
   
 

 -1- 

August 27, 2004 

US Department of Energy 
SBIR/STTR Program, SC-32 
19901 Germantown Road 
Germantown, MD 20874-1290 
 
 
To whom it might concern: 
 
This is the final report for the Tech-X Phase II SBIR project “CORBA for Fourth Generation 
Languages, ”Grant No DE-FG03-00ER83107. 
 
 
 
 
 
 
 
 
 
 
Sincerely, 
 
Svetlana Shasharina  
Vice-President of Tech-X Corporation and PI of the project 



   
 

 -2- 

Table of Contents 
Table of Contents............................................................................................................................ 2 
Introduction..................................................................................................................................... 3 
IDL-CORBA Bridge....................................................................................................................... 3 

Architecture................................................................................................................................. 3 
Installation of the Bridge ............................................................................................................ 4 
The IDL Object Interface............................................................................................................ 5 
IDL CORBA Object Detection................................................................................................... 6 
IDL – CORBA - IDL Conversion............................................................................................... 6 
Running CORBA Servers ........................................................................................................... 7 
Running IDL Clients................................................................................................................... 8 

CORBA-IDL Bridge..................................................................................................................... 10 
Architecture Overview.............................................................................................................. 10 
Installing CORBA-IDL Bridge................................................................................................. 12 
Preparing IDL Objects for CORBA Clients ............................................................................. 12 
Running the Bridging Server: ................................................................................................... 12 
Running the Client .................................................................................................................... 13 

TaskDL ......................................................................................................................................... 13 
Overview................................................................................................................................... 13 
Status of the TaskDL ................................................................................................................ 14 
Tuple Space............................................................................................................................... 15 
Task Tickets .............................................................................................................................. 16 
Directory Structure.................................................................................................................... 16 
Graphical User Interface Description ....................................................................................... 18 
Session Control ......................................................................................................................... 18 
Session Configuration............................................................................................................... 20 
Worker Output .......................................................................................................................... 21 
Session Status............................................................................................................................ 22 
Worker Status............................................................................................................................ 22 
Task Status ................................................................................................................................ 22 
IDL Procedure Signatures......................................................................................................... 23 
The Setup Wizard ..................................................................................................................... 23 
Installation................................................................................................................................. 25 
Running TaskManager from CVS ............................................................................................ 25 



   
 

 -3- 

Introduction 
The software developed in this project consists of three parts: ILD-CORBA bridge, 

CORBA-IDL bridge and TASKDL.  In what follows we discuss these pieces along with 
instructions on how download and use them.  IDL-CORBA bridge allows IDL code to access 
remote objects written in other languages.  CORBA-IDL bridge allows using remote IDL server 
objects in client codes written in other languages.  Finally, TASKDL is an attempt to create a 
distributed client-server using light-weight approach alternative to CORBA and run parallel IDL 
applications. 
 

IDL-CORBA Bridge 

Architecture 
The Common Object Request Broker Architecture (CORB is an open distributed object 
infrastructure defined by the Object Management Group (OMG).  OMG is an industrial 
consortium that, among other things, oversees the development and evolution of CORBA 
standards and their related service standards through a formal adoption process.  The process has 
proven to be highly effective in ensuring the quality, the interoperability, and the 
implementability of newly adopted standards.  CORBA standardizes and automates many 
common network programming tasks such as object implementation, registration, and location 
transparency.  CORBA also defines standard language mappings of most popular languages for 
the programming interfaces to services provided by the Object Request Broker (ORB).  An ORB 
is the basic mechanism by which objects transparently make requests to and receive responses 
from other objects on the same machine or across a network.   
 
By ensuring the quality and the interoperability of the standards, ORB venders are able to 
continuously evolve and optimize ORB implementations and users can freely switch between 
ORB products with minimal efforts.  The General Inter-ORB Protocol (GIOP) is CORBA’s 
standard message exchange protocol over the wire.  The Internet Inter-ORB Protocol (IIOP) is a 
concrete realization of GIOP using TCP/IP.  GIOP adopts a binary data representation format 
called the Common Data Representation (CDR) that allows standardized and efficient message 
exchange between ORBs.  Unlike Web Services which use XML documents as the common 
format for message exchange, CORBA uses CDR. This allows messages to be exchanged in 
binary format and is much more efficient both in terms of processing overhead and protocol 
overhead. 
 
Current implementations of CORBA do not provide bindings for Interactive Data Language 
(IDL). Our IDL-CORBA-Bridge partially gaps this problem by providing capabilities to call 
CORBA objects from IDL client. As a consequence, scientists and engineers will be able to 
create IDL client applications to access remote CORBA objects and use the powerful features of 
IDL to analyze or render that data locally.   
Our bridge uses TAO, an ORB developed by the Distributed Object Computing Group of 
Washington University in St. Louis, the University of California, Irvine, and Vanderbilt 
University.  TAO is an open-source, high-performance and highly configurable ORB 
implementation of CORBA specifications.  TAO supports the standard OMG CORBA reference 



   
 

 -4- 

model and real-time CORBA specification with many enhancements designed to ensure 
efficient, predictable, and scalable QoS behavior for high-performance and real-time 
applications. 
 
The IDL-CORBA bridge uses C++ implementation of Dynamic CORBA and IDL Dynamic 
Loadable Modules wrapping Dynamic CORBA, to provide the connection between IDL client 
application and CORBA objects.   The current implementation of the bridge requires a C++ 
compiler (gcc3.3 and higher), TAO (compiled with corresponding gcc) and IDL (version 6.0 or 
higher).   It works on Linux and Unix platforms. 
 
The general architecture of the IDL to CORBA Bridge is shown on Fig.1.  As indicated in this 
diagram, the architecture consists of four main subsystems: the IDL object interface, the “tap” 
into the IDL object system, the conversion between IDL and CORBA primitives and CORBA 
itself.  
 

Fig. 1.  Basic architecture of the IDL-CORBA bridge. 
As indicated in this diagram, the architecture consists of four main subsystems: the IDL object 
interface, the “tap” into the IDL object system, the conversion between IDL and CORBA 
primitives and CORBA itself. The specifics of each system is discussed in the following 
sections. 

Installation of the Bridge 
Unpacking the tarball with the command 

gunzip –c idlcorba.tar.gz | tar xfpv – 

will create idlcorba directory with the following subdirectories: 
• idl_corba_bridge - the main directory containing the bridge source code; 
• server_cpp - a directory containing a demo server object, the test C++ server code using 

this demo object and scripts needed to run the server side of the bridge; 
• client_idl has several examples of IDL client using test objects from server_cpp 

directory; 

IDL Object
Interface

IDL CORBA
Object

Detection

IDL to CORBA
Conversions CORBA

IDL InternalsIDL Language CORBA

IDL to CORBA Bridge



   
 

 -5- 

• stddir - a utility directory; 
• config – directory with files included in configure.in and needed to generate Makefiles. 

The package comes with all items needed to generate Makefiles.  In order to create configure the 
first time, one needs to run scripts 

./config/cleanconfig.sh 

./config/regenconf.sh 

In order to make Makefiles, run 
configure 

Then do 
make depend 

make 

To clean (delete generated files), do 
make clean 

This implied that you autoconf and configure tools installed.  The default implies that the main 
TAO installation directory is /usr/local/ACE+TAO.  If it is different, configure script should be 
run as follows: 

configure  --with-corba-idl=<full path of tao_idl> 

For example: 
configure –with-corba-idl=/usr/local/installations/ACE+TAO/TAO/TAO_IDL/tao_idl 

If location of IDL different from /usr/local/rsi/idl, one needs to run configure as follows 
configure –with-rsiidl-bindir=<location of IDL bin directory> 

For example, 
confgure –with-rsiidl-bindir=/usr/local/idl/bin 

Note that you can run configure with multiple concatenated “—with-“ statements.  
 

The IDL Object Interface 
As discussed earlier, CORBA objects are exposed at the IDL language level as normal IDL 
objects. As such the user performs standard IDL operations and syntax to use these proxy 
objects. All the obj_* routines exposed in IDL operate on a CORBA object and method calls are 
initiated using the standard IDL method operator, ->. While the standard IDL object 
operations are used, some unique methodologies are required to create the link between IDL and 
the underlying CORBA object.    This interface was provided to Tech-X by RSI. 
 
CORBA objects are defined in .idl files (IDL here stands for Interface Definition language, 
which we will refer to as CORBA-IDL).  These files show interfaces of the objects.  For 
example, this snippet of the code defines interface Demo: 

// Demo.idl 

interface Demo { 

 long doLong(in long li, out long lo, inout long lio); 



   
 

 -6- 

}; 

with one method, which return a long, takes li as an input parameter, lo as an output parameters, 
lio as both input and output parameter. 
CORBA-IDL compiler takes this code and creates skeletons and stubs.  In case of TAO, this is 
done using the following command: 

/usr/local/ACE+TAO/TAO/TAO_IDL/tao_idl -Ge 1 -Sc -Ge 1 -Sc Demo.idl 

assuming that ACE_TAO is installed in /usr/local. 
Skeletons are abstract classes, which are used on the server side.  For example, interface Demo, 
will obtain a skeleton class POA_Demo.  Server implementation class should inherit from the 
skeleton and implement methods declared in the .idl file.  Here is an example of a C++ 
implementation (see DemoImpl.h and DemoImpl.cpp): 

 class DemoImpl : public POA_Demo { 

  public: 

 CORBA::Long DemoImpl::doLong(CORBA::Long li,  

      CORBA::Long& lo,  

      CORBA::Long& lio) throw(CORBA::SystemException) { 

TXSTD::cout << "doLong" << TXSTD::endl;         

lo = li + 1; 

lio += li; 

return lo; 

} 
Directory server_cpp contains an extensive example using all types supported by the bridge.  In 
order to generate stub and skeletons, one needs just to do “make depend.”  In addition, this 
directory contains the implementation (DemoImpl.h and DemoImp.cpp), which can be compiled 
by doing “make.” 

IDL CORBA Object Detection 
The next functional area of the IDL to CORBA bridge architecture is the detection of IDL 
operations on CORBA specific objects. This area involves the addition of logic to the core IDL 
implementation that allows for the detection of IDL CORBA proxy objects during IDL object 
creation and method calls. During these operations, if an IDL CORBA proxy object is detected, 
operational control is shifted to the IDL CORBA system. No CORBA specific technologies or 
interfaces are utilized in this functional area of the architecture.   This part of the bridge was also 
implemented by RSI. 

IDL – CORBA - IDL Conversion 
The IDL-CORBA bridge supports a rich subset of variables.   Here is the corresponding mapping 
table of supported types. 
 

CORBA Type IDL Type 
short IDL_INT 
unsigned short IDL_UINT 



   
 

 -7- 

long IDL_LONG 
unsigned long IDL_ULONG 
float float 
double double 
char UCHAR 
boolean UCHAR 
octet UCHAR 
string IDL_STRING 
Arrays of the above Arrays of the above 
CORBA operations parameters have directional attributes: 

• in – The in attribute indicates that the parameter is sent from the client to the server 
and can be used, but not modified by the function call. 

• out – The out attribute indicates that the parameter is sent from the server to the 
client.  Its value will be set by the server function call. 

• inout – The inout attribute indicates that the parameter is first sent by the client 
to the server and then back to the client.  Its value maybe reset by the server function 
call. 

This means that the IDL client code should always instantiate in and inout parameters.  It may 
instantiate out parameters, but their values will be set in the process of invoking the server 
function. 
 
This architectural area comprises the majority of the functionality required to implement the IDL 
to CORBA Bridge. In this system, requests are validated, IDL data is converted into a format 
recognized by CORBA and method calls are packaged and dispatched to the target CORBA 
object. All of these operations are performed dynamically to provide the runtime behavior 
expected by the IDL user. 
 
The key technology that allows the dynamic method dispatch that this subsystem performs is the 
CORBA Dynamic Invocation Interface (DII). This interface provides the ability to call methods 
on CORBA objects without specific object information during system implementation. When a 
method is called on an IDL CORBA proxy object, the following procedure takes place: 

1. IDL determines if the method exists on the target object. 
2. IDL parameters are packaged as CORBA Any variables.  
3. The method call is dispatched to CORBA using the functionality provided by the DII 

system.  
4. Upon return from the method call, any output values are retrieved, converted back into 

IDL variables and control is return to IDL.  
These conversions were implemented by Tech-X and comprised the biggest part of the bridge 
implementation. 
 

Running CORBA Servers 
In order to access CORBA objects, one needs to instantiate the ORB and the objects themselves.  
An example can be found in server_cpp directory: files serverIOR.cxx and serverNS.cxx.  The 



   
 

 -8- 

difference between these server executables is that the CORBA object publishes its reference 
differently.   
In the first case (serverIOR.cxx), the ORB creates an IOR (Interoperable Object Reference), 
which encapsulate the server port number, its IP address, transport and protocol used and the 
name of the object.  In our example, this IOR is written to a file Demo.ref.  This file should be 
available to the client.  If one needs to access many CORBA objects, using IOR is not practical.  
It makes more sense to register all objects with one process and access them through this process 
using objects names.  This is achieved by using the CORBA Naming Service (see serverNS.cxx).  
In case of TAO, one can start it by the following command: 
In the second case, the CORBA object registers itself with the Naming Service, which allows 
obtaining objects references from this service by objects names.  In order to use Naming Service, 
one needs to start it by starting the daemon before starting the server process.  For example: 

/usr/local/ACE+TAO/TAO/orbsvcs/Naming_Service/Naming_Service -ORBEndpoint 
iiop://̀ uname -ǹ :50065/ & 

where 50065 is the Naming Service port number. 
The bridge extensively uses Dynamic Invocation Interface (DII) for extracting knowledge about 
an OMG-IDL interface.  In order to register interfaces, one needs to start the Interface 
Repository and populate it with .idl files.  In case of TAO, this is done as follows: 

/usr/local/ACE+TAO/TAO/orbsvcs/IFR_Service/IFR_Service -ORBEndPoint iiop://̀ uname -
ǹ :50063 & 
/usr/local/ACE+TAO/TAO/orbsvcs/IFR_Service/tao_ifr -ORBInitRef 
InterfaceRepository=corbaloc:iiop:̀ uname -ǹ :50063/InterfaceRepository  Demo.idl & 

 

where 50063 is the port number of the repository process. 
After all the needed processes (the Interface Repository for both cases and the Naming Service 
for the second case) are started, one then can run executables serverIOR and serverNS, 
respectively.  
All the steps described above are collected in two shell scripts: run_serverIOR.sh and 
run_serverNS.sh.  One should edit them to change the default port numbers and names of .idl 
files used.  Note that these numbers as well as the server IP name should be available to the 
client code. 

Running IDL Clients 
IDL client can access server objects (after servers are started as described above) via proxy IDL 
objects.  These objects are created with the OBJ_NEW function with a specific CORBA token.  
This token makes sure that when a function or procedure is called using the proxy object, all 
methods are delegated to the bridge.  The bridge parses the object name and the method 
signature, converts IDL variables into CORBA variables, creates a Dynamic CORBA request 
and sends the request to the servant object.  When the request returns, the bridge converts 
CORBA variables back into IDL variables and makes them (including the return value) available 
to the IDL application.  The OBJ_DESTROY destroys the proxy object and releases resources 
associated with CORBA.  
 
Corresponding to the two types of the servers, there can be two kinds of IDL clients: using IOR 
and the Naming Service.  Examples are given by idl_clientIOR.idl and idl_clientNS.idl in the 



   
 

 -9- 

client_idl directory.  They use correspondingly serverIOR and serverNS processes.  Note, that 
idl_clientIOR.idl counts on Demo.ref file, containing IOR of the Demo object, to be in the same 
directory.  One can run getIOR.sh script to get the file (edit according to where Demo.ref file 
was generated) or modify idl_clientIOR.pro to refer to correct location of this file.  Also, note 
that the client code uses DLM’s which are located in the idl_corba_bridge directory, but the 
make process should have created a link to the required shared library (idl_objbridge_corba.so) 
in the client_idl directory. 
 
To run idl_clientIIOR, one needs to pass information about the Interface Repository.  For 
example, if the repository is running on quad.txcorp.com on port 50063, one needs to do the 
following: 

IDL> .r idl_clientIOR 

% Compiled module: IDL_CLIENT_IOR. 

IDL> idl_clientIOR, "quad.txcorp.com:50063" 
To run the client using the Naming Service, one needs to pass information about this process too: 

IDL> .r idl_clientNS 

% Compiled module: IDL_CLIENTNS. 

IDL> idl_clientNS, "quad.txcorp.com:50063", "quad.txcorp.com:50065" 

where the processes port numbers should correspond to numbers used in the server scripts 
run_serverIOR.sh and run_serverNS.sh.  If everything is OK, you will see the following output: 

doDouble 

f should be 3, it is        3.0000000 

x should be 1, it is        1.0000000 

y should be 3, it is        3.0000000 

z should be 3., is is        3.0000000 

doLong 

f should be 2, it is            2 

x should be 1, it is            1 

y should be 4, it is            4 

z should be 2, is is            2 

doFloat 

f should be 6, it is       6.00000 

x should be 3, it is       3.00000 

y should be 9, it is       9.00000 

z should be 6, is is       6.00000 

doShort 

f should be -4, it is       -4 

x should be -3, it is       -3 



   
 

 -10- 

y should be -5, it is       -5 

z should be -4, is is       -4 

doUShort 

f should be 3, it is        3 

x should be 3, it is        3 

y should be 5, it is        5 

z should be 4, is is        4 

doULong 

f should be 4, it is            4 

x should be 3, it is            3 

y should be 6, it is            6 

z should be 4, is is            4 

doString 

f should be hello, it is hello 

s1 should be hello, it is hello 

s2 should be hello, it is hello 

s3 should be hihihi, is is hihihi 

doVoidParam 

f should be 2, it is            2 

doReturnVoid 

q should be 2, it is            2 

doOctet 

f should be B, it is B 

o1 should be A, it is A 

o2 should be B, it is B 

o3 should be C, is is C 

fa should be [4, 1, 5], it is           4           1           5 

la1 shoudl be [4, 1, 5], it is           4           1           5 

la2 should be [5, 2, 6], it is           5           2           6 

la3 shoudl be [14, 2, 6], it is          14           2           6 
 

CORBA-IDL Bridge 

Architecture Overview 
Similarly to our approach in implementing the IDL-CORBA bridge, we decided to use Dynamic 
CORBA for the CORBA-IDL bridge design, namely the Dynamic Skeleton Interface (DSI).  



   
 

 -11- 

This approach allows disengaging the server implementation from the OMG-IDL interfaces and 
skeletons generated from them by CORBA compilers.   

Client

DSI

C++  Server
Implementation

Callable IDL

 
Figure 2.  High-level architecture of the CORBA-IDL bridge. 

 
In this approach the DSI servant plays the role of adapter: it receives CORBA invocations from 
the CORBA client, translates them into dynamic language of a C++ dynamic server, which  is 
implemented to use Callable IDL, thus delegating the work to IDL objects.  

 
Several C++ classes were created to implement this architecture.  Class 
TxRsiCorbaObjectsBridge is the DSI servant, which is created by the server main program and is 
derived from the DynamicImplementation class.  This object starts a single IDL process, 
represented by a singleton TxCallableIDL class, whose constructor calls IDL_INIT and who 
creates IDL objects registered with the bridge.  It also creates a TxRsiObject, which represents 
the information obtained via interaction with the Interface Repository: practically a list of 
TxOperations of each interface, thus representing remote IDL objects in the bridge. 
 
The main task of DSI implementation is to implement the invoke() method of the servant (here 
TxTsiCorbaObjectsBridge).  The following things happen in our implementation of this function.  
First, the identity of the requested object is determined and checked with the objects available in 
the registered list.  The name of the operation is determined next.  This allows us to find the list 
of parameters of the operation, create an NVList and package the request object with correct 
arguments.  After that the action is passed to the TxRsiObject’s handleOperation() function.  



   
 

 -12- 

This function tells the correct operation to handle itself: which results in building a correct string 
and data structures needed for Callable IDL.  After that the static singleton TxCallableIDL takes 
the description string and data structures and finish the work. 
 

Installing CORBA-IDL Bridge 
CORBA-IDL bridge is distributed in a file called “corbaidl.tar.gz”.  Please refer to “Installation 
of the Bridge” section of IDL-CORBA bridge for details instructions on how to unpack, 
configure, and build the CORBA-IDL bridge.  Unpacking the distribution will create the 
following major subdirectories: 

• corba_idl_bridge is the main directory containing the libraries for the bridge 
between CORBA clients and IDL implemnetation. 

• server_idl contains the generic the C++ server code for IDL objects and scripts to 
start up the IFR service.  

• client_cpp contains an examples CORBA client for invoking an IDL object. 
 

Preparing IDL Objects for CORBA Clients 
Files containing RSI IDL object implementation should be named according to IDL convention.  
For example, our Demo object is defined by the file "Demo__define.pro".   Once you have the 
IDL object implementation ready, you need to decide what functions/procedures of  
the object need to expose to CORBA client, you need to define the interface for CORBA client 
using the CORBA interface definition language (CORBA IDL.)  An example CORBA interface 
definition is available in client_cpp/Demo.idl.   

A few hints to keep in mind when creating the CORBA interface defintions: 
• IDL functions have return values while procedures have not.  Map IDL procedures to 

CORBA functions with void return type. 
• Be careful to assign argument passing direction (in, out and inout).   
• Many RSI IDL functions can be used with many different data types (e.g., integer, 

double, array of integers and array of doubles) safely without modification.  However, 
functions defined in CORBA interface can only be used with specific types.  You will 
need to create adapter RSI IDL functions with different names if you wish to use the 
same function with different data types. 

 

Running the Bridging Server: 
First you need to  

cd server_idl 
 

In order to support arbitrary CORBA interfaces in a single server, the server needs to query the 
CORBA Interface Repository to acquire the definition of the CORBA interface during execution.  
Therefore, before running the server, we need to have the Interface Repository running and 



   
 

 -13- 

initialize with all the interface definitions the server may need to serve.  The start_ifr.sh 
shell script under the server_cpp subdirectory shows how to start up the TAO Interface 
Repository service and how to feed the repository with the client side CORBA interface 
definition.  start_ifr.sh also shows how to feed the example Demo.idl defined under 
client_cpp subdirectory to the Interface Repository.  Notice that you may need to update the path 
inside the script about where TAO's interface repository service program can be located. 
Once the Interface Repository is started, you can start the server as shown in run_server.sh 
shell script.  By default, the server implementation will be initialized to service the "Demo" 
object defined in this directory.  The generated IOR key that identify the object will be written to 
a file called "Demo.ref" which the client will use to get access to the RSI IDL object.  Users can 
override:  

• The name of the RSI IDL object to be served in this server by using the -i <name> 
command line flag.  Notice that there must be a corresponding 
<name>__define.pro available. 

• The name of the file the IOR will be written to by using the -o <ior filename> 
command line flag. 

 

Running the Client 
This client_cpp subdirectory contains an example of how to invoke functions defined in an 
RSI IDL objects.  Usually, the IDL object developers define the CORBA interface clients can 
access the object.  The Demo.idl file provides one such example interface definition for the 
example IDL object defined in the ../server_idl/ subdirectory.  
After starting up the server in ../server_idl/ subdirectory, you can start up the client as: 
 

        $ ./client -k file://../server_idl/Demo.ref 
 

The only command line flag -k is used to passed in the Interoperable Object Refernce 
(IOR) that uniquely identify the instance of RSI IDL object the client should contact.   
 

TaskDL 

Overview 
 
The goal of TaskDL (http://grid.txcorp.com/taskdl/index.jsp) is to provide an environment to 
easily set up and run IDL applications on parallel, distributed grid-like WAN resources for faster 
and more efficient execution. TaskDL is an effective tool for increasing performance when the 
underlying parallelized tasks require no communication with each other. 
 
 For instance, rendering frames for a movie or processing spatial data from a series of time slices 
represent problems, which are parallelizable in a task-farm paradigm such as TaskDL. The 
TaskDL Task Manager sets up a farm of parallel host workers which process tasks 



   
 

 -14- 

independently, achieving excellent speed-up as a function of number of worker nodes. TaskDL 
provides a simple user interface and requires very little refactoring of existing serial code.  
TaskDL is a component of the FastDL umbrella of products. For more information, contact 
info@txcorp.com. 

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

 

 Status of the TaskDL 
 
A user may federate IDL hosts without installing the TaskDL software on each of them. TaskDL 
requires that the host workers have a common NFS space with each other and the session 
manager host so that all processors can access the same data, log, and session directories (the 
tuple space). The cluster of IDL worker hosts must each have a licensed installation of IDL. 
 
 The manager application starts the host workers with SSH. TaskDL supports up to two separate 
connections to each worker node in case worker hosts have dual processors. Coordination 
between the manager application and host workers is done only through the tuple space 
populated with work tickets. 



   
 

 -15- 

Tuple Space 
 
The concept of a Tuple Space has been developed as an underlying paradigm for distributed and 
parallel computing using shared memory. A tuple is a vector of values, which describe an object, 
such as a data file, resource, process or protocol. Distributed processors can discover work to be 
done by looking for structured XML task tickets in the Tuple Space, and can communicate with 
each other by moving tuples within the space, removing tuples from the space altogether, and 
writing new tuples into the space. See  xml.coverpages.org/tupleSpaces.html for some examples 
of how Tuple Spaces have been developed for distributed and parallel programming 
 
The tuple space used by TaskDL is a filesystem containing a collection of work tickets, log files, 
and data files accessible by the worker nodes. Work tickets are tuples containing XML tagged 
descriptors of data, IDL procedure names, which will process the data, and the locations of data 
and IDL code needed to complete the parallel task. The tuple space is implemented by creating 
task tickets in XML and moving them between directories that denote their status. The manager 
creates task tickets and puts them into a to-do directory. When a worker picks up a task, it 
moves the ticket to a work-in-progress directory, examines the XML to see how to do 
the work, and processes the input data by running the IDL procedures specified in the task ticket. 
File system locks provide synchronization between workers so that they don't try to process the 
same task. When the worker is done with a particular task, the ticket is moved to a done 
directory and the to-do directory is re-examined for more work tickets. The status of the tasks 
and the workers are written to log files and updated in the TaskDL application GUI. When the 
list of tasks in the to-do directory is exhausted, the workers exit IDL. The last remaining 
worker processes the serial finalization task (if there is one) and then exits IDL. 
 
If a task can not be completed for some reason, such as a worker node failure, an unavailable 
IDL license, or a corrupted input data file, the user has the ability to manually re-queue the task 
so that a different worker can pick up the ticket and complete the task. Once the manager 
application has started the workers, they operate independently, and the manager application can 
be stopped without affecting the progress of the task farm. At some later time, the user may 
reconnect to an existing session and determine the progress of the tasks. The reconnection may 
be made to tasks that are still actively being processed as well as completed tasks. 
 
An example of how the TaskDL system works is creating a movie from a large set of time-sliced 
two-dimensional data. In a movie farm, data.xml tickets represent the data and IDL code 
which will produce individual frames of the movie through some image analysis and production 
procedure, creating image files (such as PNG). The finalization step would combine the resulting 
images into a movie file, such as MPEG. The worker nodes will process individual frames in a 
parallel manner, as there is no dependencies between the frames. The finalization procedure can 
not be processed until all of the frames have been produced, and must be done in serial. 
 
 Below is an outline of how the tuple space is implemented in TaskDL. Not shown are the data 
and code tuple spaces. Task tickets are moved to directories, which represent the state of the 



   
 

 -16- 

task. In addition, log files are maintained and are used by the manager to display the session 
status in the GUI. 
 
  
 
  
 
  

Task Tickets 
 
The XML describing a task ticket is fairly basic. Below is an example ticket, showing the paths 
to the data and parallel procedure to be run by the workers are given. The XML task tickets are 
generated by the manager application when the session is started. They are parsed by the IDL 
workers. The function calls to the parallel work procedures in IDL with the correct input data 
files for each task are generated using the parsed XML variables. 

 

 <task> 

 <task_id>task1</task_id> 

 <data_loc_array> 

 <data_loc>/Users/veitzer/data/d1.dat</data_loc> 

 <data_loc>/Users/veitzer/data/d2.dat</data_loc> 

 </data_loc_array> 

 <pro_loc>/Users/veitzer/mycode/plex.pro</pro_loc> 

 <procedure>plex</procedure> 

 </task> 
 
  
 

Directory Structure 
 
The directories generated by TaskDL implement the tuple space, which must be cross-mounted 
on the manager host and all worker nodes. The session_<SESSION-ID> active directory is 
automatically created based on the system time when a session is configured and executed within 
the GUI. When all work for the session is completed, the entire session directory name is 
changed, indicating not only the time that the session began, but also the time when the session 
was completed and the final state of the session (completed or completed-with-failures). The 
tuple space for a given session is under the session directory tree. Note that the input, output, and 
user-provided code directories must exist outside of the session directory because they persist 
independently of the session being run. 
 

 /shared 

   /examples 



   
 

 -17- 

     /movie 

       /code 

         create_png.pro 

         create_mpeg.pro 

       /input 

         *.dat 

       /output 

         *.png 

         movie.mpeg 

     /montecarlo 

       /code 

         calcpi.pro 

         average.pro 

       /input 

         pi_*.in 

       /output 

         pi_*.out 

   /txcode 

     catch_idl_lm_error.pro 

     drop_ticket.pro 

     parse_file.pro 

     task_parser__define.pro 

     worker.pro 

   /session_<SESSION-ID>.active 

     /todo 

       task*.xml 

     /wip 

       task*.xml 

     /done 

       task*.xml 

     /state 

       manager.state 

       manager.tasks 

       manager.workers 

       host*.state 

     /logs 



   
 

 -18- 

       host*.stderr 

       host*.stdout 
 
 
For more general problems, the user will define their own cross-mounted input, output, and IDL 
code tuple space to be used instead of the examples. These directories can be specified  in the 
GUI. 
 

      /input_data 

        *.dat 

      /output_data 

        *.out 

      /user_code 

        unit.pro 

        final.pro 
  
 

Graphical User Interface Description 
 
This section describes TaskDL's user interface. When the TaskDL application is started, the 
TaskDL Task Manager GUI is brought up with the last configuration loaded. The Manager 
provides information about the current session, such as the status of worker nodes and tasks, 
output from the IDL workers, progress of the session, and the general configuration of the tuple 
space. The Manager also provides session control through buttons which allow the user to create 
a new configuration, load/save configurations, execute a session with the current configuration, 
reconnect to a previously executed session, check the status of host workers and possibly 
requeue their tasks, and quit the application. Note that once a session is started, it runs 
independently on the remote worker nodes, whether or not the Manager is connected to the 
session. 
 

 Session Control 
 
This panel contains information about the Manager and the session timing, as well as buttons 
which control the session and the GUI. This control is opened when the application starts. 
 •  Displayed Information 

 Manager Host - The name of the host machine which is running the session manager and 
hence the GUI itself. 

        Note: The manager host must be cross-mounted with all of the worker nodes. 
 
 

 Session Started - Displays the date and time that a session is first executed. 
 



   
 

 -19- 

 
 Session Ended - Displays the date and time that a session finishes. 

 
 
 •  Buttons 

• Execute - This button begins execution of a session using the current session 
configuration (see Session Configuration below). Pressing the EXECUTE button starts a 
number of processes behind the scenes, such as creating session-specific directories and 
files, generating xml descriptions of tasks to be processed, generates IDL batch files and 
shell scripts, and writing state and configuration files. The EXECUTE button also 
establishes ssh connections to the worker nodes. 

 
 

• Reconnect - This button allows the manager to reconnect to a session, which was 
previously started. Once the manager has made ssh connections to the worker nodes and 
started the IDL processes, the workers act independently without any control from the 
manager. The manager reports the progress of the workers in the GUI, but may be 
stopped without affecting the worker progress. If the manager is restarted at a later time, 
using the RECONNECT button allows the manager to catch up with the progress of the 
workers and display the current state of the session in the GUI. It is possible to reconnect 
to both active sessions (where work is still being done) and also to completed sessions 
(where all work has ceased.) 

 
 

• Worker Status - In the event that a worker fails while executing a task, it may be 
necessary to manually rqueue that task so that it may be processed by another worker. 
The WORKER STATUS button provides an interface for the user to get detailed 
information on the status of a given worker. Choosing the WORKER STATUS button 
first determines the last reported state of the worker, returning the name and status of the 
worker host, the last task that the worker was working on, and the last reported status of 
the task.  If the status of the last task is still active, it may be that the worker has in some 
way failed, and the task is not going to be completed. In this case the manager prompts 
the user to reconnect to the worker host via a new ssh connection, and check to see if the 
IDL process is still running on the worker. If either the ssh connection can not be made, 
or if the IDL process is not longer in the process table, the user may requeue the task so 
that a different worker may process the task at a later time. If the user chooses to requeue 
a task, it is assumed that the worker host is dead and will not process any further tasks. 

 
 

• Quit - Quit the session manager application. Quitting the manager does not affect the 
progress of any of the worker hosts. 

 
 



   
 

 -20- 

Session Configuration 
 
The SESSION CONFIGURATION panel displays the user-defined parameters for the session. 
These parameters may change from session to session, depending on the needs of the user. The 
panel also contains buttons for creating, loading, and saving session configurations. 
 •  Displayed Information 
 ◦  Input Directory - The full path name of the directory, which contains all of the input files. The 

input files are generally data files, which are passed to the user defined IDL procedure which 
is being run in parallel. For example, if the IDL work procedure reads in a set of data files 
called frameXX.dat, where XX = 1,2,..., then those files must be located in the input 
directory. No data is written to the input directory, and no files are edited or removed from the 
input directory. The input directory should only contain data files, which are to be processed, 
ie. no description or readme files. 

 
 
 ◦  Ouput Directory - The full path name of the directory which any generated output files will be 

written to. For example, if the IDL work procedure processes each frame of data from the files 
frameXX.dat and writes out a new data file called resultXX.dat, then those output files will be 
created in the output directory. If the specified output directory does not exist when the 
session is started, it will be  created. 

 
 
 ◦  Work Procedure - The full path name of the IDL .pro file which contains the user-defined 

procedure which is to be run in parallel. Note that this parameter specifies the name of the 
file, not the name of the procedure.  If the file specified here contains more than one valid IDL 
procedure, the user will be prompted to choose the appropriate work procedure. However, all 
IDL procedures and functions in the file specified here are compiled by IDL, so if the parallel 
work procedure makes function calls to other user-defined procedures or functions (such as to 
set up  data structures or initialize variables) they should be put in the same  file as the work 
procedure. The IDL work procedure must conform to a specific signature in terms of inputs to 
the procedure (see section below regarding IDL procedure signatures). Any data files, which 
are passed to the work procedure must be located in the input directory. 

 
 
 ◦  Finalization Procedure - The full path name of the IDL .pro file which contains the user 

defined procedure which is to be run in serial after all of the parallel work has be completed. 
Note that this parameter specifies the name of the file which contains the finalization 
procedure, not the name of the procedure itself. However, it is highly recommended that  the 
name of the file and the name of the procedure be the same. All procedures and functions in 
the specified file are compiled by IDL, but the user will not be prompted to choose the 
procedure, which is to be run as the finalization code. The finalization procedure is useful 
when the user wants to run additional co,de which takes data generated by the parallel work 
procedure as input. For instance, if the work procedure produces output data resultXX.dat, 
and these data files are to be put together (say making a movie from a series of frames) then 



   
 

 -21- 

the finalization procedure can accomplish this by serially processing the data files produced 
by the parallel work processing. Any data files that are used by the finalization procedure 
must be located in the output directory, including files generated by the work procedure. 
There are specific signature requirements for the finalization procedure. See below. It is 
possible to specify that no serial finalization should be performed. If this is the case, then this 
field will display "<none>". 

 
 
 •  Buttons 
 ◦  New Config - The NEW CONFIG button launches a setup wizard which allows the user to  

enter new parameters for running a new session. See the section below on the Setup Wizard 
for detailed documentation. The user should use the NEW CONFIG button to change session 
variables, like the output directory  or the number of worker hosts. 

 
 
 ◦  Load Config - The LOAD CONFIG button loads a configuration, which has been previously 

saved by the user. The user may browse the directory tree to find saved TaskDL configuration 
files. Configuration files have the extension .tdl. 

 
 
 ◦  Save Config - The SAVE CONFIG button saves the current configuration to a user named .tdl 

configuration file. This file may be loaded later on in a different session to restore the current 
session configuration. Note that the SAVE CONFIG button does not save any information 
about the current session, only information about the configuration of the session prior to 
running the session. Information about a running session is automatically saved, and can be 
accessed at a later time by using the RECONNECT button in the Session Control  panel. 

 
TaskDL configurations are saved in two files; a configName.tdl file and a configName.workers 
file. These files are paired, and are both required when restoring a particular configuration. 
TaskDL configuration files contain the following information: 
 ◦  A date stamp indicating when the configuration files were created. 
 ◦  The full path name of the Input Directory. 
◦  The full path name of the Output Directory. 
◦  The full path name of the file which contains the parallel work procedure. 
-  The full path name of the file which contains the serial finalization procedure. 
-  The full path name of the base TaskDL package directory (the location where ant is run). 
 ◦  The username of the user running TaskDL. 
 ◦  The full path name of the user’s ssh known_hosts file (typically ~user/.ssh/known_hosts). 
 ◦  A list of worker host names, including information about which connection is specified (a 

single host can have up to two different ssh connections). 
 ◦  A list of the locations of the IDL binary for each worker host. 
 

Worker Output 
 



   
 

 -22- 

The WORKER OUTPUT panel contains panels with tabs which show informational messages 
from each  IDL process which is running on the worker hosts. The user can switch between 
panes by clicking on the tab corresponding to the worker, which you would like to observe. In 
fact, the workers do not write to the tabs themselves, but rather they redirect their output to 
various log files, which are parsed by threads in the manager. Because of this, the manager can 
be disconnected, and upon reconnection the worker output panes will catch up to the current state 
of each worker. 

Session Status 
The SESSION STATUS panel provides information about the current state of the session. The 
status bar will indicate some of the key aspects of the session status, such as "connecting  to 
workers," and will report the number of tasks completed. As the session finishes, the total 
amount of time to complete the session is also reported in the SESSION STATUS panel. 
 

 Worker Status 
 The WORKER STATUS panel provides information on the status of the host workers. The 
panel  displays a table with rows for each host (including connection indicator), the current status 
of the host, and the Process ID for IDL running on that host. Possible states for the hosts are: 
 •   idle - The manager has not initiated a ssh connection to this host. 
 
 
 •  login cancelled - ssh login to this host was cancelled. The host is not doing any processing. 
 
 
 •  login failed - ssh login to this host failed. The host is not doing any processing. 
 
 
 •  no IDL license - There is a problem with the IDL license manager and IDL can not be run. 

The host is not doing any processing. 
 
 
 •  working - The host is currently running IDL and processing tasks. 
 
 
 •  done - There are no more tasks for the host to process. IDL has finished and exited. 
 

Task Status 
 
The TASK STATUS panel displays information regarding the status of all of the tasks in the 
session. When a new session is executed, the manager creates an XML descriptor of each input 
file, and puts that 'ticket' into the tuple space to be processed by the worker nodes. The manager 
then populates those tickets into the TASK STATUS panel. Note that the name of the task is the 
same as the name of the data file which is to processed. In addition, if there is a finalization task, 
then that is added to the table as well, although there is no XML ticket for finalization 



   
 

 -23- 

procedures. When worker nodes process a task, they move the XML ticket out of the 'todo' tuple 
space into the 'work in progress' space, and eventually move the ticket to the 'done' tuple space. 
In this manner each task is only processed by a single worker. As a worker processes a task, the 
status of the task is updated by the manager, and displayed in the TASK STATUS panel. The 
possible task states are: 
 ◦  queued - The XML ticket for the task in question is in the 'todo' tuple space, waiting to be 

processed by a worker node. 
 
 
 ◦  initiated - The XML ticket for the task in question is in the 'work in progress' tuple space, and 

the worker is currently processing the task in IDL. 
 
 
 ◦  completed - The XML ticket for the task in question is in the 'done' tuple space, and the 

worker has completed the task and written out any output data. 
 
 
 ◦  requeued - A worker initiated the task and then for some reason stopped working on the task. 

The user chose to move the task from the 'work in progress' space back to the 'todo' tuple 
space so that a different worker could process the task at a later time. See the section on the 
WORKER STATUS button in the SESSION CONTROL panel. 

 

IDL Procedure Signatures 
 
TaskDL host workers support only certain specific signatures for the parallel work procedure and 
serial finalization procedure. Namely, the parallel work procedure must take as an input 
argument a single name of a data file to be processed. The parallel work procedure cannot return 
any values, but may directly write out as many output files as is desired. It is discouraged 
behavior to provide absolute path names for any output files, although this is supported. Output 
files will by default be created in the specified output directory, which is required if the 
finalization procedure needs to use these files as input. 
 
The finalization procedure can take no arguments as input parameters. However, the user can put 
in required input files by hardcoding the names of the files or by using built-in IDL functionality 
to do file searching and listing, such as the function FILE_SEARCH, to specify the input files for 
the finalization procedure. See the examples provided with the TaskDL distribution for a simple 
method for doing this. The finalization procedure can not return any values, but may directly 
write out as many output files as is desired by the user. All output files from the finalization 
procedure will be written to the user specified output directory, unless hard-coded paths are 
provided. 
 

The Setup Wizard 
 



   
 

 -24- 

The SETUP WIZARD is a utility that provides a way for the user to specify the parameters of a 
TaskDL session. There are five panels of the SETUP WIZARD, corresponding to all of the 
session parameters. 
1.  INPUT DIRECTORY - Enter the full path name of the directory which contains the input 

data files for the parallel work procedure. This directory should *only* contain input files 
(and possibly other directories). Any regular files in this directory will are assumed to be valid 
input files to the parallel work procedure. Subdirectories are not searched for input files (try 
using soft links if you want to maintain separation of file locations, although this has not been 
tested.) Files in this directory are not moved or modified by TaskDL. The user may use the 
"browse" button to specify the INPUT DIRECTORY location. 

 
2.  PARALLEL IDL PROCEDURE FILE - Enter the full path name of the IDL .pro file, which 

contains the procedure which will work in parallel to process the input files. Note that this 
input parameter specifies the name of the file. which contains the procedure, not the name of 
the procedure, although these may be the same. If there is more than one valid IDL procedure 
in the file, the user will be prompted to specify which procedure is the appropriate one. The 
user may use the "browse" button to specify the PARALLEL IDL PROCEDURE FILE. 

 
3.  FINALIZATION PROCEDURE - Enter the full path name of the IDL .pro file which 

contains the serial finalization procedure. Note that this input parameter specifies the name of 
the file, not the name of the procedure. However, they should be the same, and the user is not 
prompted to specify the name of the procedure. There should only be one valid procedure in 
the specified file. Any other setup procedures and functions should be included in the file, 
which contains the PARALLEL IDL PROCEDURE. The finalization procedure is run after 
all of the parallel work procedures have been finished. Thus the finalization procedure can use 
the output of the parallel procedure as input if necessary. If the user desires to have no 
finalization procedure, enter "none" or "<none>" for this parameter. The user may use the 
"browse" button to specify the FINALIZATION PROCEDURE. 

 
4.  OUTPUT DIRECTORY - Enter the full path name of the directory which will contain the 

output data files for both the parallel and finalization procedures. Any files, which are input 
files for the finalization procedure must also be put in this directory, unless they will be 
generated by the parallel work procedures. If the specified directory does not exist at runtime, 
it will be created. If the directory does exist, files may be overwritten. 

 
5.  WORKER HOST ADDRESSES - Enter the hostnames of the nodes, which will do the 

parallel processing. Fully qualified hostnames may be either entered by typing in the 
appropriate box or by using the pull-down menu. The user may also supply the location of the 
IDL distribution by entering this information in the box labeled IDL PATH. The default 
location is displayed. Once the correct hostname and IDL location is specified, select the 
"ADD HOST" button to add a new worker node to the list. The user may add the same host 
twice. This is useful if the worker node has two processors, for instance. To remove a host 
from the list of workers, select the host to be removed in the table, and click the "REMOVE 
HOST" button. Recall that all worker hosts must be cross-mounted (as is true of the manager 



   
 

 -25- 

host) and that all workers must have a working version of IDL, which can be licensed at 
runtime. The manager does not have to have IDL. The user may add as many worker hosts as 
is desired. The default configuration uses the manager hostname as the single worker host. 

 
 Clicking the "DONE" button will write the entered configuration to a save file and will reset the 
manager GUI with the new information. Note that the user may now click the "SAVE CONFIG" 
button in the SESSION CONFIGURATION panel of the manager GUI to name this 
configuration so that it may be reloaded at a future time. The new configuration is also written as 
the last configuration, and will be automatically loaded the next time the manager is launched. 
 

 Installation 
1.  Prerequisites for the manager 

• SSH. Since the manager communicates with the workers' hosts using SSH, you must 
have a login account on all hosts you plan to use in the farm. 

• Java. A Java virtual machine is required for the manager. Hosts acting as workers do 
not need Java. More info on Java and obtaining a JVM at http://java.sun.com. 

• Ant. The Ant build system is required to build the project from CVS. Information and 
downloads of Ant are available at http://ant.apache.org/. 

2.   Configuring the workers 
• Identify a file system that all workers cross mount. 
• Identify the install path of IDL for each worker.   TaskManager has been tested with 

both IDL 5.6 and 6.0 workers 

Running TaskManager from CVS 
 
1.  Login via "ssh -X" to a host with a file system that all workers cross mount. 
Note: In order for workers to access the work tickets, they must share a common file system. 
2.   Get project from CVS with the command cvs -d :ext:volt.txcorp.com:/projects co taskdl 
3.  Change to the working directory: 
cd taskdl 
4.  Run the Ant configuration tool: 
ant 
 Note: if the 'ant' executable is not in your path, you may need to specify the pathname 

manually. 
5. The TaskDL GUI opens up. The settings from the last session configuration executed are 

loaded into the fields. To run a session with the current settings press the Execute button and 
enter login information as prompted. To change the configuration settings, press the New 
Config button, and follow the instructions in the Setup Wizard. 

 
 


