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1 Introduction

Although nucleons account for nearly all the visible mass in the universe, they have

a complicated structure that is still incompletely understood. The first indication that

nucleons have an internal structure, was the measurement of the proton magnetic moment

by Frisch and Stern (1933) which revealed a large deviation from the value expected

for a point-like Dirac particle. The investigation of the spatial structure of the nucleon,

resulting in the first quantitative measurement of the proton charge radius, was initiated

by the HEPL (Stanford) experiments in the 1950s, for which Hofstadter was awarded

the 1961 Nobel prize. The first indication of a non-zero neutron charge distribution was

obtained by scattering thermal neutrons off atomic electrons. The recent revival of its

experimental study through the operational implementation of novel instrumentation has

instigated a strong theoretical interest.

Nucleon electro-magnetic form factors (EMFFs) are optimally studied through the

exchange of a virtual photon, in elastic electron-nucleon scattering. The momentum

transferred to the nucleon by the virtual photon can be selected to probe different scales

of the nucleon, from integral properties such as the charge radius to scaling properties of

its internal constituents. Polarization instrumentation, polarized beams and targets, and

the measurement of the polarization of the recoiling nucleon have been essential in the

accurate separation of the charge and magnetic form factors and in studies of the elusive

neutron charge form factor.
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2 Theory of Electron Scattering and Form Factor Mea-

surements

The nucleon EMFFs are of fundamental importance for the understanding of the nu-

cleon’s internal structure. Under Lorentz invariance, spatial symmetries and charge con-

servation, the most general form of the electromagnetic current inside a nucleon can be

written as:

Jµ
EM = F1(Q

2)γµ +
κ

2MN
F2(Q

2)iσµνqν , (1)

where F1 denotes the helicity non-flip Dirac form factor, F2 the helicity flip Pauli form

factor, Q2 = −q2, and κ the nucleon anomalous magnetic moment. The remaining

variables are defined in Figure 1. The second term, usually referred to as the Foldy

contribution, carries the information about the nucleon anomalous magnetic moment and

thus is of relativistic origin. It is useful to introduce the isospin form-factor components,

corresponding to the isoscalar (s) and isovector (v) response of the nucleon,

F s
i =

1

2
(F p

i + Fn
i ); F v

i =
1

2
(F p

i − Fn
i ); (i = 1, 2). (2)

q = p - p'

p

P P'
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Figure 1. The Feynman diagram for the scattering of an electron with four-momentum

p = (Ee, ~p) through an angle θe off a nucleon with mass MN and four-momentum P .

In this diagram a single virtual photon with four-momentum q = p − p′ = (ω, ~q) is

exchanged. The four-momenta of the scattered electron and nucleon are p′ = (E′

e, ~p′)
and P ′, respectively.

The form factors can be continued analytically into the complex plane and can be related

in different regions through a dispersion relation of the form

F (t) =
1

π

∫

∞

t0

Im F (t′)

t′ − t
dt′, (3)
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with t = −Q2, t0 = 9(4)M2

π for the isoscalar (isovector) case and Mπ the pion mass. In

the isovector case the minimum t-value is determined by the threshold for the e+e− →
π+π− reaction, in the isovector case the lightest hadronic state involves three pions. In

the positive Q2-region, called spacelike, form factors can be measured through electron

scattering, in the negative Q2-region, called timelike, form factors can only be measured

through the creation or annihilation of a NN̄ -pair.

In the plane wave born approximation the cross section for elastic electron-nucleon scat-

tering can be expressed in the Rosenbluth (1950) formula as:

dσ

dΩ
= σM [(F 2

1 + κ2τF 2
2 ) + 2τ(F1 + κF2)

2 tan2(
θe

2
)], (4)

where τ = Q2/(4M2
N) and σM = (

αQED cos θe/2

2Ee sin2 θe/2
)2

E′

e

Ee
is the Mott cross section for

scattering off a point-like particle, with αQED denoting the fine-structure constant. The

remaining variables are defined in Figure 1. F1 and F2 are now clearly identified as

the Dirac and Pauli form factors. Hofstadter determined the values of F1 and F2 by

measuring the cross section at different scattering angles, but the same value of Q2 and

drawing intersecting ellipses. Hand, Miller and Wilson (1963) expressed eq. 4 in an

alternate form

dσ

dΩ
= σM [

(Gp
E)2 + τ(Gp

M )2

1 + τ
+2τ(Gp

M )2 tan2(
θe

2
)] =

σM

ǫ
[τ(Gp

M )2+ǫ(Gp
E)2](

1

1 + τ
),

(5)

with ǫ = 1/[1 + 2(1 + τ) tan2( θe

2
)] the linear polarization of the virtual photon and

GE(Q2) = F1(Q
2) − τκF2(Q

2); Gp
E(0) = 1; Gn

E(0) = 0;

GM (Q2) = F1(Q
2) + κF2(Q

2); Gp,n
M (0) = µp,n, (6)

with µp,n denoting the magnetic moment of the proton and neutron, respectively. This

equation illustrates that the electric and magnetic Sachs form factors Gp
E and Gp

M can be

separated in a straightforward way by performing cross-section measurements at fixed

Q2 as a function of ǫ, over a range of (θe,Ee) combinations. This technique has become

somewhat erroneously known as the Rosenbluth separation technique. In the Breit frame,

which for elastic scattering is equivalent to the electron-nucleon centre-of-mass frame,

the Sachs form factors can be identified with the Fourier transform of the nucleon charge

and magnetization density distributions. In this frame the incoming electron has momen-

tum ~p = +~q/2 and hits a nucleon which has equal but opposite momentum ~P = −~q/2.

The exchanged photon carries momentum ~q but no energy. In the Breit frame the elec-

tromagnetic current of the proton simplifies into the following expression

Jµ
EM = e{GE + (~σ × ~q)GM}. (7)

Through the mid-1990s practically all available proton EMFF data had been col-

lected using the Rosenbluth separation technique. This experimental procedure requires
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Figure 2. The ratio µpG
p
E/Gp

M from Rosenbluth separation. Data are from References

(Janssens et al. 1966, Bartel et al. 1966, Litt et al. 1970, Berger et al. 1971, Walker et al.

1994 and Andivahis et al. 1994). The errors shown in all figures are the quadratic sum

of the statistical and systematic contributions.

an accurate knowledge of the electron energy and the total luminosity. In addition, be-

cause the Gp
M contribution to the elastic cross section is weighted with Q2, data on

Gp
E suffer from increasing systematic uncertainties with increasing Q2-values. The

then available world data set (Bosted et al. 1995) was compared to the so-called dipole

parametrization GD , which corresponds to two poles with opposite sign close to each

other in the time-like region. In coordinate space GD corresponds to exponentially de-

creasing radial charge and magnetization densities, albeit with a non-physical disconti-

nuity at the origin:

GD =

(

Λ2

Λ2 + Q2

)2

with Λ = 0.84 GeV and Q in GeV. (8)

For Gp
E , Gp

M/µp and Gn
M/µn the available data agreed to within 20% with the

dipole parametrization. Both the Gp
E and the Gp

M/µp data could be fitted adequately

with an identical parametrization. However, the limitation of the Rosenbluth separation

was evident from the fact that different data sets for µpG
p
E/Gp

M scattered by up to 50%

at Q2-values larger than 1 GeV2 (Figure 2). Although no fundamental reason has been

found for the success of the dipole parametrization, it is still used as a base line for

comparison of data because it removes the largest variation with Q2 and enables small

differences to be seen.



Nucleon Electromagnetic Form Factors 5
3 Instrumentation for Form Factor Measurements

More than 40 years ago Akhiezer et al. (1958) (followed 20 years later by Arnold et al.

(1981)) showed that the accuracy of nucleon charge form-factor measurements could be

increased significantly by scattering polarized electrons off a polarized target (or equiv-

alently by measuring the polarization of the recoiling proton). However, it took several

decades before technology had sufficiently advanced to make the first of such measure-

ments feasible and only in the past few years has a large number of new data with a

significantly improved accuracy become available. The next few sections introduce the

various techniques. The figure of merit for different polarization techniques is defined as

the product of the luminosity, the square of the degree of polarization or analyzing power

and the efficiency. For Gp
E measurements the highest figure of merit at Q2-values larger

than a few GeV2 is obtained with a focal plane polarimeter. Here, the Jacobian focusing

of the recoiling proton kinematics allows one to couple a standard magnetic spectrometer

for the proton detection to a large-acceptance non-magnetic detector for the detection of

the scattered electron. For studies of Gn
E one needs to use a magnetic spectrometer to

detect the scattered electron in order to cleanly identify the reaction channel. As a con-

sequence, the figure of merit of a polarized
→

3He target is comparable to that of a neutron

polarimeter.

3.1 Polarized Beam

Various techniques are available to produce polarized electron beams, but photo-emission

from GaAs has until now proven to be optimal (Aulenbacher 2002). A thin layer of GaAs

is illuminated by a circularly polarized laser beam of high intensity, which preferentially

excites electrons of one helicity state to the conductance band through optical pumping.

The helicity sign of the laser beam can be flipped at a rate of tens of Hertz by changing the

high voltage on a Pockels cell. The polarized electrons that diffuse to the photocathode

surface are then extracted by a 50-100 kV potential. An ultra-high vacuum environment

is required to minimize surface degradation of the GaAs crystal by backstreaming ions.

Initially, the use of bulk GaAs limited the maximum polarization to 50% because of the

degeneracy of the P3/2 sublevels. This degeneracy is removed by introducing a strain in a

thin layer of GaAs deposited onto a thicker layer with a slightly different lattice spacing.

Although such strained GaAs cathodes have a significantly lower quantum efficiency than

bulk GaAs cathodes, this has been compensated by the development of high-intensity

diode or Ti-sapphire lasers. Polarized electron beams are now reliably available with a

polarization close to 80% at currents of ≥ 100 µA.

The polarized electrons extracted from the GaAs surface are first pre-accelerated and

longitudinally bunched and then injected into an accelerator. Typically, the polarization

vector of the electrons is manipulated in a Wien filter, a system of crossed magnetic and

electric fields and magnetic quadrupole lenses, so that the electrons are fully longitudi-

nally polarized at the target. If the beam is injected into a storage ring for use with an

internal target, a Siberian snake (Derbenev and Kondratenko 1973) is needed to compen-

sate for the precession of the polarization.

Three processes are used to measure the beam polarization: Mott (Steigerwald 2001)
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scattering, Møller (Hauger et al. 2001) scattering or Compton (Baylac et al. 2001) scat-

tering. Any of these results in a polarimeter with an accuracy approaching 1%. In a Mott

polarimeter the beam helicity asymmetry is measured in scattering polarized electrons

off atomic nuclei. This technique is limited to electron energies below ∼ 20 MeV and

multiple scattering effects have to be estimated by taking measurements at different target

foil thicknesses. In a Møller polarimeter polarized electrons are scattered off polarized

atomic electrons in a magnetized iron foil. In this technique the major uncertainties are in

the corrections for atomic screening and in the foil magnetization, unless the polarizing

field is strong enough to fully saturate the magnetization. A potentially superior alterna-

tive (Chudakov and Luppov 2004) has been proposed in which the electrons are scattered

off a sample of atomic hydrogen, polarized to a very high degree in an atomic beam, and

trapped in a superconducting solenoid. Finally, in a Compton polarimeter the beam he-

licity asymmetry is measured in scattering polarized electrons off an intense beam of

circularly polarized light, produced by trapping a laser beam in a high-finesse Fabry-

Perot cavity. The electron beam in a storage ring is sufficiently intense that a laser beam

can be directly scattered off the electron beam without the use of an amplifying cavity.

Only the last two methods, the atomic hydrogen Møller and the Compton polarimeter,

have no effect on the quality of the electron beam and thus can be used continuously

during an experiment.

3.2 Polarized Targets

In polarized targets for protons two different techniques are used, depending on the in-

tensity of the electron beam. In storage rings where the circulating beam can have an

intensity of 100 mA or more, but the material interfering with the beam has to be min-

imized, gaseous targets are used, whereas in external targets solid targets can be used.

Because free neutrons are not available in sufficient quantity, effective targets, such as

deuterium or 3He, are necessary, and the techniques used to polarize the deuteron are

similar to those used for the proton. For 3He gaseous targets are used both in internal and

external targets.

Solid polarized targets that can withstand electron beams with an intensity of up

to 100 nA all use the dynamic nuclear polarization technique (Crabb et al. 1995). A

hydrogenous compound, such as NH3 or LiD, is doped, e.g. by radiation damage, with a

small concentration of free radicals. Because the occupation of the magnetic substates in

the radicals follows the Boltzmann distribution, the free electrons are polarized to more

than 99% in a ∼ 5 T magnetic field and at a ∼ 1 K temperature (see Figure 3). A

radiofrequency (RF) field is then applied to induce transitions to states with a preferred

orientation of the nuclear spin. Because the relaxation time of the electrons is much

shorter than that of the nuclei, polarized nuclei are accumulated. This technique has

been successful in numerous deep-inelastic lepton scattering and nucleon form-factor

experiments; it has provided polarized hydrogen or deuterium targets with an average

polarization of ∼ 80% or ∼ 30%, respectively.

Internal hydrogen/deuterium targets (Steffens and Haeberli 2003) are polarized by

the atomic beam source (ABS) technique, which relies on Stern-Gerlach separation and

RF transitions (see Figure 4). First, a beam of atoms is produced in an RF dissociator

through a nozzle cooled with liquid nitrogen. Then, atoms with different electron spin
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Figure 3. Lay-out of a polarized hydrogen/deuterium target using the dynamic nuclear

polarization technique.

direction are separated through a series of permanent (or superconducting) sextupole

magnets and transitions between different hyperfine states are induced by a variety of

RF units (MFT/SFT/WFT). The result is a highly polarized beam with a flux up to 1017

atoms/s. This beam is then fed into an open-ended storage cell, which is cooled and

coated to minimize recombination of the atoms bouncing off the cell walls. The circu-

lating electron beam, passing through the long axis of the storage cell, encounters only

the flowing atoms. The polarization vector is oriented with a set of coils, producing a

field of ∼ 0.3 T in order to minimize depolarization by the RF structure of the circu-

lating electron beam. The diameter of the storage cell is determined by the halo of the

electron beam. A target thickness of 2 × 1014 nuclei/cm2 has been obtained at a vector

polarization of more than 80%.

Polarized hydrogen or deuterium atoms can also be produced by spin-exchange colli-

sions between such atoms and a small admixture of alkali atoms that have been polarized

by optical pumping. The nucleus is then polarized in spin-temperature equilibrium. Al-

though the nuclear polarization obtained in such a laser driven source (LDS) is smaller
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Figure 4. Lay-out of an Atomic Beam Source target for polarized hydrogen/deuterium.

than through the ABS technique, the flux can be more than 1018 atoms/s. Moreover, an

LDS offers a more compact design than an ABS. A figure of merit comparable to that

of the ABS at the HERMES experiment has recently been achieved by the MIT group

(Clasie et al. 2003).

Polarized 3He is attractive as an effective polarized neutron target because its ground

state is dominated by a spatially symmetric s-state in which the proton spins cancel, so

that the spin of the 3He nucleus is mainly determined by that of the neutron. Corrections

for the (small) d-state component and for charge-exchange contributions from the pro-

tons can be calculated accurately at Q2-values smaller than 0.5 GeV2(Golak et al. 2001)

and larger than ∼ 2 GeV2(Sargsian 2001). Direct optical pumping of 3He atoms is not

possible because of the energy difference between the ground state and the first excited

state. Instead 3He is polarized, either by first exciting the atoms to a metastable 23S1

state and optically pumping that state, which then transfers its polarization to the ground

state by metastability-exchange collisions, or by optically pumping a small admixture of

rubidium atoms, which then transfer their polarization to the 3He atoms through spin-

exchange collisions (see Figure 5). In internal targets only the metastability-exchange

technique has been used because of the possible detrimental effects of the rubidium ad-

mixture on the storage ring environment. With beam on target, polarization values of
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Figure 5. Lay-out of a polarized 3He target using the spin-exchange technique.

up to 46% at target thicknesses of 1 × 1015 nuclei/cm2 have been obtained. For exter-

nal targets the spin-exchange technique (Alcorn et al. 2004) has been used to optically

pump a glass target cell filled with 10 atm of 3He with a 0.1% rubidium admixture. After

the spin-exchange collisions the polarized 3He diffuses into a 25 cm long cell which the

electron beam traverses. Polarizations in excess of 40% have been reached with beam

on target. A pair of 5 mT Helmholz coils is used to orient the polarization vector, and

care must be taken to minimize depolarizing magnetic field gradients. Alternatively, the

metastability technique (Surkau et al. 1997) has been used to polarize 3He under atmo-

spheric pressure which is then compressed to a density of more than 6 atm.

3.3 Recoil Polarimeters

Focal-plane polarimeters have long been used at proton scattering facilities to measure

the polarization of the scattered proton. In such an instrument (Alcorn et al. 2004) the

azimuthal angular distribution is measured of protons scattered in the focal plane of a

magnetic spectrometer by an analyzer, which often consists of carbon. From this angular

distribution the two polarization components transverse to the proton momentum can be

derived

f(θ, φ) = f0(θ)[1 + P pol
n Ay(θ) cos φ + P pol

t Ay(θ) sin φ]. (9)

To extract the longitudinal polarization component the nucleon’s spin is precessed

with a dipole magnet. The analyzer is preceded by two detectors, most often wire or
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straw chambers, to measure the track of the incident proton; it is followed by two more

detectors to track the scattered particle. The thickness of the analyzer is adjusted to the

proton momentum, limiting multiple scattering while optimizing the figure of merit. In

order to determine the two polarization components in the scattering plane at the target,

care must be taken to accurately calculate on an event-by-event basis the precession of

the proton spin in the magnetic field of the spectrometer.

Neutron polarimeters follow the same basic principle. Here, plastic scintillator mate-

rial is used as an active analyzer, preceded by a veto counter to discard charged particles.

This eliminates the need for the front detectors. Sets of scintillator detectors are used to

measure an up-down asymmetry in the scattered neutrons, which is sensitive to a polar-

ization component in the scattering plane, perpendicular to the neutron momentum. In

modern neutron polarimeters (Ostrick et al. 1999) the analyzer is preceded by a dipole

magnet, with which the neutron spin can be precessed (see Figure 6).

4 Experimental Results

4.1 Proton Electric Form Factor

In elastic electron-proton scattering a longitudinally polarized electron will transfer its

polarization to the recoil proton. In the one-photon exchange approximation the proton

can attain only polarization components in the scattering plane, parallel (Pl) and trans-

verse (Pt) to its momentum. This can immediately be seen from the expression of the

proton current in the Breit frame which separates into components proportional to GE

and GM (see eq. 7). The ratio of the charge and magnetic form factors is directly pro-

portional to the ratio of these polarization components:
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p
E/Gp

M from polarization transfer (Milbrath et al. 1998, Pospis-

chil et al. 2001, Punjabi et al. 2003, Dieterich et al. 2001 and Gayou et al. 2002), com-

pared to recent Rosenbluth data (Qattan et al. 2004 and Christy et al. 2004) and the

reanalysis by Arrington (2003) of older SLAC data.

Gp
E

Gp
M

= −
Pt

Pl

Ee + E′

e

2M
tan(

θe

2
). (10)

The polarization-transfer technique was used for the first time by Milbrath et al.

(1998) at the MIT-Bates facility. The proton form factor ratio was measured at Q2-values

of 0.38 and 0.50 GeV2 by scattering a 580 MeV electron beam polarized to ∼ 30%. A

follow-up measurement was performed at the MAMI facility (Pospischil et al. 2001) at a

Q2-value of 0.4 GeV2.

The greatest impact of the polarization-transfer technique was made by the two re-

cent experiments (Punjabi et al. 2003, Gayou et al. 2002) in Hall A at Jefferson Lab,

which measured the ratio Gp
E/Gp

M in a Q2-range from 0.5 to 5.6 GeV2. Elastic ep
events were selected by detecting electrons and protons in coincidence in the two identi-

cal high-resolution spectrometers. At the four highest Q2-values a lead-glass calorimeter

was used to detect the scattered electrons in order to match the proton angular acceptance.

The polarization of the recoiling proton was determined with a focal-plane polarimeter

in the hadron spectrometer, consisting of two pairs of straw chambers with a carbon or

polyethylene analyzer in between. The data were analyzed in bins of each of the tar-

get coordinates. No dependence on any of these variables was observed (Punjabi et al.

2003). Figure 7 shows the results for the ratio µpG
p
E/Gp

M . The most striking feature of
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the data is the sharp, practically linear decline as Q2 increases:

µp
Gp

E(Q2)

Gp
M (Q2)

= 1 − 0.13(Q2 − 0.29) with Q2 in GeV2. (11)

Since it is known that Gp
M closely follows the dipole parametrization, it follows that

Gp
E falls more rapidly with Q2 than GD. This significant fall-off of the form-factor ra-

tio is in clear disagreement with the results from the Rosenbluth extraction. Arrington

(arrington1) has performed a careful reanalysis of earlier Rosenbluth data. He selected

only experiments in which an adequate ǫ-range was covered with the same detector. The

results (Figure 7) do not show the large scatter seen in Figure 2. Recently, Christy et al.

(2004) analyzed an extensive data set on elastic electron-proton scattering collected in

Hall C at Jefferson Lab as part of experiment E99-119. The results are evidently in good

agreement with Arrington’s reanalysis. Qattan et al. (2004) performed a high-precision

Rosenbluth extraction in Hall A at Jefferson Lab, designed specifically to significantly

reduce the systematic errors compared to earlier Rosenbluth measurements. The main

improvement came from detecting the recoiling protons instead of the scattered electrons,

so that the proton momentum and the cross section remain practically constant when one

varies ǫ at a constant Q2-value. In addition, possible dependences on the beam current

are minimized. Special care was taken in surveying the angular setting of the identical

spectrometer pair. One of the spectrometers was used as a luminosity monitor during an

ǫ scan. Preliminary results segel of this experiment, covering Q2-values from 2.6 to 4.1

GeV2, are in excellent agreement with previous Rosenbluth results. This basically rules

out the possibility that the disagreement between Rosenbluth and polarization-transfer

measurements of the ratio Gp
E/Gp

M is due to an underestimate of ǫ-dependent uncertain-

ties in the Rosenbluth measurements.

4.2 Two-Photon Exchange

In order to resolve the discrepancy between the results for Gp
E/Gp

M from the two ex-

perimental techniques, an ǫ-dependent modification of the cross section is necessary. In

two-(or more-)photon exchanges (TPE) the nucleon undergoes a first virtual photon ex-

change which can lead to an intermediate excited state and then a second one or more,

finally ending back in its ground state (Figure 8). The TPE contributions to elastic elec-

tron scattering have been investigated both experimentally and theoretically for the past

fifty years. In the early days such contributions were called dispersive effects (Offermann

et al. 1991). Lately, they have been relocated to radiative corrections in the so-called box

diagram. Almost all analyses with the Rosenbluth technique have used radiative correc-

tions derived by Mo and Tsai (1969) that only include the infrared divergent parts of the

box diagram (in which one of the two exchanged photons is soft). Thus, terms in which

both photons are hard (and which depend on the hadronic structure) have been ignored.

The most stringent tests of TPE on the nucleon have been carried out by measuring

the ratio of electron and positron elastic scattering off a proton. Corrections due to TPE

will have a different sign in these two reactions. Unfortunately, this (e+e−) data set is

quite limited (Arrington 2004a), only extending (with poor statistics) up to a Q2-value

of ∼ 5 GeV2, whereas at Q2-values larger than ∼ 2 GeV2 basically all data have been

measured at ǫ-values larger than ∼ 0.85. Other tests, also inconclusive, searched for
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non-linearities in the ǫ-dependence or measured the transverse (out-of-plane) polarization

component of the recoiling proton, of which a non-zero value would be a direct measure

of the imaginary part of the TPE amplitude.

Several studies have provided estimates of the size of the ǫ-dependent corrections

necessary to resolve the discrepancy. Because the fall-off of the form-factor ratio is

linear with Q2, and the Rosenbluth formula also shows a linear dependence of the form-

factor ratio (squared) with Q2 through the τ -term, a Q2-independent correction linear in ǫ
would cancel the disagreement. An additional constraint that any ǫ-dependent modifica-

tion must satisfy, is the (e+e−) data set. Guichon and Vanderhaeghen (2003) introduced

a general form of a TPE contribution from the so-called box diagram in radiative cor-

rections into the amplitude for elastic electron-proton scattering. This resulted in the

following modification of the Rosenbluth expression:

dσ ∝ τ + ǫ
G̃E

2

G̃M
2

+ 2ǫ(τ +
G̃E

G̃M

)Y2γ , (12)

where Y2γ = Re νF̃3

M2G̃M
and G̃M , F̃2 and F̃3 are equal to GM , F2 and 0, respectively, in

the Born approximation. Y2γ and the "two-photon" form factors G̃E and G̃M were fitted

(Guichon and Vanderhaeghen 2003) to the Rosenbluth and polarization transfer data sets.

This resulted in a value of ∼ 0.03 for Y2γ with very little ǫ- or Q2-dependence.

Arrington (2004b) performed a fit to the complete data set, investigating two different

modifications to the cross section with a Q2-independent linear ǫ-dependence of 6 %

over the full ǫ-range. Both modifications have the same ǫ-dependence, but one does not

modify the cross section at small values of ǫ, whereas the other leaves the cross section

unchanged at large values of ǫ. He found that the second gave a much better description

of the complete data set. Moreover, it was in good agreement with the data set for the

ratio of electron-proton and positron-proton elastic scattering.

Blunden et al. (2003) carried out the first calculation of the elastic contribution from

TPE effects, albeit with a simple monopole Q2-dependence of the hadronic form factors:

G(Q2) = Λ2/(Q2 + Λ2). They obtained a practically Q2-independent correction factor

with a linear ǫ-dependence that vanishes at forward angles (ǫ = 1). However, the size

of the correction only resolves about half of the discrepancy. A later calculation (W.
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Melnitchouk, private communication) which used a more realistic form factor behavior,

resolved up to 80% of the discrepancy.

A different approach was used by Chen et al. (2004), who related the elastic electron-

nucleon scattering to the scattering off a parton in a nucleon through generalized parton

distributions. TPE effects in the lepton-quark scattering process are calculated in the

hard-scattering amplitudes. The handbag formalism of the generalized parton distribu-

tions is extended in an unfactorized framework in which the x-dependence is retained

in the scattering amplitude. Finally, a valence model is used for the generalized parton

distributions. The results for the TPE contribution nearly reconcile the Rosenbluth and

the polarization-transfer data and retain agreement with positron-scattering data.

Hence, it is becoming more and more likely that TPE processes have to be taken into

account in the analysis of Rosenbluth data and that they will affect polarization-transfer

data only at the few percent level. Of course, further effort is needed to investigate the

model-dependence of the TPE calculations. Experimental confirmation of TPE effects

will be difficult, but certainly should be continued. The most direct test would be a

measurement of the positron-proton and electron-proton scattering cross-section ratio at

small ǫ-values and Q2-values above 2 GeV2. Positron beams available at storage rings

are too low in either energy or intensity, but a measurement in the CLAS detector at

Jefferson Lab, a more promising venue, has been proposed (Brooks et al. 2004). A

measurement of the beam or target single-spin asymmetry normal to the scattering plane,

which directly accesses the imaginary part of the box diagrams, would provide a sensitive

test of TPE calculations. Also, real and virtual Compton scattering data can provide

additional constraints on calculations of TPE effects in elastic scattering. Rosenbluth

analyses have so far been restricted to simple PWBA, Coulomb distortion effects should

certainly be included too. Additional efforts should be extended to studies of TPE effects

in other longitudinal-transverse separations, such as proton knock-out and deep-inelastic

scattering (DIS) experiments.

4.3 Proton Magnetic Form Factor

An extensive data set (Borkowski et al. 1975) with a good accuracy is available up to a

Q2-value of more than 30 GeV2 from unpolarized cross-section measurements (Figure

9). Because Gp
M dominates in a Rosenbluth extraction at larger Q2-values, the Gp

M data

have only a minor sensitivity to the discrepancy between the Rosenbluth extraction and

the polarization-transfer technique. Brash et al. (2002) have shown that the Gp
M data

must be renormalized upwards by ∼ 2% if one assumes the polarization-transfer data to

be correct.

4.4 Neutron Magnetic Form Factor

Early data on Gn
M were extracted from inclusive quasi-elastic scattering off the deuteron.

However, modeling of the deuteron wave function, required to subtract the contribution

from the proton, resulted in sizable systematic uncertainties. A significant break-through

was made by measuring the ratio of quasi-elastic neutron and proton knock-out from

a deuterium target. This method has little sensitivity to nuclear binding effects and to

fluctuations in the luminosity and detector acceptance. The basic set-up used in all such
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Figure 9. The proton magnetic form factor Gp
M , in units of µpGD, as a function of Q2.

Data are from References (Borkowski et al. 1975, Bosted et al. 1990, Sill et al. 1993,

Walker et al. 1994 and Andivahis et al. 1994).

measurements is very similar: the electron is detected in a magnetic spectrometer with

coincident neutron/proton detection in a large scintillator array. The main technical diffi-

culty in such a ratio measurement is the absolute determination of the neutron detection

efficiency. Such measurements have been pioneered for Q2-values smaller than 1 GeV2

at Mainz (Anklin et al. 1994, Anklin et al. 1998, Kubon et al. 2002) and Bonn (Bruins

et al. 1995). The Mainz Gn
M data are 8%-10% lower than those from Bonn, at variance

with the quoted uncertainty of ∼2%. This discrepancy would require a 16%-20% error

in the detector efficiency.

A study of Gn
M at Q2-values up to 5 GeV2 has recently been completed in Hall B by

measuring the neutron/proton quasi-elastic cross-section ratio using the CLAS detector

(Brooks and Vineyard 1994). A hydrogen target was in the beam simultaneously with

the deuterium target. This made it possible to measure the neutron detection efficiency

by tagging neutrons in exclusive reactions on the hydrogen target. Preliminary results

indicate that Gn
M is within 10% of GD over the full Q2-range of the experiment (0.5-4.8

GeV2).

Inclusive quasi-elastic scattering of polarized electrons off a polarized 3He target offers

an alternative method to determine Gn
M through a measurement of the beam asymmetry

(Donnelly and Raskin 1986)
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A = −
(cos θ∗vT ′RT ′ + 2 sin θ∗ cos θ∗vTL′RTL′)

vLRL + vT RT
, (13)

where θ∗ and φ∗ are the polar and azimuthal target spin angles with respect to ~q, Ri

denote various nucleon response functions, and vi the corresponding kinematic factors.

By orienting the target polarization parallel to ~q, one measure RT ′, which in quasi-elastic

kinematics is dominantly sensitive to (Gn
M )2. For the extraction of Gn

M corrections for

the nuclear medium (Golak et al. 2001) are necessary to take into account effects of

final-state interactions and meson-exchange currents. The first such measurement was

carried out at Bates (Gao et al. 1994). Recently, this technique was used to measure Gn
M

in Hall A at Jefferson Lab in a Q2-range from 0.1 to 0.6 GeV2(Xu et al. 2000). This

experiment provided an independent, accurate measurement of Gn
M at Q2-values of 0.1

and 0.2 GeV2, in excellent agreement with the Mainz data. At the higher Q2-values Gn
M

could be extracted (Xu et al. 2003) in plane wave impulse approximation, since final-state

interaction effects are expected to decrease with increasing Q2.
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Figure 10. The neutron magnetic form factor Gn
M , in units of µnGD , as a function of

Q2. Results from
→

3He are indicated by open symbols. Data are from References (Arnold

et al. 1988, Rock et al. 1992, Lung et al. 1993, Markowitz et al. 1993, Anklin et al. 1994,

Bruins et al. 1995, Anklin et al. 1998, Kubon et al. 2002, Gao et al. 1994, Xu et al. 2000

and Xu et al. 2003).

Figure 10 shows the results of all completed Gn
M experiments.
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Figure 11. The neutron electric form factor Gn
E as a function of Q2. Results from

→

3He are

indicated by open symbols. Data are from References (Eden et al. 1994, Passchier et al.

1999, Herberg et al. 1999, Ostrick et al. 1999, Madey et al. 2003, Glazier et al. 2004,

Warren et al. 2004, Jones et al. 1991, Becker et al. 1999, Golak et al. 2001 and Bermuth

et al. 2003). The full curve shows the Galster (1971) parametrization; the dashed curve

represents the Q2-behavior of Gp
E .

4.5 Neutron Electric Form Factor

Analogously to Gn
M , early Gn

E-experiments used (quasi-)elastic scattering off the deuteron

to extract the longitudinal deuteron response function. Due to the smallness of Gn
E , the

use of different nucleon-nucleon potentials resulted in a 100% spread in the resulting

Gn
E values (Platchkov et al. 1990). In the past decade a series of double-polarization

measurements of neutron knock-out from a polarized 2H or 3He target have provided ac-

curate data on Gn
E . The ratio of the beam-target asymmetry with the target polarization

perpendicular and parallel to the momentum transfer is directly proportional to the ratio

of the electric and magnetic form factors,

Gn
E

Gn
M

= −
Px

Pz

Ee + E′

e

2M
tan(

θe

2
), (14)

where Px and Pz denote the polarization component perpendicular and parallel to ~q.

A similar result is obtained with an unpolarized deuteron target when one measures the

polarization of the knocked-out neutron as a function of the angle over which the neutron
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spin is precessed with a dipole magnet:

Gn
E

Gn
M

= − tan(δ)

√

τ(1 + ǫ)

2ǫ
; (15)

here, δ denotes the precession angle where the measured asymmetry is zero.

Again, the first such measurements were carried out at Bates, both with a polarized
→

3He
target and with a neutron polarimeter. Figure 11 shows results obtained through all three

reactions
→

2H(~e, e′n), 2H(~e, e′~n) and
→

3He(~e, e′n). At low Q2-values corrections for nu-

clear medium and rescattering effects can be sizeable: 65% for 2H at 0.15 GeV2 and

50% for 3He at 0.35 GeV2. These corrections are expected to decrease significantly with

increasing Q, although no reliable calculations are presently available for 3He above 0.5

GeV2. There is excellent agreement between the results from the different techniques.

Moreover, medium effects have clearly become negligible at ∼ 0.7 GeV2, even for 3He.

The latest data from Hall C at Jefferson Lab, using either a polarimeter or a polarized

target (Madey et al. 2003, Warren et al. 2004), extend up to Q2 ≈ 1.5 GeV2 with an

overall accuracy of ∼10%, in mutual agreement. From ∼ 1 GeV2 onwards Gn
E appears

to exhibit a Q2-behavior similar to that of Gp
E . Schiavilla and Sick (2001) have extracted

Gn
E from available data on the deuteron quadrupole form factor FC2(Q

2) with a much

smaller sensitivity to the nucleon-nucleon potential than from inclusive (quasi-)elastic

scattering. The 30-years-old Galster parametrization (Galster et al. 1971) continues to

provide a fortuitously good description of the data.

4.6 Timelike Form Factors

In the timelike region EMFF measurements have been made at electron-positron storage

rings or by studying the inverse reaction (only for the proton form factors), antiproton

annihilation on a hydrogen target. The rather limited data set on timelike form factors

is shown in Figure 12. The quality of the data does not allow a separation of the charge

and magnetic form factors; GM has been extracted from the data using the GE-values

calculated by Iachello and Wan (2004). Clearly GD which gives a very good description

of the spacelike magnetic form factors, does not describe the data in the timelike region,

at least from threshold down to -6 GeV2. Iachello and Wan (2004), Hammer et al. (1996)

and Dubnicka et al. (2003) have carried out an analytic continuation of their VMD cal-

culations (section 5). Iachello’s model provides a consistent description of the magnetic

form factors in the timelike region. An extension of the data set in the timelike region and

of theoretical efforts to obtain a consistent description of all EMFFs in both the space-

and timelike regions is highly desirable.

4.7 Experimental Review and Outlook

In recent years highly accurate data on the nucleon EMFFs have become available from

various facilities around the world, made possible by the development of high luminosity

and novel polarization techniques. These have established some general trends in the

Q2-behavior of the four EMFFs. The two magnetic form factors Gp
M and Gn

M are close
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Figure 12. The magnetic form factors (divided by GD) in the time-like region as a func-

tion of Q2, compared to the calculations by Iachello and Wan (2004), Hammer et al.

(1996) and Dubnicka et al. (2003). See Reference (Iachello and Wan 2004) for the refer-

ences to the experimental data.

to identical, following GD to within 10% at least up to 5 GeV2, with a shallow minimum

at ∼ 0.25 GeV2 and crossing GD at ∼ 0.7 GeV2. Gp
E/Gp

M drops linearly with Q2 and

Gn
E appears to drop from ∼ 1 GeV2 onwards at the same rate as Gp

E . Measurements

that extend to higher Q2-values and offer improved accuracy at lower Q2-values, will

become available in the near future. In Hall C at Jefferson Lab Perdrisat et al. (2001)

will extend the measurements of Gp
E/Gp

M to 9 GeV2 with a new polarimeter and large-
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acceptance lead-glass calorimeter. Wojtsekhowski et al. (2002) will measure Gn
E in Hall

A at Q2-values of 2.4 and 3.4 GeV2 using the
→

3He(~e, e′n) reaction with a 100 msr elec-

tron spectrometer. The Bates Large Acceptance Spectrometer Toroid facility (BLAST,

http://www.mitbates.mit.edu) at MIT with a polarized hydrogen and deuteron target in-

ternal to a storage ring will provide highly accurate data on Gp
E and Gn

E in a Q2-range

from 0.1 to 0.8 GeV2. Gao et al. (2001) have shown that the proton charge radius can be

measured with unprecedented precision by measuring the ratio of asymmetries in the two

sectors of the BLAST detector. Thus, within a couple of years Gn
E data with an accuracy

of 10% or better will be available up to a Q2-value of 3.4 GeV2. Once the upgrade to 12

GeV (Cardman et al. 2004) has been implemented at Jefferson Lab, it will be possible to

extend the data set on Gp
E and Gn

M to 14 GeV2 and on Gn
E to 5 GeV2.

The charge and magnetization rms radii are related to the form-factor slope at Q2= 0:

< r2
E >=

∫

ρ(r)r4dr = −6
dG(Q2)

dQ2

∣

∣

∣

∣

Q2=0

< r2
M >=

∫

µ(r)r4dr = −
6

µ

dG(Q2)

dQ2

∣

∣

∣

∣

Q2=0

, (16)

with ρ(r) (µ(r)) denoting the radial charge (magnetization) distribution. Table 1 lists the

results. For an accurate extraction of the radius Sick (2003) has shown that it is necessary

to take into account Coulomb distortion effects and higher moments of the radial distri-

bution. His result for the proton charge radius is in excellent agreement with the most

recent three-loop QED calculation (Melnikov and Van Ritbergen 2000) of the hydrogen

Lamb shift. Within error bars the rms radii for the proton charge and magnetization

distribution and for the neutron magnetization distribution are equal. The value for the

neutron charge radius was obtained (Kopecky et al. 1997) by measuring the transmission

of low-energy neutrons through liquid 208Pb and 209Bi. The Foldy term 3

2

κ
M2

n
= −0.126

fm2 is close to the value of the neutron charge radius. Isgur (1999) showed that the Foldy

term is canceled by a first-order relativistic correction, which implies that the measured

value of the neutron charge radius is indeed dominated by its internal structure.

Table 1. Values for the nucleon charge and magnetization radii

Observable value ± error Reference

< (rp
E)2 >1/2 0.895 ± 0.018 fm (Sick 2003)

< (rp
M )2 >1/2 0.855 ± 0.035 fm (Sick 2003)

< (rn
E)2 > - 0.119 ± 0.003 fm2 (Kopecky et al. 1997)

< (rn
M )2 >1/2 0.87 ± 0.01 fm (Kubon et al. 2002)

In the Breit frame the nucleon form factors can be written as Fourier transforms of their

charge and magnetization distributions. However, if the wavelength of the probe is larger

than the Compton wavelength of the nucleon, i.e. if |Q| ≥ MN , the form factors are not

solely determined by the internal structure of the nucleon. Then, they also contain dy-



Nucleon Electromagnetic Form Factors 21
namical effects due to relativistic boosts and consequently the physical interpretation of

the form factors becomes complicated. Recently, Kelly (2002) has extracted spatial nu-

cleon densities from the available form factor data. He selected a model for the Lorentz

contraction of the Breit frame in which the asymptotic behavior of the form factors con-

formed to perturbative quantum chromo-dynamics (pQCD) scaling at large Q2-values

and expanded the densities in a complete set of radial basis functions, with constraints at

large radii. The neutron and proton magnetization densities are found to be quite simi-

lar, narrower than the proton charge density. He reports a neutron charge density with a

positive core surrounded by a negative surface charge, peaking at just below 1 fm, which

he attributes to a negative pion cloud. Alternatively, he extracts the radial distributions of

the u and d quarks which both show a secondary lobe which he interprets as an indication

of an orbital angular momentum (OAM) component in the quark distributions. Friedrich

and Walcher (2003) observe a bump/dip at Q ≈ 0.5 GeV with a width of ∼ 0.2 GeV,

a feature common to all EMFFs . A fit to all four EMFFs was performed, assuming a

dipole behaviour for the form factors of the constituent quarks and an l = 1 harmonic

oscillator behaviour for that of the pion cloud. They then transformed their results to co-

ordinate space, neglecting the Lorentz boost, where they find that the pion cloud peaks at

a radius of ∼ 1.3 fm, slightly larger than Kelly did, close to the Compton wavelength of

the pion. Hammer et al. (2004) argue from general principles that the pion cloud should

peak much more inside the nucleon, at ∼ 0.3 fm. However, they assign the full NN̄2π
continuum to the pion cloud which includes different contributions than just the one-pion

loop that Kelly (and Friedrich and Walcher) assign to the pion cloud. The structure at

∼ 0.5 GeV, common to all EMFFs, is at such a small Q2-value that its transformation to

coordinate space should be straightforward.

5 Model Calculations

The recent production of very accurate EMFF data, especially the surprising Gp
E data

from polarization transfer, has prompted the theoretical community to intensify their

investigation of nucleon structure. Space limitations compel us to focus on only a few

highlights. The interested reader is encouraged to read the original publications; the

review by Thomas and Weise (2001) is an excellent introduction.

The u-, d- and s-quarks are the main building blocks of the nucleon in the kinematic do-

main relevant to this review. Its basic structure involves the three lightest vector mesons

(ρ, ω and φ) which have the same quantum numbers as the photon. Consequently, one

should expect these vector mesons to play an important role in the interaction of the pho-

ton with a nucleon. The first EMFF models were based on this principle, called vector

meson dominance (VMD), in which one assumes that the virtual photon - after becoming

a quark-antiquark pair - couples to the nucleon as a vector meson. The EMFFs can then

be expressed in terms of coupling strengths between the virtual photon and the vector

meson and between the vector meson and the nucleon, summing over all possible vector

mesons. In the scattering amplitude a bare-nucleon form factor is multiplied by the am-

plitude of the photon interaction with the vector meson. With this model Iachello et al.

(1973) predicted a linear drop of the proton form factor ratio, similar to that measured

by polarization transfer, more than 20 years before the data became available. Gari and

Krümpelmann (1985) extended the VMD model to conform with pQCD scaling at large
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Figure 13. Comparison of various calculations with available EMFF data, indicated

by the same symbols as in Figures 7, 9, 10 and 11. For Gp
E only polarization-transfer

data are shown. Not shown are the data for Gn
E of References (Jones et al. 1991 and

Eden et al. 1994) and the data for Gn
M of References (Rock et al. 1992, Arnold et al.

1988, Markowitz et al. 1993, Gao et al. 1994, Bruins et al. 1995). For Gn
E the results of

Schiavilla and Sick (2001) have been added. The calculations shown are from References

(Bijker and Iachello 2004, Lomon 2001, Hammer and Meissner 2004, Holzwarth 1996,

Christov et al. 1995 and Ashley 2004). Where applicable, the calculations have been

normalized to the calculated values of µp,n.

Q2-values. The VMD picture is not complete, as becomes obvious from the fact that the

Pauli isovector form factor FV
2 is much larger than the isoscalar one FS

2 . An improved

description requires the inclusion of the isovector ππ channel through dispersion rela-

tions (Höhler et al. 1976, Mergell et al. 1996). By adding more parameters, such as the

width of the ρ-meson and the masses of heavier vector mesons (Lomon 2001), the VMD

models succeeded in describing new EMFF data as they became available, but with lit-

tle predictive power. Figure 13 confirms that Lomon’s calculations provide an excellent

description of all EMFF data. Bijker and Iachello (2004) have extended the original cal-

culations by also including a meson-cloud contribution in F2, but still taking only two

isoscalar and one isovector poles into account. The intrinsic structure of the nucleon

is estimated to have an rms radius of ∼ 0.34 fm. These new calculations are in good

agreement with the proton form-factor data, but do rather poorly for the neutron. The

most recent dispersion-theoretical analysis (Hammer et al. 2004), using four isoscalar

and three isovector mesons, results in an excellent description of Gp
M and Gn

M , but only

reasonably describes Gp
E and Gn

E . Subsequent studies (Fuchs et al. 2004) have further
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developed this combined approach to include chiral perturbation theory. However, such

models can only be used at small Q2-values, ≤ 0.4 GeV2.

Many recent theoretical studies of the EMFFs have applied various forms of a relativistic

constituent quark model (RCQM). Nucleons are assumed to be composed of three con-

stituent quarks, which are quasi-particles where all degrees of freedom associated with

the gluons and qq̄ pairs are parametrized by an effective mass. Because the momentum

transfer can be several times the nucleon mass, the constituent quarks require a relativistic

quantum-mechanical treatment. Three possibilities exist for such a treatment: the instant

form, where the interaction is present in the time component of the four-momentum and

in the Lorentz boost; the point form, where all components of the four-momentum op-

erator depend on the interaction; and the light-front form, where the interaction appears

in one component of the four-momentum and in the transverse rotations. In each of

these forms the Poincaré invariance can be broken in the number of constituents (by the

creation of qq̄ pairs) or by the use of approximate current operators. Although most of

these calculations correctly describe the EMFF behaviour at large Q2-values, effective

degrees of freedom, such as a pion cloud and/or a finite size of the constituent quarks,

are introduced to correctly describe the behaviour at lower Q2-values.

Miller (2002a) uses an extension of the cloudy bag model (Théberge 1981), three rela-

tivistically moving (in light-front kinematics) constituent quarks, surrounded by a pion

cloud. He chose a spatial wave function, as derived by Schlumpf (1994), whose param-

eters (and those of the pion cloud) are chosen to describe the magnetic moments, the

neutron charge radius, and the EMFF behavior at large Q2-values. Cardarelli and Sim-

ula (2000) also use light-front kinematics, but they calculate the nucleon wave function

by solving the three-quark Hamiltonian in the Isgur-Capstick one-gluon-exchange poten-

tial. In order to get good agreement with the EMFF data they introduce a finite size of

the constituent quarks in agreement (Petronzio et al. 2003) with recent DIS data. The re-

sults of Wagenbrunn et al. (Wagenbrunn et al. 2001) are calculated in a covariant manner

in the point-form spectator approximation (PFSA). In addition to a linear confinement,

the quark-quark interaction is based on Goldstone-boson exchange dynamics. The PFSA

current is effectively a three-body operator (in the case of the nucleon as a three-quark

system) because of its relativistic nature. It is still incomplete but it leads to surpris-

ingly good results for the electric radii and magnetic moments of the other light and

strange baryon ground states beyond the nucleon. Although Desplanques and Theussl

2003 have criticized the use of the point form in its introduction of two-body currents

in the form of a neutral boson exchange, Coester and Riska (2003) obtain a reasonable

representation of empirical form factors in this frame. Giannini et al. (2003) have ex-

plicitly introduced a three-quark interaction in the form of a gluon-gluon interaction in a

hypercentral model, which successfully describes various static baryon properties. Rel-

ativistic effects are included by boosting the three quark states to the Breit frame and

by introducing a relativistic quark current. All previously described RCQM calculations

used a non-relativistic treatment of the quark dynamics, supplemented by a relativistic

calculation of the electromagnetic current matrix elements. Merten et al. (2002) have

solved the Bethe-Salpeter equation with instantaneous forces, inherently respecting rel-

ativistic covariance. In addition to a linear confinement potential, they used an effective

flavor-dependent two-body interaction. For static properties this approach yields results

caut similar to those obtained by Wagenbrunn et al. (2001). The results of these five
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Figure 14. Comparison of various RCQM calculations with available EMFF data, sim-

ilar to the comparison in Figure 13. The calculations shown are from References (Miller

2002a, Cardarelli and Simula 2000, Giannini et al. 2003, Wagenbrunn et al. 2001 and

Merten et al. 2002). Miller (q-only) denotes a calculation by Miller (2002a) in which the

pion cloud has been suppressed. Where applicable, the calculations have been normal-

ized to the calculated values of µp,n.

calculations are compared to the EMFF data in Figure 14. The calculations of Miller do

well for all EMFFs, except for Gn
M at low Q2-values. Those of Cardarelli and Simula,

Giannini et al. and Wagenbrunn et al. are in reasonable agreement with the data, except

for that of Wagenbrunn et al. for Gp
M , while the results of Merten et al. provide the

poorest description of the data.

Before the Jefferson Lab polarization transfer data on Gp
E/Gp

M became available Holzwarth

(1996) predicted a linear drop in a chiral soliton model. In such a model the quarks are

bound in a nucleon by their interaction with chiral fields. In the bare version quarks are

eliminated and the nucleon becomes a skyrmion with a spatial extension, but the Skyrme

model provided an inadequate description of the EMFF data. Holzwarth’s extension in-

troduced one vector-meson propagator for both isospin channnels in the Lagrangian and

a relativistic boost to the Breit frame. His later calculations used separate isovector and

isoscalar vector-meson form factors. He obtained excellent agreement for the proton

data, but only a reasonable description of the neutron data. Christov et al. (1995) used

an SU(3) Nambu-Jona-Lasinio Lagrangian, an effective theory that incorporates sponta-

neous chiral symmetry breaking. This procedure is comparable to the inclusion of vector

mesons into the Skyrme model, but it involves many fewer free parameters (which are
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fitted to the masses and decay constants of pions and kaons). The calculations are limited

to Q2≤ 1 GeV2 because the model is restricted to Goldstone bosons and because higher-

order terms, such as recoil corrections, are neglected. A constituent quark mass of 420

MeV provided a reasonable description of the EMFF data (Figure 13).

In the asymptotically free limit, QCD can be solved perturbatively, providing predictions

for the EMFF behavior at large Q2-values. Brodsky and Farrar (1975) derived a scaling

law for the Pauli and Dirac form factors based on a dimensional analysis, that entailed

counting propagators and the number of scattered constituents:

F1 ∝ (Q2)−2, F2 ∝ (Q2)−3, F2/F1 ∝ Q−2 (17)

Brodsy and Lepage (1981) later reached the same asymptotic behavior based on a more

detailed theory that assumed factorization and hadron helicity conservation. The re-

cent polarization transfer data clearly do not follow this pQCD prediction (which the

Rosenbluth data unfortunately do). Miller (2002b) was the first to observe that imposing

Poincaré invariance removes the pQCD condition that the transverse momentum must be

zero, and introduces a quark OAM component in the wavefunction of the proton, thus vi-

olating hadron helicity conservation. His model predicts a 1/Q behaviour for the ratio of

the Dirac and Pauli form factors at intermediate Q2-values, in excellent agreement with

the polarization transfer data for Q2 ≥ 3 GeV2. Iachello and Wan (2004) and others

have pointed out that this 1/Q behaviour is accidental and only valid in an intermedi-

ate Q2-region. Ralston and Jain (2004) has generalized this issue to conclude that the

Q2-behavior of the Jefferson Lab data signals substantial quark OAM in the proton. Re-

cently, Brodsky et al. (2004) and Belitsky et al. (2003) have independently revisited the

pQCD domain. Belitsky et al. derive the following large Q2-behavior:

F2

F1

∝
ln2 Q2/Λ2

Q2
, (18)

where Λ is a soft scale related to the size of the nucleon. Even though the Jefferson Lab

data follow this behavior (Figure 15), Belitsky et al. warn that this could very well be

precocious, since pQCD is not expected to be valid at such low Q2-values. Brodsky et al.

(2004) argue that a nonzero OAM wave function should contribute to both F1 and F2 and

that thus Q2F2/F1 should still be asymptotically constant.

Once enough data have been collected on generalized parton distributions, it will be-

come possible to construct a three-dimensional picture of the nucleons, with the three

dimensions being the two transverse spatial coordinates and the longitudinal momentum.

Miller (2003) has further investigated the information that can be extracted from form-

factor data by themselves. His colorful images of the proton should be interpreted as

three-dimensional pictures of the proton as a function of the momentum of the quark,

probed by the virtual photon, and for different orientations of the spin of that quark rel-

ative to that of the proton. Ji (2003) has derived similar images from generalized parton

distributions using Wigner correlation functions for the quark and gluon distributions.

However, all theories described until now are at least to some extent effective (or parametriza-

tions). They use models constructed to focus on certain selected aspects of QCD. Only

lattice gauge theory can provide a truly ab initio calculation, but accurate lattice QCD



26 Kees de Jager

]    
2

  [GeV2Q

0

0.05

0.10

0.15

0.20

1

pF

2
pF

2
Q

2Λ

2
Q-2ln

Miller

Holzwarth

Giannini

1

nF
2

nF
2

Q
2Λ

2
Q-2ln

15
-1

2 4 60

Bijker

Figure 15. The ratio (Q2F2/F1)/ ln2 (Q2/Λ2) as a function of Q2 for the polarization-

transfer data and the calculations of References (Bijker and Iachello 2004, Miller 2002a,

Holzwarth 1996 and Giannini et al. 2003). The same ratio, scaled by a factor -1/15, is

shown for the neutron with open symbols. For Λ a value of 300 MeV has been used.

results for the EMFFs are still several years away. One of the most advanced lattice cal-

culations of EMFFs has been performed by the QCDSF collaboration (Göckeler et al.

2003). The technical state of the art limits these calculations to the quenched approxima-

tion (in which sea-quark contributions are neglected), to a box size of 1.6 fm and to a pion

mass of 650 MeV. Ashley et al. (2004) have extrapolated the results of these calculations

to the chiral limit, using chiral coefficients appropriate to full QCD. The agreement with

the data (Figure 13) is poorer than that of any of the other calculations, a clear indication

of the technology developments required before lattice QCD calculations can provide a

stringent test of experimental EMFF data.

6 Summary, Outlook and Conclusions

Recent advances in polarized electron sources, polarized nucleon targets and nucleon

recoil polarimeters have enabled accurate measurements of the spin-dependent elastic

electron-nucleon cross section. New data on nucleon electro-magnetic form factors

with unprecedented precision have (and will continue to) become available in an ever

increasing Q2-domain. Highly accurate measurements with the Rosenbluth technique

have established that the discrepancy between results on Gp
E/Gp

M with the Rosenbluth
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techniques and with polarization transfer is not an instrumentation problem. Recent ad-

vances on two-photon exchange contributions make it highly likely that the application

of TPE corrections will resolve that discrepancy. However, a continuing strong effort,

both experimental and theoretical, is needed to firmly establish the applicability of TPE

corrections.

The two magnetic form factors Gp
M and Gn

M closely follow the simple dipole form fac-

tor GD . Gp
E/Gp

M drops linearly with Q2 and Gn
E appears to drop at the same rate as

Gp
E from ∼ 1 GeV2 onwards. The Q2-behavior of Gp

E has provided a signal of sub-

stantial non-zero orbital angular momentum in the proton. Only scant data are available

in the time-like region. The full EMFF data set forms tight constraints on models of

nucleon structure. So far, all available theories are at least to some extent effective (or

parametrizations). Still, only few of these adequately describe all four EMFFs. Only lat-

tice gauge theory can provide a truely ab initio calculation, but accurate lattice QCD re-

sults for the EMFFs are still several years away. A scaling prediction has been developed

for the ratio of the Pauli and Dirac form factors, which the data appear to follow even

at a Q2-value as low as 1 GeV2. Novel procedures allow a visualization of the nucleon

structure as a function of the momentum of the struck quark. A fully three-dimensional

picture of the nucleon will become available when future exclusive data have allowed the

determination of the Generalized Parton Distributions.

I would like to conclude with a forty-years-old quote from the review by Wilson and

Levinger (1964) which is still fully appropriate now: "Although the major landmarks of

this field of study are now clear, we are left with the feeling that much is yet to be learned

about the nucleon by refining and extending both measurement and theory."
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