, a scheme that
obeys the DGCL is more accurate and stable than one that does not. An energy analysis
performed on the full coupled fluid/structure/moving mesh transient problem [60] gives
the accuracy of various staggered partitioned schemes in terms of the order of the error in
energy conservation. The standard CSS scheme is first order energy conserving, while 2nd
and 3rd order CSS constructions are possible. The ISS scheme is shown to be 3rd order
energy conserving. Energy conservation is of importance in aeroelastic stability analyses,
since phenomena like flutter depend on a precise balance in energy transfer between the
fluid and structure.

A completely different approach to computational modeling of dynamic aeroelastic
phenomena is the harmonic balance method [69]. The harmonic balance method solves
the governing fluid dynamic equations using temporal Fourier transforms coupled with a
steady state CFD solver. A discrete number of temporal frequencies are considered, usu-
ally a fundamental frequency and several harmonics. Methods for solving for the relevant
frequency in, say, a flutter analysis are available when the driving frequency is not known
a priori. Each frequency considered essentially requires the solution to a steady CFD
problem, and the solution modes are coupled (in a nonlinear fashion) to construct the com-
plete solution. To date, the harmonic balance fluid solver has been coupled to a simple
two-dimensional rigid-body pitch/plunge structural model of an airfoil. While the method
may be extended to three-dimensional problems with more sophisticated descriptions of
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the structural modes, it is difficult to imagine its extension to transient aeroelastic phenom-
ena where the modal signature of the fluid response is broadband in nature. An example
of such a problem would be the response to control surface actuation. Nevertheless, for
problems dominated by a single frequency and harmonics, the harmonic balance approach
has the distinct advantage of not needing to resolve a transient solution before a periodic or
quasi-periodic state is reached, as with time domain simulations. This can lead to signifi-
cant computational savings. Transforming a time-domain CFD code to a frequency domain
solver will lead to significant code development costs, however.

2.5 Interface Strategies

Handling of the interface region, or wetted surface, is the crux of the code coupling prob-
lem for fluid and structural analysis codes. The interface boundary conditions dictate that
(1) the surface stress must be in equilibrium between the fluid and structure and (ii) the
local displacement of the surface results in a corresponding local displacement of the fluid.
Further continuity conditions require the fluid surface grid to follow the fluid-structure in-
terface and the fluid mesh velocity at a point on the interface must equal the velocity of
the interface itself. The stress boundary condition requires that fluid stresses must be trans-
ferred to the structural grid nodes before performing a structural solve. The displacement
boundary condition requires that the resulting structural displacements cause a correspond-
ing movement of the fluid mesh boundary at the interface.

The literature on fluid-structure interface strategies is somewhat disjointed. On the one
hand, there is a body of work on efficient and general interpolation methods for transfer
of data between two surfaces with differing discretizations. Emphasis here is on robust-
ness, accuracy, and efficiency of the interpolations in the presence of complicated geome-
try and/or widely disparate fluid and structure grids. Then there is a more directed body of
work on handling the interface between finite volume/finite element fluid codes and finite
element structural codes in an accurate and conservative fashion. A third class of work
deals with the details of implementing the methods in a computer code. There is very lit-
tle cross-referencing in these areas of research, even in review articles, so it is difficult to
compare the different strategies. Part of the reason for this is that the preferred interface
strategy most likely depends on the application and the fidelity of the structural model. A
wing-box model may require a much different interface treatment than a detailed FE model
with shell elements. The goals of this review are to identify some of the interface strategies
demonstrated on problems in computational aeroelasticity to date, and also identify driving
factors in the selection of an interface strategy.

Most fluid/structure interface methods use some form of interpolation. Fluid loads are
interpolated from the fluid grid points to the structural grid points, and displacements are
interpolated from the structural grid points to the fluid grid, which is then deformed to
accomodate the displacements. The performance of such a scheme will depend on the
accuracy and robustness of the interpolation scheme [10, 66], as well as the grid densities
near the interface. There are many candidate interpolation schemes, some of which are
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tested in Smith ef al. [66]. A simple and consistent approach for interpolation is to use
the underlying finite element representation of the displacements for interpolation [30, 16].
Likewise, the finite volume (or fluid discretization) representation of the fluid loads is used
to interpolate the forces.

Several authors have raised the importance of conservation of momentum and energy
in the transfer of loads and displacements [4, 3, 13, 30, 34, 19]. It is possible to cast the
transfer of structural mesh displacements to fluid grid point displacements in matrix form

ur = Tus. 2)

A scheme for transferring loads from the fluid grid points to the structural grid nodes that
ensures a conservative transfer of energy between the two systems must then take the form

£, =T'f;. 3)

Farhat er al. [30] provide a complete derivation of similar expressions that includes a
generic description of the interpolation functions involved. Guruswamy and Byun [35]
apply a virtual surface technique [4, 3] to accomplish interpolation of loads and displace-
ments in a conservative manner. Chen and Hill [19] present a novel way of defining the
conservative interpolation matrices based on solution of a linear boundary element prob-
lem.

The importance of energy conservation at the fluid-structure interface depends on the
problem being solved. Problems where the fluid and/or structural grid are coarse will likely
require a conservative scheme for good results. Also, prediction of complex dynamic aeroe-
lastic phenomena like flutter and limit cycle oscillations (LCO) may be sensitive to the con-
servation properties of the numerical scheme. An imbalance in energy transfer between the
fluid and the structure may excite spurious instabilities and, therefore, should be avoided.
Note, however, that nonconservative interpolation schemes [34] and schemes designed to
conserve momentum, but not necessarily energy [16, 17], have been applied successfully
to problems in aeroelasticity.

The proper method for data transfer at the interface is related to the detail of the struc-
tural model. The review article by Guruswamy [34] breaks up data transfer algorithms
for aeroelasticity problems according to the type of structural model employed: modal
shapes, beam elements, wing-box models, plate and shell finite elements, and detailed fi-
nite element models of the entire structure. For problems with coarse representations of
the structure, the near-interface fluid grid will still be fine enough to capture details of the
flowfield in that region. A robust method to transfer displacements from the structural rep-
resentation to the fluid grid is required. An example is the modeling of a 3D wing by 2D
plate elements along the mean chord line. This issue is examined in [13] and examples of
interpolation method performance in such situations are presented in [66].

Practical implementation of data transfer methods for general geometric configurations
is not trivial. Details of a parallel, pre-processing program that “glues” the fluid grid to
the finite element structural model are given in Maman and Farhat [48]. Some algorithmic
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details for a similar methodology are given in Cebral and Lohner [16]. Sandia’s Algorithms
for Contact in a Multiphysics Environment (ACME) library [12] can also be used to define
a fluid-structure interface.

2.6 Applications

Computational analysis of nonlinear aeroelastic systems is still an expensive proposition.
The state-of-the-art is represented by the simulations reported by Farhat er al. [27] for
aeroelastic analysis of an F-16 fighter. The structural model is a detailed linear finite el-
ement model with 168,799 degrees of freedom. The unstructured fluid grid consists of
403,919 nodes. It is not clear from the paper if the Euler or Navier-Stokes equations are
being solved, although the grid appears to be more appropriate for solution of the Euler
equations. The total CPU time for a single simulation on six processors was 12.8 hours,
while on 24 processors it was 3.3 hours. The computing platform was an SGI Origin 2000.
Mapping a flutter boundary requires at least several simulations varying the flutter speed
index (or altitude), while keeping Mach number fixed. The authors of [27] estimate that
less than four days would be required to obtain five flutter boundary solutions (about 20-30
total simulations) using 24 processors. These timings assume that the relevant aeroelastic
parameters can be extracted from the time domain solution after running only two cycles
of the lowest frequency mode of the structure. This is accomplished in [27] by using a pa-
rameter identification algorithm called the Eigensystem Realization Algorithm [42]. These
estimates may be optimistic considering the results of Melville [52] for time-domain analy-
sis of a similar F-16 configuration using a Reynolds-Averaged Navier-Stokes code coupled
with a modal structural model. Farhat et al. only ran the simulations for a total physical
time of about 270 ms and considered only the first bending mode. Melville also shows the
response of structural modes three and four, which required at least 1.5 seconds to capture
due to the presence of a low frequency modulation of the signal. If these higher modes are
of importance, the estimates of computational resources need to multiplied by a factor of
about six.

An alternative to a “brute-force” time domain approach is to use CFD simulations to
construct a reduced order model (ROM) of the aeroelastic system. The ROM seeks to sim-
plify the problem by identifying important modes of the fluid system and/or the coupled
system, basing the analysis on the contribution of these important modes. The computa-
tional cost is reduced due to a dramatic reduction in the number of degrees of freedom
retained. Specific examples of ROMs, such as eigenmode decomposition and proper or-
thogonal decomposition (POD), are given in [24]. Construction of ROMs for nonlinear
aerodynamic systems, considered in detail in Section 3 of this report, is an active area of
research [46, 55].

One way to apply a ROM using CFD is through the harmonic balance approach. Only
several structural modes are considered, and the fluid response (which may be nonlinear) is
determined by solution in the frequency domain by solving for the driving frequency and
up to several harmonics. Thomas et al. [69] have shown how an aeroelastic analysis may be
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performed by providing a desired aero-structural mode response amplitude as an input, then
solving for the associated Mach number, altitude, primary mode frequency, and other mode
response amplitudes as unknowns using an iterative method. The computational efficiency
is enhanced by use of a simplified pitch/plunge airfoil model and by applying the harmonic
balance method to compute the required fluid responses.

The important lesson from these and other aeroelastic analyses is that a high-fidelity
approach alone is not sufficient to provide a useful analysis capability. Either parameter
identification methods, reduced order modeling, or a combination of the two is required to
make the process useful and applicable over even a modest parameter space.

3 The Reduced Order Modeling Approach

Simulation of three-dimensional unsteady flow at high Reynolds number remains an ex-
pensive proposition, even with advances in large eddy simulation (LES) and the continuing
rapid increase in available computing capacity. This makes such simulations of limited use
to the analyst desiring CFD-based design, optimization, and parametric studies. Current
alternatives to computing the time-dependent flow often require modeling assumptions that
are too coarse to capture the relevant physics, e.g. Reynolds averaging.

The reduced order modeling approach seeks to derive an approximation to the physical
system from some limited results of the high-fidelity simulation model. This approximate
model is called the reduced order model (ROM). The reduced order model contains many
fewer degrees of freedom (DOF) than the full simulation (where DOF scales with number
of mesh points) and is thus much cheaper to compute. The terminology low dimensional
model is often used in this same context, although here we use “reduced order” since the
number of DOF of a quantitatively accurate model for a complex system could be O(10?),
in which case “low-dimensional” is a poor descriptor. The terminology “low-dimensional”
is often appropriate for those models seeking only qualitatively correct descriptions of the
flow, for example in the identification of coherent structures in turbulent flow [37], or for
short-time prediction of flow features for flow control applications [68].

This section focuses on reduced order modeling techniques appropriate for nonlinear
fluid motion, with the ultimate goal of coupling the fluid ROM with a structural dynamics
ROM for analysis of fluid/structure interaction.

3.1 The POD/Galerkin Approach

This section describes the POD/Galerkin method for reducing the order of complex phys-
ical systems. The approach consists of two steps: calculation of a reduced basis using
the proper orthogonal decomposition of an ensemble of flowfield realizations, followed by
Galerkin projection of the governing partial differential equations onto the reduced basis.
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The first step involves the transfer of kinematic information from the high-fidelity simula-
tion to a relatively small number of modes. The second step involves a translation of the
full-system dynamics to the implied dynamics of these modes. When successful, the re-
sult of this procedure is a set of time-dependent ordinary differential equations in the modal
amplitudes that accurately describes the flow dynamics of the full system of PDEs for some
limited set of flow conditions.

3.1.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a mathematical procedure that, given an
ensemble of data, constructs a basis for the ensemble that is optimal in a well-defined
sense. POD is alternatively called Karhunen-Loeve decomposition or Principle Compo-
nents Analysis. It has been used in various scientific disciplines, including image process-
ing, signal analysis, data compression, and oceanography. The mathematical development
of POD for fluid flow applications in particular is described in some detail in [47] and [37].
The essentials of this development and the properties of POD most important to reduced
order modeling are presented in this section.

Consider an ensemble {u*(x)} of real vector fields on the domain x € Q. In the present
context, the ensemble consists of a set of instantaneous snapshots of a numerical simulation
solution field. The w’s are assumed to belong to an infinite-dimensional Hilbert space
H(Q) with associated inner product (f,g). Following the approach of [64], we will defer
the definition of the inner product until a particular application of the POD is considered,
requiring only that it obey the usual requirements for an inner product. Note that this results
in a general formulation for the POD that differs in some aspects from formulas derived for
the L?(Q) Hilbert space.

The POD basis is a set of functions {¢;(x) } that is the “best” linear basis for description
of the ensemble. Since the basis is linear, a flowfield u € span{¢;} can be represented as a
linear combination of the POD modes,

u(x.1) = Ya;(0)0;(x) o)
J

The POD modes, or empirical eigenfunctions, are defined by requiring that the averaged
projection of the ensemble u* onto ¢ is a maximum:

max ((u,0)?)

H(Q) — 5 &)

o)

where || - || is the norm generated by the inner product. The averaging operator (-) used
in (5) could be an ensemble average over many experimental realizations, or it could be a
time-average taken from different samples of a single experiment'. The main assumption

For an ergodic system, the time average and ensemble average will be equal as the number of samples
becomes large.
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regarding the averaging operator is that it commutes with the inner product. This assump-
tion is shown to hold for the scalar case defined on the Hilbert space L? under certain
conditions on u (see section 3.8.1 of [37]).

The constrained optimization problem (5) with constraint ||¢|| = 1 reduces to the eigen-
value problem
Ro = A, (0)
where
R = (u*(u*,9)). (7
The operator R is self-adjoint and non-negative definite; if we further assume that R is
compact, then there are exists a countable set of non-negative eigenvalues A;, with associ-
ated eigenfunctions ¢;. The eigenfunctions, appropriately normalized, form an orthonormal
subspace of H, i.e. (§;,¢;) = 0;;. The notions of compactness of operators and spaces, as
well as the theory of self-adjoint operators, come from the mathematical discipline of func-
tional analysis; see, e.g., [71]. For more detail on the compactness of R and the required
assumptions, see section 3.8.2 of [37].

The POD modes are the eigenfunctions ¢; associated with nonzero A;. Taking the inner
product of (6) with ¢, it is straightforward to show that ((u*,¢;)>) = A;. In other words,
the magnitude of the eigenvalue is equivalent to the average energy of the projection of
the ensemble onto the associated eigenfunction, where the square of the inner product
is interpreted as an energy measure. The POD modes may be ordered according to the
magnitude of their eigenvalue, with A;,¢; equal to the eigenvalue/eigenfunction pair with
the largest eigenvalue, Ay equal to the smallest non-zero eigenvalue, and A; > Ay > ... >
An > ... > Ay. In building reduced order models one is interested in truncating the POD
basis and retaining only the K < N most energetic modes. It can be shown that the sequence
of truncated POD bases form an optimal set, in the sense that a POD basis comprised of K
modes describes more energy (on average) of the ensemble than any other linear basis of
the same dimension K. This compression of the ensemble energy into a minimum number
of modes makes the POD basis attractive for reduced order modeling.

The span of the POD basis is not complete in H(€2), but it is complete in the sense that,
on average, any snapshot used to construct it can be represented, i.e. (|[u* - (u¥,¢,)0,||) =

J
0. Conversely, each POD mode can be reconstructed as a linear combination of the obser-
vations used to construct the basis (section 3.3.1 of [37]). Thus,

M
o(x) = au(x). (8)
k=1

Equation (8) is a mathematical expression of the intuitive argument that the POD basis
contains only information on the kinematics of the flowfield that were already encoded
in the observations. Further down the road in the reduced order modeling process, the
dynamical features of a model will depend critically on the observations used to construct
the reduced basis. A consequence of (8) is that the POD eigenfunctions share any closed
linear property shared by all the ensemble members u*. Examples of such properties are
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the divergence-free property of incompressible flow and satisfaction of linear boundary
conditions such as the no-slip surface condition.

In practice, the u* are vectors of state variables at discrete grid point locations, each
containing a single solution from the numerical simulation. They will have length N L,
where N is the total number of grid points and L is the number of dependent variables de-
scribing the flow state. Thus, the discretized version of (6) will be an eigenvalue problem of
order N L. For N > M, where M is the number of flowfield snapshots used, this procedure
is costly and, it turns out, inefficient.

Sirovich [65] showed how the eigenvalue problem (6) can be reduced to order M, result-
ing in a much more efficient procedure for N > M. Assume that the averaging operator (-)

M
is a time average over a finite number of samples, so that (f) = 1/M ¥, f*. Now, substitute
k=1

the modal decomposition (4) into (6) to obtain

|\ M [ M . oo
i Z u | u, Z ar(tu” | =4 Z apu”. 9)
i=1 k=1 k=1
Using the property (x+,2) = (x,2) + (,2),
1

1 M [ M L M M L
M;w uz7];1aku :Mzulzak( > (10)

=1 k=

—

M M

2 (u',u¥ )a u—kZaku (11)
i=1 k=1

A sufficient condition for the solution of (6) is then

M .
=Aa;j; i=1,....M. 12

kg‘l M (u',u")ay = ha i (12)
Equation (12) is one row of a new eigenvalue problem with row index i and column index

k. Once the eigenvectors for (12) are computed, the POD modes are computed using (8).
This is the so-called “method of snapshots” for computing a POD basis.

The potential reduction in DOF when applying POD to nonlinear fluid flow problems
can be estimated by examining reported results in the literature. Figure 2 gives results from
several applications of POD, showing the number of grid points Ny, 4 required to perform
a flow simulation along with the dimension of the POD basis Kppp required to represent
95% of the fluctuation kinetic energy. Results from four separate studies are presented.
Reference [21] examined the two-dimensional laminar flow past a circular cylinder. Ref-
erence [15] computed the two-dimensional transitional flow in a driven cavity. Reference
[22] solved for the two-dimensional transitional flow past an airfoil. Reference [20] used
POD to create ROMs for a three-dimensional large eddy simulation of the flow over a back-
ward facing step. Reynolds numbers are based on cylinder diameter, airfoil chord, cavity
depth, or step height. POD compresses the DOF by about three orders of magnitude for the
two-dimensional laminar and transitional flows, and about four orders of magnitude for the
single LES result.
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Figure 2. Number of POD modes required to describe 95% of
the averaged fluctuation energy (solid symbols), and number of
flow simulation mesh points (open symbols) for selected fluid flow
simulations.

3.1.2 Galerkin Projection

The second step for constructing the reduced order model is to project the governing PDEs
onto the POD basis. A Galerkin projection is possible if the basis functions satisfy the
boundary conditions of the PDE. In the previous section it was mentioned that the POD
modes satisfy any linear boundary condition satisfied by the ensemble of flow-fields.

Consider a generic nonlinear PDE containing quadratic and cubic nonlinearities that
governs the behavior of a time-dependent vector field u(x, ),

%_?:Lu+N2(u,u)+N3(u7ll7“)~ 13)

The operator L is a linear operator, N, is a quadratic nonlinear operator, and N3 is a cubic
nonlinear operator. The Galerkin projection of equation (13) onto each POD mode ¢; is

(aa_l;a ¢j) = (I—U7 ¢]) + (Nz(u,u), ¢]) + (N3(u,u,u), (l)j) ) (14)
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Substituting the POD decomposition for u into (14), applying the algebraic rules of inner
products along with orthogonality of the POD basis gives

% = a0, L (@) + Y, a1am(@, N2 (01,0m)) + D araman (@, N3 (07,0, 04)). (15)
I,m

[ IL,m,n

This is the reduced order model for equation (13) by the POD/Galerkin method. It is a time-
dependent system of ODE’s of order equal to the number of retained POD modes K, with
k=1,2,...,K. The inner products in (15) are functionals of the known, time-independent
POD modes ¢(x), and may be precomputed before integration of the ROM. The nature of
the nonlinearities present in the original equations strongly affects the cost of solving the
reduced system. For example, the cost of evaluating a cubic term in a K-mode reduced
order model is K times that of evaluating a quadratic term for the same model.

It is customary in fluid mechanics applications of POD/Galerkin to build the reduced
order model in terms of fluctuations about a mean state. Denoting the mean by u and the
fluctuation by u, the state is written as

u(x,r) =u(x)+a(x,z7). (16)

The assumption implicit in (16) is that the mean state is time-independent or at least
changes very slowly relative to the time rate-of-change of the fluctuations. In this case
the ROM contains additional terms related to the mean flow.

3.2 POD/Galerkin for Compressible Fluid Mechanics
3.2.1 Equations

The compressible Navier-Stokes equations are usually solved in strong conservation law
form in order to numerically conserve mass, momentum, and energy, a consideration par-
ticularly important in capturing shock waves. However, the conservative form of the equa-
tions is not convenient for applying Galerkin projection, since the flux terms cannot be
written as simple products of the conservative state variables. For example, the momentum
flux pu? cannot be written using products of p and pu. It is useful to recast the equations
in terms of primitive variables, so that all terms can be expressed as products of linear
functions of the evolving primitive state variables.

First, we write the governing equations for a compressible, viscous fluid evolving on
a moving mesh. The Arbitrary Lagrangian-Eulerian (ALE) approach is used, whereby the
mesh state x;, i = 1,2,3, moving at velocity w;, is described relative to a static reference
mesh state ;. The Jacobian determinant,

axi
J = det <a_§,) , (17)
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links the “mixed” coordinates x; to the “material” coordinates &;.

The non-dimensional, conservative form of the compressible Navier-Stokes equations
for an ideal gas on a moving mesh is

a(Jp) 0
P =0 s
a(qui) 8 1\
P axj <pu,( —w;)+pdij — ReTl]> =0 (19)
IUPE) 9 . R Gk S _
at +‘]a (pE( Wj)+puj R€ ulle+R P QJ> _07 (20)

where p is the fluid density, u; the fluid velocity, p the fluid pressure, E the total fluid
energy, T;; the viscous stress tensor, and g; the fluid heat flux. The equations are non-
dimensionalized using a reference length L, reference density po, reference speed ug, ref-
erence viscosity ug, and reference coefficient of thermal conductivity k9. The Reynolds
number is given by Re = pouoL/up and the Prandtl number is 1oC), /0.

Using the identity
9Jx Iy I(w))
=J =2 21
3t ( ot ox, ) 1)
Equations (18)—(20) may be written in terms of primitive state variables. Choosing the state

T .
vector as [Z; Uy up us p} , where { = 1/p, and assuming constant u, leads to a set of
equations with only quadratic nonlinearities [39]:

0l ,ou; . _ ¢
Fr a—xj—i—(uj—w])a—xj—O (22)
au,- . . au, ap C_, 8r,~j
j—‘_(u]_wj)axj CBXJS Eaxj 23)
dp op duj y—1d@wm;) vy 9dg;
ot + J)axj +yp8xj " Re dx; Re Prox; 24

3.2.2 Inner Products for Compressible Flow

For incompressible flow, it is customary to work with velocity fields that belong to the
L?(Q) Hilbert space. The L?(Q) inner product is a natural choice for incompressible flow,
since it is equal to twice the integrated kinetic energy over €.

For compressible flow, there is no obvious choice for the inner product. Rowley et
al. [64] argued for the use of an energy-based inner product; they showed that an energy-
based inner product preserves the stability of a stable fixed point at the origin. However,
such an inner product is not easily defined for the full compressible flow equations without
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seriously complicating the form of the equations and the resulting projections. Rowley et
al. applied the isentropic flow assumption before the Galerkin projection step, so that the
equations can be written in terms of the state vector q = [ul Uy U3 a], where a is the
isentropic speed of sound. In this case, an inner product related to the stagnation enthalpy
(a conserved quantity in steady, inviscid flow) is

20
(ql,qz) :/ (u}u%—kuéu%—ku%u%—kﬁalaz) dv. (25)
Q

If oo = 1, the norm implied by the inner product corresponds to the stagnation enthalpy,
while taking oo = 1/ gives a norm corresponding to the stagnation energy.

For strongly irreversible flows, including most turbulent flows, the isentropic assump-
tion is poor and the use of isentropic flow equations is questionable. However, the inner
product given by equation (25) could still be used in conjunction with the full Navier-
Stokes equations written in the primitive form of equations (22)—(24). In this case the inner
product can be re-written as

20
(a'.q°) :/ (u}u%—f—u%u%%—u%u%—ky_—y [p1c2+p2c1]> dv. (26)
Q

Iollo et al. [39] improved stability of reduced order models for compressible, viscous
flow by working in the Sobolev space H'!(Q). Using non-dimensional variables, they com-
pared results using an L? norm with those using a Sobolev space with inner product

(q'.¢%) = / (q' -q*+¢(Vq'-Vq?)) av. (27)
Q

The constant € is chosen as proportional to 7'/Re, where T is some time scale. The major
weakness of this inner product is that the choice of T is arbitrary; further guidance for
specification of T based on supporting analysis is needed.

3.2.3 Subgrid Modeling of Turbulence

To date, there have been two main thrusts in application of the POD/Galerkin methodol-
ogy to fluid flow. The first, and original, use of the technique seeks to build truly low-
dimensional models of transitional or turbulent flow, derived from direct numerical simula-
tion (DNS) data. The primary goal of this line of work is to gain a better understanding of
the dominant physical mechanisms that either govern turbulent motion or cause transition
to turbulence. Therefore, the use of DNS is appropriate and, for most situations, necessary
in order to faithfully describe the relevant flow physics.

The second use of the POD/Galerkin technique is to build a reduced order model, using
relatively few DOF, that accurately mimics the results of an expensive simulation. In this
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case the goal is to reproduce results from a flow simulation, which may itself use physical
modeling assumptions. The utility of the model is closely tied to its robustness in succes-
fully mimicking the full model results over a range of input parameters of interest. Note
that the success in the reduced order modeling process is tied to the accurate reproduction
of the simulation model from which the reduced model is derived. Further, the reduced
order model can be no more accurate than the simulation(s) used to construct it.

Most reduced order models for fluid flow have been constructed for laminar or transi-
tional flow using DNS. DNS is limited to relatively low Reynolds numbers due to the well-
known scale separation phenomenon that becomes more pronounced as Reynolds number
increases. LES has been developed to deal with this limitation. In LES, only the larger,
most energetic flow structures (or eddies) are resolved with the simulation grid, while the
effect of the smaller scale fluid motions on the energetic eddies is modeled with a sub-grid
scale (SGS) model. The cost benefits of LES are very large for free shear flows, where the
cost of LES for a given level of resolution (of turbulent flow energy) is independent of the
Reynolds number, for large Reynolds number. For wall-bounded flows the situation is less
favorable due to the persistence of energetic motion at small scales very close to the wall.
For wall-bounded LES with resolution of near-wall flow structure, the cost scales at least
with Re!' 7%, However, with resolution of only the mean near-wall flow structure the cost
scales with In(Re), and with wall-function modeling of the turbulent boundary layer the
cost again becomes independent of Reynolds number [62].

Those who have sought to use DNS to build reduced order models of a turbulent flow
often incorporate some form of turbulence model in the reduced order model. This is be-
cause the modal representation of the flow is truncated at some point, so that the dissipative
action of the small-scale modes is neglected. This dissipative action is essential in setting
the proper rate of energy transfer from large scales to small scales and must be modeled in
some way. An alternative to this approach is to perform the simulations using LES, which
already contains a model for dissipation of turbulent kinetic energy. The reduced order
model is then built using the LES simulation data as well as the LES equations (i.e. the
filtered Navier-Stokes equations), which contain the subgrid model terms.

3.2.4 POD for Moving Fluid Meshes

Coupled fluid/structure interaction problems with moving boundaries require special nu-
merical schemes such as the ALE-based schemes reviewed in Section 2. In the ALE for-
mulation the fluid mesh deforms with the fluid boundary, which in turn is driven by some
description of the structural deformation. These considerations necessitate a new look at
the POD methodology, which is typically derived for, and applied to, static domains and
static fluid meshes.

Perhaps the only serious look at POD on arbitrarily moving meshes is the thesis of
Anttonen [2]. In this work the POD procedure is defined a priori and in a discrete sense, so
that the inner product is the discrete L? inner product. Flowfield snapshots are taken as the
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simulation proceeds and the fluid mesh deforms. The POD modes are computed using the
usual method of snapshots, without reference to the changing mesh point coordinates. This
effectively changes the definition of the inner product in continuous space, as the definition
in discrete coordinates remains fixed relative to the mesh motion. The result is a valid POD
basis that may be used to reconstruct the sampled flowfield, but the POD representation is
not as efficient as the static grid case.

Reference [2] then examines the error introduced in a POD-based ROM when the ROM
is used to predict a flow where the grid deformation is different than that used to construct
the POD basis. The grid deformation is thus viewed as a parameter in the ROM; the ro-
bustness of the ROM is tied to its accuracy in predicting flows where this parameter is “off-
design.” It proves difficult to construct an accurate blended POD in this manner, where the
POD ensemble is taken from several simulations, each with different grid deformations.
The solution adopted in [2], termed MULTI-POD, is to construct several POD ROMs and
switch from one to the other based on a measure of how closely the current mesh config-
uration matches that of each ROM. Alternative methods for building ROMs for moving
boundary problems are proposed later in this document in Section 3.3.

3.2.5 Modeling Boundary Conditions

In most applications of POD/Galerkin to fluid flows, the boundary conditions are steady,
and are satisfied by all of the POD basis functions. This allows a straightforward Galerkin
projection that results in an initial value problem for the modal amplitudes that does not
contain any boundary terms. An exception to this occurs in low-dimensional modeling of
turbulent boundary layers, where the domain normal to the wall is often truncated within
the boundary layer and the resulting boundary term requires some modeling.

In the applications considered here, the ROM is specified over the full computational
domain so that boundary truncation is not an issue. However, it would be very useful for
many types of analysis to consider boundary condition-driven problems, where the bound-
ary conditions may serve as parameters in the problem. Examples of this in a fluid/structure
interaction setting are changes in the far-field angle of attack or yaw angle as a function of
time, or time-dependent wall velocities resulting from motion of the structure. In this case
the Galerkin projection can be carried out such that certain terms in the inner product eval-
uation are manipulated to generate boundary integral terms in the ROM. The boundary
conditions can then be specified within the integrand of these surface integrals.

Of interest are far-field velocity boundary conditions and solid wall boundary condi-
tions that may either be steady but differ from problem to problem, or unsteady. Let u.,,
be the specified velocity vector at the far-field boundary I'., and let u,,, be the specified
wall boundary velocity at the solid surface boundary I',. For simplicity, consider the case
where the grid is not moving, (i.e. w; = 0 in Equations (22)—(24)). The continuity equa-

tion, Equation (22), contains the quadratic term C% The Galerkin projection of this term
J
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performed in Equation (15) will result in the following integral,
d
[oit5 " an, (28)
Q Tk

where ¢; is a scalar variable that depends upon the definition of the inner product. This
integral can be re-written as

/q), a”"dg /( 0,6m) (M))dg. (29)

axk axk

Application of the divergence theorem gives

/(a(qgiuk) (aq) i%) )dQ /¢,Cuknde /uk
Q

The surface integral in Equation (30) is retained in the jth ROM equation, with the wall-
normal velocity uin; now specified as a function of time. The volume integral term is
transformed to a term that is nonlinear in the modal amplitudes a(¢), in the manner of
equation (15). This boundary condition is imposed on I}, for an inviscid calculation. On
I'. the problem is still underconstrained, since only the normal component of the far-field
boundary velocity can be specified. The other components can be specified by considering
the convective terms of the momentum equation, (23), which appear during the projection

step as
8u,~
g — dQ 31
! Oy d€, 31)

where ¢ is the scalar component of the jzh mode corresponding to the ith velocity compo-
nent. Again applying the differential chain rule followed by the divergence theorem gives

/q),uka”’ dQ = /q),u,uknkds /ulaq)’”" (32)

axk

dQ. (30)

The surface integral is retained in the ROM, allowing the entire velocity vector u..; to be
specified on I'... The wall velocity for a no-slip wall could also be specified using this
method. An alternative method for specifying the velocity for a no-slip wall is to appeal to
the viscous stress terms in the momentum equation. This strategy is not pursued here, but
may lead to a more physically consistent means for applying the boundary condition.

This technique for ROM boundary conditions was applied by Ref. [58] in the context
of reduced order modeling of the Boussinesq equations. The application was thermal con-
vection in a cavity driven by a non-homogenous heat flux boundary condition. Of critical
importance for ROM accuracy and robustness is that the POD basis spans the solution set
for all anticipated boundary conditions. This means that the ROM must be trained using an
ensemble of snapshots that captures the anticipated boundary conditions. This is accom-
plished in [58] by considering a Fourier decomposition of boundary heat flux distributions
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and collecting a series of snapshots for each of a range of Fourier wave numbers and am-
plitudes. The analogue for boundary motion in a fluid/structure interaction problem is to
form a POD basis from a range of individual structural mode deflections and amplitudes.
For a problem where far-field flow direction changes, solutions over the range of far-field
conditions are needed to construct the POD basis.

3.3 Coupled Fluid/Structure ROMs

The tools described in the previous sections for fluid ROM construction can be combined
with a structural dynamics model to form a coupled fluid/structure ROM. The approach
taken here is to keep the development of the fluid and structural ROMs segregated, then
combine them into a single ROM using the appropriate boundary conditions. The reasons
for this are two-fold. First, developing the fluid ROM independently keeps the number of
parameters required in the ROM to a minimum. For example, the two primary governing
parameters for a compressible, viscous fluid are the Mach number and Reynolds number.
One can expect a fluid model in isolation to be sensitive to changes in these parameters.
The structural response to a fluid flow, however, also depends on the dynamic pressure, with
which the aerodynamic loading of the structure scales. A coupled ROM constructed from
the beginning using fluid and structural responses would require the introduction of the dy-
namic pressure as an additional parameter. Second, calculations of structural eigenmodes,
at least in the case of small amplitude (linear) displacements, is a routine function of struc-
tural dynamics codes. It is prudent to take advantage of this existing analysis capability in
formulating the ROM.

A finite element (FE) model of the structural equations of dynamic equilibrium can be
written

Mii, + Cu, + Kug = f4 (uy,q), (33)

where uy is the vector of structural displacements, and M, C,and K are the mass, damping,
and stiffness matrices. f4 is the vector containing aerodynamic forces, which are functions
of the displacements and the fluid state q. In the linear case, the structural dynamics can
often be described by a small number of eigenmodes &;, and the displacement vector can

S

be written in terms of the modes using the decomposition uy = ¥ b€;, where S is the
i=1

dimension of the structural modal basis.

Two approaches to construction of the coupled fluid/structure ROM are outlined here.
In Approach I, the structural displacements are assumed to be small, so that a linear struc-
tural dynamics model is appropriate. As a consequence of the small structural displace-
ments, the mesh motion is also small. The important structural dynamics modes are com-
puted for the structure of interest. Impulse responses of the fluid system to the structural
modes are simulated and used to form the ensemble from which the POD basis is extracted.
In this case, since the mesh motion is small, the inner products used to form the POD basis
and the Galerkin projection are computed with respect to a mean static mesh state. The
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effect of surface deformation is accounted for in the ROM using a transpiration boundary
condition on a static mesh, Equation (30) or (32). The aerodynamic force vector f4 is com-
puted using the boundary stresses predicted by the fluid ROM. The structural dynamics
equations are either loosely or tightly coupled to the fluid ROM, and the entire system is
integrated forward in time. This approach takes full advantage of the reduction in DOF
provided by Galerkin projection, but is limited by the restriction to small mesh motion.

In Approach II, the mesh motion is unrestricted, and either a linear or nonlinear de-
scription of the structural system is employed. Again, the POD ensemble is formed using
fluid responses to structural modal impulses. However, the mesh velocity w; in the ALE
equations for the fluid is retained in the Galerkin projection step. Further, the inner prod-
ucts are computed with respect to the reference state of the mesh ;. Recall the definition
of the Jacobian determinant in Equation (17), which relates the mixed coordinates of a cur-
rent mesh state to the reference coordinates. A differential volume of the mesh is related
to the reference state by dV = J(t)dVe. The inner product is now defined relative to the
reference state as [ ...J(t)dVe. Also, the appearance of the mesh velocity as a parameter
in the governing PDEs results in new contributions to the linear term in the ROM, Equa-
tion (15). All the inner products in Equation (15) are now functions of time which, strictly
speaking, must be computed at each time step of the ROM. Since the computation of the
inner products is O(N), where N is the number of full simulation grid points, this leads to
a substantial increase in the cost of integrating the ROM. Some of this additional cost may
be eliminated by re-evaluating the inner products every P time steps of the ROM, rather
than every time step. An inexpensive error indicator, such as the maximum relative change
in cell volume over the domain since the last inner product update, could be used to initiate
a new update. Approach II is a new concept that should be validated on simple problems
before consideration for large scale fluid/structure applications.

3.4 Sources of Error in Reduced Order Modeling

In the previous sections we emphasized that the worth of a reduced order model is mea-
sured by its ability to reproduce the behavior of a high-fidelity simulation model at a much
lower cost. A useful definition of the error of a reduced order model is then the difference
between the solution of the reduced order model and the solution that would be obtained by
running a high-fidelity simulation for the same set of input parameters, initial conditions,
and boundary conditions. It is useful to identify and classify possible sources of error in
the reduced order model so that appropriate strategies for their mitigation can be devel-
oped. Several such error sources are listed in this section, along with possible mitigation
strategies.

Truncation of the POD basis: The POD/Galerkin strategy derives its efficiency benefits
from truncation of the POD basis to a “reasonable” dimension. However, enough POD
modes must be retained so that the dynamics of the ROM are both qualitatively and quanti-
tatively similar to those of the full simulations. Qualitative similarity means that the topol-
ogy of the phase space of the ROM is the same as that of the simulations. For example, if

29



the important dynamics of a system are described by a stable limit cycle that is captured
by the simulation model, then the ROM phase space should include this limit cycle with
the proper stability attributes. Qualitative similarity can be missed even when the retained
POD modes completely represent the observed PDE solution. A simple example of this
behavior is given in [63]. This type of innacuracy in the ROM, discussed in more detail in
the discussion of insufficient sampling to follow, can be mitigated by sampling over a larger
region of phase space. Quantitative similarity means that the ROM reproduces a time his-
tory of the flowfield that is an accurate representation of the full simulation solution. This
error is usually a strong function of the number of POD modes retained. Note, however,
that for a turbulent flow it may not be possible for a ROM to perfectly track the time history
of a DNS or LES simulation. In this case the flow statistics of the ROM can still mimic the
behavior of the statistics derived from the simulation.

The question of how many POD modes to retain in order to maintain qualitative dynam-
ical similarity and quantitative accuracy is flow-dependent and largely unanswered. A com-
mon recipe is to set an energy threshold, say 95%, and keep enough POD modes so that the
averaged energy of the truncated basis exceeds this threshold. Use of POD/Galerkin mod-
els for quantitative predictions should be accompanied by convergence studies for different
numbers of retained modes. However, note that performance of the ROM may actually
deteriorate with retention of higher modes due to insufficient sampling (discussed next),
insufficient spatial resolution of the higher modes, or roundoff error from the eigenprob-
lem solution used to construct the POD. Systematic procedures for assessing the required
number of modes for a given application are needed.

Insufficient sampling: A large enough sample size must be computed to allow computa-
tion of enough POD modes to form an accurate basis. In general, the larger the number of
samples, the better, since more of the system dynamics will be represented in the ensemble
and transferred to the POD modes. Perhaps even more important than the number of sam-
ples is the type of samples that are taken. For some flows it is necessary to sample both on
the solution trajectories of interest as well as away from them. An example is an oscillatory
bluff-body wake. If one samples only from the periodic wake state, the POD modes will
be able to reproduce the wake shedding behavior but a ROM derived from them may not
possess the shedding solution as a stable state. This is because the limit cycle of shedding is
stable in the simulation (trajectories near the limit cycle converge to the limit cycle at large
times), but unstable in the ROM (the limit cycle exists, but nearby trajectories diverge from
it). However, if nearby trajectories are included in the sampling space, qualitative similarity
is more likely. This can be done in a simple, ad hoc way by including the transient portion
of the simulation (the convergence of the solution to the limiting trajectory, or ‘“attractor’)
in the ensemble used to construct the POD.

Numerical integration of inner products: In this work the POD/Galerkin process is de-
fined for a continous system, then discretized. This involves both discretization of the
system of PDEs for the simulation, as well as numerical integration of the inner products
used to form the POD modes and the Galerkin projection. Clearly, the accuracy of the
numerical integration can affect the resulting model fidelity. One way to reduce this source
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of error is to use high-order numerical integration techniques to form the inner products.

Numerical integration of the ROM: Once the ROM is constructed it is integrated using an
appropriate time-advancement technique. Errors in the temporal discretization of the ROM
may lead to inaccurate or spurious behavior. This error can be quantified and minimized
using careful time step convergence studies.

4 Plans for Future Work

Section 3 outlined some approaches for building ROMs of fluid/structure systems that ac-
comodate nonlinear fluid behavior. This is an active area of research, and several new ap-
proaches were outlined that have not yet been validated. These include using the POD/Galerkin
procedure to model changes in boundary conditions, and using POD/Galerkin on moving
mesh problems.

Examination of these new approaches should be carried out in phases, moving from
simple model problems to more complicated and realistic problems. A relatively sim-
ple one-dimensional problem that exhibits interesting nonlinear behavior is the modeling
of a tubular reactor. The behavior of a tubular reactor can be described by a system of
convection-diffusion-reaction (CDR) equations [36]. The CDR equations model similar
physical processes (convection, diffusion) to those found in the Navier-Stokes equations.
The POD/Galerkin procedure can be applied to such a system and the strategies for acco-
modation of mesh motion can be applied in a one-way coupled setting, where the mesh
motion is driven by an autonomous external source.

A simple computer code has been written to solve the CDR equations. This code can
be used to generate snapshots for computation of a POD basis using the RBGEN module
of the Trilinos linear algebra library [25]. Following the successful demonstration of the
ROM methodology to the one-dimensional CDR equations, the focus of this work will
shift to multi-dimensional fluid flow applications. Of particular interest is the separated
flow over stalled wings and wind turbine blades, which can lead to complicated aeroelastic
phenomena such as stall flutter. Efforts will initially be concentrated on reduced order
modeling of the flow-field, followed by coupling of the fluid ROM to a structural dynamics
model.
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