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ABSTRACT

The structural dynamics modeling of engineering structures must accommodate the energy 
dissipation due to microslip in mechanical joints. Given the nature of current hardware and 
software environments, this will require the development of constitutive models for joints 
that both adequately reproduce the important physics and lend themselves to efficient 
computational processes. The exploration of the properties of mechanical joints - either 
through fine resolution finite element modelling or through experiment - is itself an area of 
research, but some qualitative behavior appears to be established. The work presented here 
is the presentation of a formulation of idealized elements due to Iwan, that appears capable 
of reproducing the important joint properties as they are now understood. Further, methods 
for selecting parameters for that model by joining the results from experiments in regimes 
of small and large load are developed. The significance of this work is that a reduced order 
model is presented that is capable of reproducing the important qualitative properties of 
mechanical joints using only a small number of parameters. 



Page 4

Acknowledgments

The observations presented in this report grew out of an evolving understanding that could 
not have taken place without enthusiastic and helpful discussions with fellow Sandians: 
Jeffrey Dohner, Danny Gregory, David Smallwood, and Todd Simmermacher. Discussion 
with Danny Gregory and David Smallwood were made especially valuable by their insight 
into interpretation of experimental results, both their own and those found in the literature. 
Finally, credit has to be given to the managers, David Martinez, Jamie Moya, and Wendell 
Kawahara, who have given continuous funding and moral support for this research effort. 



Page 5

Contents

Introduction 1

Micro-slip at Joints 2

Dissipation Mechanisms 11

Asymptotic Form 14

Model Reduction 18

Discrete Models 19

Energy Dissipation Due to Harmonic Loading 23

Limit of Small Force 24

Large Force Response 33

Model Parameters 34

Conclusions 37

References 38

Appendix A: The Residual Slip Experiment 41

Appendix B: Significance of the Dissipation Parameter 45

Appendix C: Example Finite Element Calculation 49

Figures

Figure 1. Slip in a joint occurs in a subset of the contact patch. 10

Figure 2. The Goodman hypothesis is illustrated in a one-dimensional problem. 12

Figure 3. The geometry of Hertzian contact. 15

Figure 4. Iwan parallel-series systems (a) and series-parallel systems (b). 20

Figure 5. An augmented Iwan model is used to represent a mechanical joint. 22

Figure 6. Test case using non-sinusoidal applied force 29

Figure 7. Resulting time derivative of displacement u(t) 30

Figure 8. Instantaneous net force from all sliding Iwan elements. 31

Figure 9. Resulting dissipation rates are identical for both cases. 32



Mathematical Symbols

radius of contact region in Mindlin solution for Hertzian contact indicated in 
Figure 3. First used in Equation 15.

total contact area of an interface. First used in Equation 1.

the portion of the contact area undergoing slip. First used in Equation 1.

cross-sectional area in strip-slip calculation indicated in Figure 2. First used in 
Equation 3.

Euler beta function. First used in Equation 14.

radius of non-slip region in Mindlin solution for Hertzian contact indicated in 
Figure 3. First used in Equation 15.

proportionality coefficient between normal traction and distance along slip 

length. First used in Equation 11.

proportionality coefficient between slip length and applied force. First used in 

Equation 10.

proportionality coefficient between lateral displacement and distance from tip 

of slip length. First used in Equation 12.

Young’s modulus in strip-slip calculation indicated in Figure 2. First used in 
Equation 3.

energy dissipation per cycle. First used in Equation 8.

amplitude of oscillatory force in harmonic loading. First used in Equation 5.

maximum applied force magnitude anticipated over a given history. First used 

in Equation 36.

shear modulus. First used in Equation 17.

stiffness of the soft spring in the augmented Iwan model shown in Figure 5. First 

used in Equation 52.

total stiffness of the contact patch. First used in Equation 38.

the spring stiffness of the Iwan elements in the networks indicated in Figures 4a 
and 5. First used in this sense in Equation 28.
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instantaneous length of the slip regime in strip-slip calculation indicated in 
Figure 2. First used in Equation 5.

normal traction in strip-slip calculation indicated in Figure 2. First used in 
Equation 3.

total normal force. First used in Equation 15.

average normal traction in contact region in Mindlin solution for Hertzian 

contact indicated in Figure 3. First used in Equation 16.

local normal traction at location . First used in Equation 9.

multiplicative coefficient in power-law expression for population density of 
Iwan models. First used in Equation 45.

total displacement of augmented Iwan network in Figure 5. First used in 
Equation 52.

displacement in strip-slip calculation indicated in Figure 2. First used in 
Equation 3.

displacement of the parallel Iwan elements indicated in Figures 4a and 5. First 
used in this sense in Equation 27.

distance from free surface of slip domain. Indicated in Figures 2 and 3.

displacement of slider element whose “break free” force is  at time , 
indicated in Figures 4a and 5. First used in this sense in Equation 28.

dimensionless distance from the tip of the slip region in Mindlin solution for 
Hertzian contact indicated in Figure 3. First used in Equation 17.

dimensionless distance from the tip of the slip region in Mindlin solution for 
Hertzian contact indicated in Figure 3. First used in Equation 17.

exponent in proportionality between normal traction and distance along slip 
length. First used in Equation 11.

exponent in proportionality between slip length and applied force. First used in 
Equation 21.

exponent in proportionality between lateral displacement and distance from tip 
of slip length. First used in this sense in Equation 21.

exponent in proportionality between coefficient of friction and normal traction. 
First used in this sense in Equation 23.
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exponent in proportionality between dissipation per cycle and applied force. 
First used in this sense in Equation 26.

multiplicative coefficient in power-law expression for dissipation resulting 
from power-law form of population density. First used in this sense in Equation 
47.

the nth moment of the population density: 

friction coefficient in strip-slip calculation indicated in Figure 2. First used in 
Equation 3.

the population density of Iwan elements whose “break free” force is . First 
used in this sense in Equation 28.

the value of “break free” force is  selected from the region of overlap between 
low-force experiments where dissipation data is available and high force 
experiments where softening data is available. 

exponent in power-law expression for population density of Iwan models. First 
used in Equation 45.
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Introduction

Constitutive modeling of mechanical joints appears to be gaining increased interest, as 

indicated by the occurrence of several recent and forthcoming workshops and symposia. 

That interest would appear to be motivated by the availability of new computational and 

experimental tools and the perception that the design process for many dynamic systems 

can be made much more economic by increased reliance on predictive simulation. 

This work is driven by the definition that predictive modeling is that which provides 

reliable quantitative information without first requiring the construction of a prototype. 

Even this is a matter of degree: Analysis of a design radically different from anything built 

before requires much more prowess on the part of the analyst to be predictive than does 

analysis of a design which is a small departure from that which has been built and tested.

Constitutive modeling of mechanical joints is an important part of predictive dynamic 

modeling of jointed structures because the joints are often the dominant source of energy 

dissipation and vibration damping in those structures. For very expensive components or 

components that are safety critical, predictive dynamic modeling is necessary. Jointed 

structures that fit those criteria include turbine blades and nuclear weapons. The intent of 

this monograph is to present some ideas that should be directly applicable to the predictive 

dynamic modeling of such structures for an important regime of excitation - that for which 

the excitation is sufficient to cause significant energy dissipation but for which the 

displacements are so minute as to make direct measurement of kinematics impossible. 

This is the micro-slip regime.
Page 9



Micro-slip at Joints

The notion of micro-slip at a joint is 

illustrated in Figure 1, where a bolt is 

used to connect two thick components. 

There is presumed to be a large 

prestress in the bolt and a 

corresponding region of large normal 

stress between the components in the 

vicinity of the bolt. A tangential load will cause slip in some region where the normal 

tractions are not so large as to prevent it. Because slip occurs in a small region, the 

magnitude of slip displacement is small, and there is no gross slip at the joint; this 

mechanism is usually described as “micro-slip”. The major complication in the analytic 

prediction of energy dissipation associated with micro-slip is the calculation of the slip 

region. 

The term “micro-slip” is sometimes used interchangeably with the term “partial slip”, and 

this practice has lead to occasional serious misunderstanding. The author would like to 

suggest that the term “partial slip” should be used for all cases where the slip region is less 

than the full contact patch - this is any case involving slip short of complete sliding:

(1)

where  is the area of slip and  is the total contact area. The term “micro-slip” should 

be reserved for cases for which the contact area over which slip occurs is much less than 

the total contact area:

No-Slip 

Region of 

Sliding

Region

Frictional

“Slip”
Figure 1.   Slip in a joint occurs in a 
subset of the contact patch.

0 A< S AC<

AS AC
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(2)

throughout the history of interest.

This importance of this distinction becomes evident when one contrasts convergence 

studies of micro-slip analysis - which most likely will involve extraordinarily small 

meshing - with convergence studies of large partial slip.

Dissipation Mechanisms
Energy dissipation at bolted joints has been associated with several distinct mechanisms. 

This subject was investigated intently by Eric Ungar[1,2] in the early 1960’s with an 

ingenious set of calculations and experiments, studying many factors including joint 

spacing, joint tightness, flange material and surface finish. Ungar considered oscillatory 

loads and examined several postulated dissipation mechanisms, computing for each the 

manner in which energy dissipation would be expected to increase with load. Ungar found 

that, though there were unknown parameters in those expressions, each mechanism 

manifested a dissipation rate increasing as a distinct power of the amplitude of the applied 

load. Ungar then examined experimental data, evaluating the slope of dissipation versus 

applied force amplitude when plotted in a log-log manner. In those experiments, which 

concerned thin plates bolted together, Ungar concluded that the dominant mechanism of 

energy dissipation was air pumping between the plates in the vicinities of the bolted 

connections. Part of the basis for that conclusion was the observation that the slope of the 

log-log plot of dissipation versus force was on the order of 2.0, corresponding to viscous 

dissipation. When the joints were loosened so that there could be significant macro-slip, 

the slope of the log-log plots increased to 2.5. Ungar’s experiments focussed on 

geometries then most relevant to aircraft bodies. These involved thin plates with 

0 A< S AC«
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significant bending compliance, and were qualitatively different from the problems of 

interest here; but Ungar’s methods still have value to us. Ungar focused attention on use of 

the dependence of energy dissipation on amplitude of applied force as a tool to identify 

dissipation mechanisms.

Where thick sections are bolted together, energy dissipation is generally associated with 

micro-slip near the bolt and corresponding frictional losses. Goodman[8] observed that 

several particular calculations of systems that involve slip and Coulomb friction 

manifested energy dissipation growing as force amplitude to the third power. He 

generalized that result to that subset of systems of elastic components sharing a frictional 

interface, held together by a normal force, and perturbed by an oscillatory tangential load 

for whichthe  region of slip increases linearly with the amplitude of tangential force. The 

derivation will not be developed here, but the core elements are demonstrated by 

consideration of a semi-infinite rod held in a semi-infinite vise, as shown in Figure 2. The 

rod is assumed to be elastic and the normal traction applied by the vise is assumed to be 

uniform. When the applied force is maximum in the cycle, the region of slip is also at its 

F0sin(ωt)

L(F0)

Figure 2.   The Goodman hypothesis is illustrated in a one-dimensional 
problem.
Page 12



maximum, extending from the origin to location , where  is the amplitude of the 

oscillatory force. Within the region of slip, the equilibrium equation is:

 (3)

where  is Young’s modulus,  is cross sectional area of the rod,  is the 

displacement of the rod at location ,  is the normal traction, and  is the coefficient of 

Coulomb friction. (No distinction is made between static and dynamic friction). Note, 

Poisson contraction is ignored here. Beyond the slip region, 

. (4)

Because Equation 3 is second order and  is as yet un-specified, all three of the following 

boundary conditions are required: 

 ; ; and (5)

The solution at maximum extension is 

(6)

 for . (7)

The energy dissipation over a full cycle is 

. (8)

This example problem illustrates each of the components that Goodman asserts in his 

general derivation for problems of oscillatory tangential loads applied to linear objects 

sharing a frictional interface:
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1. the region of slip increases linearly with amplitude of applied load;

2. and the energy dissipation is proportional to the third power of the amplitude of 
applied force.

Asymptotic Form
Note that in general, in oscillatory loading, the energy dissipation over each cycle is 

(9)

where  is the normal traction at location . For the example elasticity problem 

considered above the slip length, normal traction, and the slip displacement have the 

forms:

, (10)

, and (11)

. (12)

The energy dissipation is 

(13)

(14)

where  is the Euler beta function[3].

For the example considered above, , , and  (satisfying the 

Goodman hypothesis). 

Goodman used the problem of contacting spheres subject to small lateral slip to illustrate 

his observation about frictional dissipation. That problem, having normal force P and 

D 4 νp x( )u x( ) xd

0

L F0( )

∫=

p x( ) x

L CSF0=

p x( ) Cpx
α

=

u x( ) Cu L x–( )β=

D 4νCpCu x
α

L x–( )β xd
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L F0( )
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4νCpCuCS
α β 1+ +

B α 1 β 1+,+( )[ ]F0
α β 1+ +

=

B( )

α 0= β 2= α β 1+ + 3=
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lateral force F0, contact radius a, and no-slip radius c, is illustrated in the following figure. 

The coordinate from the free surface toward the slip/no-slip interface is indicated by x. For 

that problem, whose solution was worked out by Mindlin[4] and Cattaneo[5] 

independently, the closed form solutions are provided by Johnson[6]:

, (15)

, (16)

and ,(17)

where ,  is Poisson’s ratio,  is shear modulus, and . Note 

that  is the distance from the slip/no-slip interface to location . For the case of micro-

slip (expressed in this case by ), the above expressions can be written:

P

P

c

a

x

Figure 3.   The geometry of Hertzian contact. 
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, (18)

, (19)

and 

. (20)

So here we see that the slip length is again proportional to the lateral load. We also identify 

, , and observe that  again. 

Experimental results are generally disappointing for the analyst. In general, the 

experimentalists do find that micro-slip yields a power-law relationship between lateral 

load and energy dissipation, but they tend to find exponents closer to 2.5 rather than 3.0. 

(Johnson(1961) and Ungar(1967)). Various explanations have been offered, most of which 

come down to the assertion that Coulomb friction may not be an adequate model for the 

dissipation taking place in the slip region. Johnson (ibid) asserts that the true dissipation 

involves metal plasticity not accounted for by Amonton’s law. Gaul (1997) suggests that 

the calculation of dissipation in the region of small normal stresses requires direct 

accounting for asperity to asperity interaction, resulting in a different kind of friction law. 

Recent experiments at Sandia National Laboratories by Smallwood, Gregory and 

Coleman (2000) suggest values between 2.6 and 2.9 for the power-law relationship 

between lateral load and energy dissipation. The construction of low-order models both 

for the case of slope 3.0 and for cases for slope less than 3.0 is discussed below. 

There are various ways that the conditions of Goodman’s analysis can be weakened and 

still yield a power-law relation between tangential load and dissipation. In particular,  

a c–
aF0
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π
-------z

3 2⁄
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α 1 2⁄= β 3 2⁄= α β 1+ + 3=

α
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and  need not sum to . Further, the relationship between tangential load and the length 

of the slip region need not be linear. If the slip region is related to the maximum amplitude 

of the tangential load in the following manner,

(21)

then analysis such as that which leads to Equation 14 yields

. (22)

A more interesting case is that in which the pressure and displacement results of the 

classical solutions are preserved, but that the friction law is altered. This exploration is 

consistent with the observation that micro-slip occurs in regions of very low normal 

traction where Amonton’s law might not be valid. It is anticipated that some other physics 

apply in the regime of low normal tractions and that as the normal traction is increased 

that behavior gradually converges into Coulomb friction. One model of friction in the 

region of low pressure involves pressure dependent friction coefficients (Rabinowicz, 

1995), the simplest of which is

. (23)

The dissipation becomes

. (24)

If we accept the portion of the Goodman assertion that  and that , 

then we find that 

. (25)

β 2
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If the friction law used above is a good approximation for reality when  is a slightly 

negative number, this result becomes valuable on two counts:

• the model supports the deviation of experiment from Goodman’s hypothesis in the 

correct direction;

• the model predicts a different power-law relationship for each type of contact (spheri-

cal contact, plate contact, strip contact). We now have some predictions to test against 

experiment.

Whether Equations 11, 12, 23 can adequately describe the physics of joint slip is still a 

matter of research. Ideally, a continuum level (finite element) model, properly 

accommodating all of the relevant physics could explain power-law dissipation relations 

and determine the relevant parameters.

The above discussion has explored methods by which either analytic elasticity or finite 

element tools can be employed to derive an expression for dissipation of the form

(26)

and methods for predicting appropriate values of the parameters  and . We shall see 

below that these quantities are enough to determine parameters for limited constitutive 

models for jointed structures.

Model Reduction

Whatever physics hold in joint interfaces, detailed solution of those equations as part of 

a finite element model for the whole structure would introduce hundreds of new 

unknowns for each joint, each unknown associated with a nonlinear equation. Further, 

γ

D AF0
γ

=

A γ
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capturing those degrees of freedom would be associated with extremely small elements, 

dramatically reducing the characteristic time step of the problem. These limitations make 

such an approach impractical. Instead, one strives to devise low order models - on the 

order of tens of degrees of freedom - to represent the region of the structure surrounding 

the joint. The small number of associated nonlinear equations should not substantially add 

to the numerical difficulty of the problem. 

The utility of a reduced order model depends substantially on the difficulty of deriving 

parameters of the model. In general, it would be quite acceptable to devise a very fine 

scale model of the joint and to use that fine scale model to perform a small number of 

experiments sufficient to deduce the parameters of a lower order model. Alternatively, it 

might be just acceptable to compile experimental data from which model parameters 

could be deduced for each geometric and loading condition.

Discrete Models

Though one might be satisfied using a mesh of elements of characteristic length on the 

order of tens of microns in order to understand or characterize a joint, it would be 

impractical to incorporate this mesh into the larger one used to simulate that overall 

structure of which the joint is a small part. Instead one attempts to represent the complex 

joint problem with a reduced model of lumped parameters. The most common class of 

model is that composed of springs and slider elements. Slider elements manifest the 

properties of Coulomb friction:

(27)

u· = { 0 if f φ<

λ f( )sgn if f φ>
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where  is the force applied on the slider element,  is the resulting displacement,  is a 

“break-free force”, and  is a positive number selected to meet kinematic boundary 

conditions. Such networks appear to have been studied first in connection with 

constitutive modeling of metal plasticity, and it was in that connection that Iwan wrote his 

most often cited paper [9] on parallel-series and series-parallel networks of springs and 

sliders. Iwan derived analytic expressions for the stress-strain behavior of each sort of 

network. Of particular interest is the special case of parallel-series networks where there 

are an infinite number of spring-slider units and the stiffnesses of all the units are 

identical, . Let  be the population density of sliders of break-free force . After an 

arbitrary displacement, the force on the system will be

(28)

where  is the current displacement of sliders of species .

f u φ

λ

Figure 4.   Iwan parallel-series systems (a) and series-parallel systems 
(b).
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Since solution of this problem requires calculating the evolution of  over time for 

each , we must specify initial conditions as well as evolution equations. Before lateral 

loads are imposed on the structure,

 at  for all . (29)

The slider displacements, , are considered hidden variables; they might be 

deduced, but they cannot be measured directly.

The force associated with an initial unidirectional displacement of the network is 

. (30)

Iwan showed that the distribution density can be calculated from the force-displacement 

curve of this initial deformation

. (31)

Sanliturk and Ewins [10] used the above reasoning to derive a corresponding finite 

difference expression. 

Where the initial force-displacement curve is unavailable, other methods must be 

exploited. Gaul and Lenz[11] performed a series of dynamic experiments exploiting 

resonance of a two mass system connected by a mechanical joint. Having only steady state 

data, they selected from combinations of various mechanical elements - springs, dampers, 

slider elements - to reproduce the mechanical properties of the joint as manifest in those 

dynamic experiments with good success. 

We now consider a parallel-series network such as Iwan investigated, each element 
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having the same stiffness, but in series with a single, relatively soft spring (stiffness ). 

In this model, the parallel Iwan model is meant to represent the contact region and the soft 

spring is meant to represent the rest of the joint. Because the Iwan network is in series with 

the soft spring, Equation 28 still applies. Now, however, the displacement, , 

associated with the Iwan system is a hidden variable. Only the net system displacement, 

, and net applied load, , can be measured.

For the above and in what follows, it is convenient to define the moments of the 

distribution as

. (32)

The dimension of  is that of . 

It is also worthwhile to note that the force necessary to cause full slip of the joint is 

K1

Figure 5.   An augmented Iwan 
model is used to represent a 
mechanical joint.
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expressed both in terms of the first moment of  and the normal load

(33)

thus at least this feature of  can be determined experimentally.

Iwan’s Equation 30 for monotonic loading still holds for the augmented model of Figure 

5. In terms of the moments, that expression becomes

. (34)

If one knew the density function, , the above integral equation could be solved for  

in terms of .

Iwan’s Equation 31 also holds, but could be useful only where experiment yielded forces 

such that the second derivative on the right hand side of that equation resulted in 

meaningful values. This is particularly unlikely where applied loads are small. Another 

difficulty with exploitation of this equation is that, in general, one does not know the 

values of  that correspond to each value of . More will be said on this issue later in this 

monograph.

Energy Dissipation Due to Harmonic Loading

Here we are not restricted to actual sinusoidal loading, just that which increases 

monotonically from a value of  to  and then decreases monotonically back to . 

The energy dissipation associated with a cycle is four times that associated with the 

motion from the origin to the extreme position and due to the work done by the sliding 

elements

ρ

Λ1 ∞( ) νP=

ρ

F t( ) Λ1 ku t( )( ) ku t( ) Λ0 ∞( ) Λ0 ku t( )( )–[ ]+=

ρ u t( )

F t( )

u F

FA– FA FA–
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. (35)

At this stage, the hidden state  appearing above is the maximum displacement due to 

the applied periodic load and is still an unknown.

Limit of Small Force
We consider the limit of displacements due to very small loads - this is the region of 

micro slip - characterized by the existence of a bound  such that

(36)

for all times and that 

(37)

where 

. (38)

This is different from, but consistent with the condition that the applied load is much 

less than the load necessary to cause macro-slip

. (39)

We now expand Equation 34 in terms of small  and find

. (40)
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We can substitute this into our expression for energy dissipation due to harmonic loading

. (41)

where . We see that in the domain of micro-slip, it is only the behavior of 

 in the vicinity of  which affects the dissipation per cycle. The constitutive 

model constructed for the configuration shown in Figure 5 can be applied to arbitrary load 

histories, and it would be desirable to deduce the parameters of this constitutive model 

from simple experiments, such as that of harmonic loading.

Case of Smooth Distribution:

We consider the case of any distribution that is smooth near . For such 

distributions, we employ a Taylor series

(42)

then

 (43)

and 

. (44)

The above supports the Goodman hypothesis that the dissipation in cyclic loadings will 

be proportional to the cube of the peak loading force.
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Case of Singular Distribution

Next, we remove the constraint that the distribution  be smooth for small . We 

consider distributions that have the form

(45)

for small values of its argument. The moments become

, (46)

and Equation 41 for energy dissipation due to harmonically applied loads becomes

. (47)

The above demonstrates that a weak singularity of  near , ( ), will 

yield a power law dissipation of the order sometimes claimed for the micro-slip domain. 

Note that when  has the value , Equation 47 reduces to Equation 44 and  has the 

value .

We are now left with the challenge of deducing the parameters of the distribution in 

terms of measurable quantities, so much as possible. The exponent  can be deduced from 

the slope of a log-log plot of dissipation due to harmonic loading versus the amplitude of 

that loading

. (48)

We show below how, within the regime of micro-slip, the rest of the parameters for our 

constitutive model can be determined from the harmonic loading experiment.

The big question is how to choose the parameters. Once the physics is decided, the 
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exponent  is fixed. The hard question is how to determine  (  in the case ), , 

and . One strategy would be to devise some other class of experiment with the 

intention that these new experiments would further identify the individual parameters that 

go into making up . We consider an experiment in which a large force is applied to the 

joint and then released:

• the elastic compliance of the overall joint drowns out the deflections due to interface 

slip during extension

• after release, the residual displacement is due solely to interface mechanics

This suggests that experiments relating the residual deformation and the amplitude of the 

applied load or the displacement during the loading portion of the experiment might help 

resolve the problem of identifying the remaining parameters. As shown in Appendix A, 

for the case where , the resulting residual deformation is related to the maximum 

deformation by 

(49)

where  is the residual deformation and  is the maximum loading. We see that the 

parameters , , and  group together in the same manner in this problem as they do in 

the calculation of dissipation under oscillatory loading. 

This suggests that the individual values of  (  in the case ), , and  do not 

matter in the dissipation modeling of the joint; that what matters is the manner in which 

these parameters come together to form the quantity . (Note that 

the individual values of the parameters will make a difference in the values of the hidden 
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variables; those values will not be observable from macroscopic scale experiments.)

The above assertion is argued mathematically in Appendix B and supported by a 

numerical experiment using parameters as indicated in the following table: 

The number of elements and the number of time-steps is gross over-kill for the problem at 

hand, but were selected in order to assure that the difference in the predictions of the two 

cases was due only to the intrinsic mathematical difference due to selecting different 

combinations of , , and  that combine to the same value of . The imposed load in 

this test case is a sum of sine functions of different period and amplitude

  (50)

and is shown in Figure 6. This load was selected to be significantly different from a simple 

harmonic loading. In particular, there are significant load reversals on each side of the 

zero-crossings.

Table 1: Parameters of two Iwan Models

Fmax Iwan 
Elements

Time Steps ρ0 k KT
Resulting 
Dissipation

Case 1 1.0 50 2000 4.0 0.5 1000 6.66667E-10 2.74149E-10

Case 2 1.0 50 2000 2.0 2.0 2000 6.66667E-10 2.74159E-10
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--------------=
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2
--- 6t( )sin+ 
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The resulting time derivatives of the hidden variable  are shown in Figure 7. Because 

the product  of Case 1 is half that of Case 2, the displacements of Case 1 are double 

those of Case 2.

Figure 6.   Test case using non-sinusoidal applied force 
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The net force due to the slipping Iwan elements is shown in Figure 8. We see that the 

forces of Case 1 are just about half of those of Case 2.

Figure 7.   Resulting time derivative of displacement u(t)
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The instantaneous energy dissipation is that due to motion of the sliding elements. This 

is the product of the forces in Figure 8 times the displacement rates of Figure 7. Those 

dissipation rates are shown in Figure 9. The dissipation rates for Cases 1 and 2 are 

identical and superpose.

Figure 8.   Instantaneous net force from all sliding Iwan 
elements.
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We conclude from the above discussion that in the domain of small applied loads, the 

distribution  behaves as a fractional negative power of its argument. Further, though 

the model parameters , , and  are defined uniquely, we are free to select the model 

parameters, , , and  arbitrarily so long as

(51)

and the dissipative nature of the system will be preserved. Note that varying the values of 

, , and  does change the magnitudes of the hidden displacements  and .

Note that the above discussion applies to the region of small applied forces, where clean 

data on the force-displacement relationships is hard to obtain but where dissipation versus 

amplitude data is available. It is in the correspondingly small values of  that  

Figure 9.   Resulting dissipation rates are identical for both 
cases. 
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behaves as a power of its argument.

Large Force Response
It is shown above how experiments involving small oscillatory loads can provide 

information on  for small values of its argument through consideration of dissipation.   

Here, we see how estimates for  for large values of its argument can be obtained 

through considerations of a different sort.

One expects the force-displacement curve for large monotonic loading to look 

something like that in the following figure. In the regime of small loads (micro-slip), the 

curve is nearly linear and little information can be deduced from the curvature. More 

importantly, in the region of small loads, there is no practical method to deduce  from 

the observable joint quantities,  and . Though, in principle, one could solve the 

following equation

(52)

ρ φ( )

ρ φ( )

 u

 F

Figure 10.   Force-
displacement curve for 
large monotonic loading
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U F
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for , evaluation of that equation would involve looking for nearly in-perceptible 

differences between experimental values.

The problem simplifies a bit in the region of large displacements - well beyond the 

region of micro-slip. In that region, one could use the above equation to get realistic 

values of  from  and . We may now plot  versus  and evaluate the curvature of 

the plot numerically to estimate  for large values of its argument via Equation 31. 

Note that in these experiments  is no longer a hidden variable.

Note also that the model parameter  appears in Equation 31 and is still to be assigned a 

unique value.

 Model Parameters

Selecting Parameters

The model parameters  and  are defined uniquely in terms of dissipation experiments 

at low amplitude. The parameter  is uniquely determined from small amplitude force-

displacement experiments. The remaining parameters, , , and , can be chosen 

arbitrarily to match the dissipation at small force amplitude so long as Equation 51 is 

satisfied. This arbitrariness is disturbing. Also, it would be desirable to define  over 

the full range of its argument. These issues can be resolved in the following manner.

1. Set .  This is equivalent to making the change of variables  
in Equations 28 and 31.

2. Equation 31 can now be used unambiguously to determine a plot of  versus  for 

large values of .   

3. Let  be the minimum value of  for which the above process yields reliable values 

of .
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4. Select  so that  matches the value  obtained from Equation 31.

5. Use Equation 51 to determine .

6. Use  for  and use  obtained from Equation 31 for .

Discretization of the Model

The continuous Iwan model is characterized by the two numbers  and  and the 

function . Here we discuss how one may approximate the continuous Iwan model, 

whose parameters can be determined by the methods above, by a finite system of discrete 

Iwan elements.

Discretization of the continuous Iwan system is most economically done by using only 

as many Iwan elements as necessary. Lets assume that the experiments we contemplate 

simulating involve loads for which  is an upper bound. One can employ Equation 30 to 

plot  versus  for monotonically applied loads and thereby to find a corresponding .    

The constitutive equation may now be evaluated numerically by breaking the domain of 

integration  into the two domains  and . The Iwan model 

becomes

 . (53)

We now approximate the above integral by a summation over discrete points
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. (54)

When Equation 54 is substituted into Equation 53, one obtains

(55)

where dependence on time is shown explicitly and  is the quantity in the brackets in 

Equation 53.

Numerical experiments for the case , presented below, have been reasonably 

successful with a uniform distribution of sample points. Slightly negative values of  

might be well suited by a distribution consistent with some other quadrature strategy. 

An example of the above strategy is presented in Appendix B.

ρ φ( ) ρ φ( )δ φ φj–( )∆φj∑≅

F t( ) k ρ φj( ) u t( ) xj t( )–[ ]∆φj u t( )KT
ˆ+∑=

KT
ˆ
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Conclusions

1. A number of plausible reasons can be put forth for why the Goodman analysis of 
micro-slip in joints fails quantitatively and yet is vindicated in predicting a power-law 
relationship between applied lateral force and energy dissipation.

2. Iwan elements do appear to be natural candidates for joint models since they possess 
the physical qualities of elasticity and slip associated with joint mechanics.

3. Distributions of Iwan elements can be devised that will reproduce the power-law 
behavior at small amplitude that is found experimentally.

4. Experimental data from dissipation measurements at small loads and force-
displacement measurements at large load can be used to determine all the necessary 
model parameters.

5. Numerical simulation with the distributions of Iwan elements can be performed 
quickly and efficiently.
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Appendix A: The Residual Slip Experiment

We next consider the slip captured after a monotonically applied force which achieves 

its maximum at a value . Equation 30 provides the relationship between that applied 

force and the resulting displacement . (Recall that  is a hidden variable; ) The 

distribution of slider displacement is 

(A1)

where  is the moment at which the applied load reaches its maximum. Of course, the 

imposed displacement associated with the elasticity of the overall joint disappears when 

the applied load is removed and a residual displacement  associated with interface slip 

remains. The problem is illustrated in the following figure.
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Figure A1.   The problem of residual deformation.
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Let’s solve for  in terms of the applied load. 

At time , after the load is removed, there is no load in the soft spring and the residual 

displacement is . At that time, the distribution of slider displacement is 

. (A2)

The slip values for time  and  are shown in Figure A2.

Substituting zero-force into Equation 28, we find an expression to solve for  in terms of 

(A3)
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Figure A2.   Slip distribution during the forward motion of the joint and 
after force on the joint has been released.
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where .

When we approximate  for small , we may solve for  in terms of 

(A4)

For very small  and ,

. (A5)

Finally, we exploit the assumption of small slip (Equation 40) to observe that 

(A6)

so that residual displacement  can be expressed in terms of the applied load

. (A7)

Note that the quantity in parenthesis is the same combination of parameters that occurs in 

the expression for dissipation resulting from harmonic tangential loading.
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Appendix B: Significance of the Dissipation 
Parameter 

In Equation 47,  relates the rate of dissipation due to harmonic loading to a power of 

the amplitude of the applied load. Here we establish, that where the “small force” 

assumption is employed so that the distribution function  can be represented 

adequately by its behavior near zero (Equation 45) and by the integral defining  

(Equation 38), it does not matter how the parameters , , and  are chosen so long as 

the correct ratio for  is achieved. In the next appendix, it is shown 

how to determine the appropriate values of  from finite element calculation.

We consider two distinct Iwan systems. The first is characterized by the parameters , 

, and  and the second by the parameters , , and . Re-using the scalars , , 

and , we assume the relationships

. (B1)

The symbols , , and  are reused here because of the small size of the Greek alphabet 

and have nothing to do with their earlier use in the body of this monograph.

Each system is subject to the identical load history  where  is always less than 

some  and the hidden displacements are expressed to first order as

(B2)

The integrands  and  range over  and , respectively. Setting 
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from which follows

. (B4)

We now relate the slider displacements  and  of the two systems. Say that 

instantaneously the following holds

. (B5)

We shall show that the time derivatives of each of these quantities are such as to maintain 

compliance with Equation B5. The sliders are either moving or not and we consider each 

case individually. Say the slider at  is not moving  then 

(B6)

and we see that  also. On the other hand, say that the slider at  is moving, 

then

(B7)

and

. (B8)

Since the displacement of all sliders begin’s with the same initial value (zero), we see that 

. (B9)

We now examine the instantaneous rate of dissipation
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where  is a characteristic function of its argument, defined as

. (B11)

Similarly, 

. (B12)

The above asserts that the two systems will indistinguishable in their dissipation 

properties so long as

. (B13)

Satisfaction of Equation B13 is equivalent to the assertion that the systems will be 

indistinguishable so long as they are associated with the same value of 
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Appendix C: Example Finite Element Calculation

If one has a prototype of an isolated joint, one can perform harmonic experiments at 

different amplitudes to obtain a linear plot of force versus displacement (from which  

can be obtained) and a log-log plot of dissipation versus force amplitude (from which  

and  can be obtained). From  and , one constructs an Iwan model in the manner 

described in the body of this monograph.

Alternatively, one can devise a detailed finite element mesh for the joint and solve the 

fine-scale contact problem assuming a reasonable friction law, usually Coulomb friction. 

The following example calculations were performed using the Sandia finite element code 

JAS on a mesh created with the help of the Sandia code CUBIT. The joint mesh is 

indicated in Figures C1 through C3. Approximately three hundred thousand degrees of 

freedom were employed in this model.

K1

χ

ϑ ϑ χ

Figure C1.   A mesh of a simple lap joint. The rounded rods on the top 
and bottom are portions of rigid rollers pushing the laps together.
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Figure C2.   A magnified view of the mesh of the previous figure.
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Vertical loads of 1.78 x108 dynes (400 pounds force) are applied by rollers to push the 

laps together and the laps are then pulled apart under displacement control. The force 

Figure C3.   A further magnified view of the finite element mesh.
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resulting displacements curve is plotted in the following figure.

The plot of dissipation versus applied force is shown in the following figure, 

Figure C4.   The force displacement curve can be matched 
reasonably well with a straight line. The slope of this line is .K1
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Having the two parameters  and , we now have the necessary parameters to create 

an appropriate Iwan model

Figure C5.   Dissipation associated with monotonically applied force is 
used to deduce the dissipation ratio .ϑ
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