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Abstract !

This paper presents a quantitative analysis for a
discovery in molecular dynamics. Recent simulations
have shown that velocities of crack propagations in
crystals under certain conditions can become super-
sonic, which is contrary to classical physics. In this
research, we present a framework for tracking and mo-
tion analysis of crack propagations in crystals. It in-
cludes line segment extraction based on Canny edge
maps, feature selection based on physical properties,
and subsequent tracking of primary and secondary
wavefronts. This tracking is completely automated; it
runs in real time on three 834-image sequences using
forty 250 MHZ processors. Results supporting physi-
cal observations are presented in terms of both feature
tracking and velocity analysis.

1 Introduction

Molecular dynamics involves solving Newton’s laws
of motion for large numbers of atoms (millions to bil-
lions) while obeying classical force laws. Crystal de-
formations under stress are strongly dependent on the
movement of cracks (dislocations). So far, the dy-
namics of dislocations is not well understood because
of the complexity and the difficulties in modeling the
phenomena [1]. Cracks direct macroscopic object en-
ergy down to breaking bonds at the atomic scale [10].
Therefore, atomic studies are important for the devel-
opment of the crack propagation theory and applica-
tions which range from studies of composite man-made
materials to earthquake analysis. Such large-scale sim-
ulations have become possible recently due to large in-
creases in computing power, thereby allowing studies
of the dynamics of dislocations in a consistent way.
Recent computer large-scale simulations in molecular
dynamics challenge previous beliefs that cracks cannot
propagate faster than the Rayleigh wave speed. Con-
ventional views are based on continuum mechanics,
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including dynamic elastic solutions and energy release
rates.

Our goal is to develop a completely automated
tracking and analysis system that measures speed
and examines behavior of dislocations. This paper
presents our image analysis approaches for detect-
ing and selecting features of interest from moderately
noisy data, which is described next. The system in-
cludes line segment extraction based on Canny edge
maps, feature selection based on physical properties,
and subsequent tracking of primary and secondary dis-
locations.

A number of recent approaches included a primi-
tive generation step using line extraction. Borges and
Aldon [2] achieved line extractions with a prototype-
based fuzzy clustering algorithm in a split-and-merge
framework. Van der Heijden [19] describes line fea-
tures in terms of covariance functions. Matching junc-
tions based on uncertainty propagation from the de-
tection to the grouping stage was presented by Shen
and Palmer [15]. Ji and Haralick [6] also used uncer-
tainties for an optimal Hough transform for line detec-
tion. Nandy and Ben-Arie [11] applied an expansion-
matching method while treating junctions as combina-
tions of elementary features. Line extraction in noisy
images was described by Lee and Kweon [8].

Line extraction is a pre-processing step in a fea-
ture recognition and structure analysis for many suc-
cessful applications. Kim et al. [7] produced building
descriptions from multiple images by matching lines
and junctions for 3-D feature generation. Price [14]
addressed the problem of extracting street grids in
an urban environment by matching intersection fea-
tures. Other notable applications include Magnetic
Resonance Imaging (MRI) [9] and aerial imagery [12].

2 Description of the Method
2.1 Data: from Atoms to Pixels

The data represents molecular dynamics simulation
of crack propagations along a weak interface joining
two crystals [1] with different material properties. Dis-
location is caused by shear stress, which is produced



by moving top and bottom elements in different di-
rections. The simulation continues until dislocation
spreads to the right boundary. Each sequences con-
tain 834 frames of 3100x790 images.

After propagating (left to right) initially at the ex-
pected subsonic speed, the crack tip increases its veloc-
ity (Figure 1). Creation of the daughter crack denoted
as (2) is shown Figure 1(b) where the mother crack is
denoted as (1) in both figures. The daughter crack is
now associated with the increased (supersonic) veloc-
ity of the rightmost crack tip, while the mother crack
keeps traveling at the old speed.

Figure 1: Crack transition to a supersonic speed.

Association between atoms and pixels is as follows.
Each atom has coordinates z, y, z, field values (ve-
locity in our case) vz and vy, and a potential energy
epot value. Simulations range from 20 million to 1
billion atoms. Typical analysis is done on 500-3000
snapshots in time. In the simulation providing data
for this research, we are looking at a 2-D slice of a very
thin 3-D problem containing around 20 million atoms.
The atoms during a simulation run are used to “paint”
a 3-D regular grid by using weighted averaging with a
pseudo-Gaussian kernel (Figure 2(b))

Ly —-01
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otherwise

where R is the specified atom radius, and r is the
distance between the atom and pixel centers.

For every point on a pixel grid, its field value at a
pixel f, (visualized in greyscale in displayed images)
represents weighted velocity of selected i atoms and is
computed as (Figure 2(a))

P 2?21 ws
In Figure 2(a) atoms are represented as circles on a
pixel grid. Their centers are connected with pixels
which are located within respective R.
The weights in boundary regions are kept to fa-
cilitate distributed parallel “painting” and wavelet

compression with no node-to-node communication.
Weights are subsequently used during post-process
analysis to form complete seamless regular grids of
vz, vy, epot fields. The regular grid spacing is chosen
to be the same as the average inter-atom spacing in
the crystal being simulated.
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Figure 2: Weighted-averaging of atom field values us-
ing pseudo-Gaussian profile.

The following sections describe steps needed for the
edge, line, and feature extraction, followed by tracking
of the parent and child dislocations, and their motion
analysis.

2.2 Edge Detection

One of the later frames in the sequence is shown
in Figure 3(a). Similarly to Figure 1, feature (1) in
Figure 3 denotes the mother crack while (2) is the
rightmost cracktip (the daughter crack). An enlarged
circle zooms in on the differences in crack propaga-
tion in top (la) and bottom (1b) materials. White
lines indicate wavefront features, while white points
represent their intersections with the material bound-
ary (“starting points” for cracks). All of these features
need to be tracked for “composite” features, such as
(1b), an average position is an adequate measure of
crack propagation.

The histogram equalization in Figure 3(b) shows
potential problems for a meaningful edge detection,
where “meaningful” means selected features required
for automated tracking. There is considerable back-
ground noise and a number of irrelevant features cre-
ated by shock waves bouncing off the boundaries. In
this application it is better to include noise than to
miss a real feature.

A number of edge detectors have been tested; and
results have been compared with ground truth. Canny
edge detector [3] produced the best results in terms
of selecting elements needed for the subsequent line
and feature detectors. Canny edge detection includes
smoothing by Gaussian convolution, followed by an
application of a simple 2-D first derivative operator for
computing the pixel-wise edge strength and direction.
Different scales for the operator are represented by dif-
ferent standard deviations of the Gaussian smoothing
filter, o. Subsequent non-maximal suppression yields



Figure 3: A frame with a complex set of features. (a)
Magnification shows differences in the mother crack
propagation in two materials. (b) Histogram equaliza-
tion shows potential problems for a meaningful edge
detection.

thin edge lines in the output (which is important for
an effective line extraction and feature detection de-
scribed in following sections). Hysteresis threshold-
ing is used to decrease the probability of breaking
noisy edge output into multiple fragments. Although
edge tracking starts with pixels above a high threshold
Thign (certain edge pixels), points above a low thresh-
old T}, could still belong to edges if they are con-
nected to certain edge pixels. Canny edge detector
code (developed by Heath et al. [4]) is publicly avail-
able [17].

Parameter selection (o, Tjow, Thign) is crucial since
we cannot miss important features (Figure 1) or dom-
inate them with noise (Figure 3). Application of the
best fixed parameter set (0.60, 0.30, 0.90) as discussed
in [4] is shown in Figure 4(a). Important features are
lost in the noise. A change in scale to 1280x326 helps
somewhat, but contours of cracks and shock wave re-
flections are still distorted (Figure 4(b)). The optimal
parameter set for our images (1.50, 0.10, 0.93) pro-
duces satisfactory results (Figure 4(c)). Increasing o
reduces the detector’s sensitivity to noise, which re-
sults in reduced numbers of lines representing wave-
fronts. Ty, is decreased to prevent noisy edges from
breaking up. Setting Th;qp slightly higher lessens the
number of spurious edge fragments. The selected pa-
rameter set is capable of selecting required attributes
even at a 640x163; however, such scale leads to data
underutilization and to a somewhat lower precision
of motion analysis. Of course, fine scales yield noise
and an increase computation time. Experimentally,
1280x326 is shown to be the best compromise when
considering such criteria.

2.3 Line Extraction

During this step, entities constituting edges are
identified, and adjacency relationships of resulting line

Figure 4: Parameter and scale selection for edge de-
tection.

segments are determined. First, connected compo-
nents labeling is performed recursively by scanning
through the image across each row and linking 8-
connected [18] pixels with edge values:

o if the pixel has no connected edge pixels, then a new
unique label is assigned, and a new chain is started;
e if such pixels exist and share the same label, it is
assigned to a pixel in question; and

e multiple labels in connected pixels are resolved by
the subsequent pass.

Resulting chains are split into distinctive segments at
high curvature points (if the curvature has been in-
creasing for previous pixels) and by the polyline split-
ting [5]. Implementation is based on the program by
Shin et al. [16]. A straight-line model y(z) = az + b
is fitted to each contour segment using least squares
with possible errors in both coordinates [13]. Then,
endpoints are projected onto lines to define resulting
line segments. For each endpoint ¢ with coordinates
(zi,y:), its respective projection (z},y;) satisfies the
line equation as y; = az} +b. Also, the product of the
gradients of perpendicular lines can be computed as

Yi — Yi
=-1 3
axg—xi ®)

Hence, by substituting y; in (3), we obtain

;. a 1
T= gyt b

yi=az;+b (4)

Lines shorter than an adaptive threshold, empir-
ically determined to be 1/64 of the image width at
a current scale, are excluded from further processing.
We do not want to make it more restrictive and miss
crack features, which in some frames (when “reflec-
tions” from a daughter crack overlap a parent crack



feature) could be quite small. Therefore, choosing the
right edge detector parameter set and scale (Figure 4),
as described in the previous section, is very important.
2.4 Feature Detection, Modeling and
Correspondences

There are several types of features of interest. First,
there is a cracktip denoted as (1) in Figure 1(a) and
as (2) in Figure 1(b) (numbering in the parent-child
order, not in the feature type order). Second, the par-
ent crack gradually splits into two which propagate at
different rates ((1) in Figure 1(b) or even more ob-
vious as (1la) and (1b) in Figure 3(a)) since top and
bottom crystals have different material properties. Lo-
calization of the latter two features on the structural
level is based on observations that they are relatively
short lines almost perpendicular to the longest hori-
zontal line in the image. The system has to detect
parts of these features and model them with line seg-
ments. Coordinates of their intersections with the ma-
terial boundary (the central horizontal line) provide
the necessary information for the estimation of veloci-
ties of dislocations, and pinpoint jumps to supersonic
speeds. The search for the two sections of the mother
crack begins by locating candidate points within 5%
of image height from the material boundary. For each
of these points, respective lines are evaluated whether
they are within 20 degrees (7/9) from perpendicular
to the material boundary:

Y2
Z2

— Y1 ™ ™
|larctan=— w1| 2| < 9 (5)

As a result, two groups of line segments (above and
below the material boundary) are identified. An av-
erage, representing wavefront propagation in a given
material, is computed for each of these groups. We
get some spurious responses due to noise and other
features present in images. However, they are always
outside regions where true features are expected. Es-
timations are based on the history of the respective
feature propagation, and are updated after every de-
tection. This allows to separate features from erro-
neous responses. This produces an automatic feature
detection for the parent crack.

What about the main cracktip? The algorithm re-
sponsible for cracktip detection scans from right to left
for the first column of pixels that has values in the
top and bottom 10 percentile of the entire histogram,
which is computed after the enhancement of horizon-
tal edges. It filters out all the irrelevant intersections
by starting at the known crack tip initial position and
tracking the subsequent intersections with constraints
on the expected velocities and an estimated maxi-
mum line-feature width. This algorithm operates on
3100x790 full-size images.

Figure 5: Each figure (a-c) includes (top to bottom):
original frames, results of the edge detection, line ex-
traction, and feature tracking.



Outputs of the two algorithms are combined at a
finest scale. Thus, feature detection across the se-
quence proceeds automatically. Establishing corre-
spondences becomes a trivial process since we have
three distinct features in every frame: the main crack-
tip and two features representing a parent wavefront.

3 Experimental Results and Motion
Analysis

The system runs on a SGI machine with fourty-
eight 250 MHZ IP27 processors and 15872 Mbytes of
main memory. We explicitly allocate 40 processors via
a parallelization tool where a script is run indepen-
dently on each work unit. In the case of this study, a
work unit is typically a timestep (i.e., a frame in the
image sequence).

Figures 5(a-c) include selected original frames (top
to bottom), results of the edge detection, line extrac-
tion, and feature tracking. Feature tracking is indi-
cated by:

e vertical lines tracking cracktips for mother and
daughter dislocations in both materials, and

e relevant features representing two parts of the
mother crack propagating at different speeds.

Figure 5(a) represents an initial state with a single
wavefront, the creation of a daughter crack is shown
in Figure 5(b), and one of the later timesteps is re-
flected in Figure 5(c).

We allowed for false matches; however, using pre-
diction based on the recent propagation history allows
the localization of a region where a correct match is
expected. The third image in each of Figures 5(a-c)
contains some erroneous data obviously located out-
side regions of interest. When false features outside
such regions are discarded, there are no false alarms
left at all. In each 834-frame sequence, mother crack
features were present in 684 frames. For the entire
834-frame sequence, there were 78 instances needing
interpolation for the upper part of the mother crack,
and 37 misses for the lower.

Displacement and velocity functions for features of
interest are shown in Figures 6(a) and (b), respec-
tively. Both graphs have time in the X direction, with
timesteps changing from 1 to 834 on the far right. Sim-
ilarly to Figure 3(a), (2) denotes the daughter crack,
while (1a) and (1b) represent two parts of the mother
crack propagating in above and below the material
boundary, respectively. The velocity plot allows us
to pinpoint intervals when the speed of the rightmost
cracktip drastically jumps, thus bringing it to the su-
personic speed. These two peaks indicate the emer-
gence of the daughter and granddaughter cracks, re-
spectively.

Velocity is computed as

Po— P »

Vi =
tite —ti—2

Displacement

Velocity

(b)
Figure 6: Displacement and velocity functions for fea-
tures of interest.

where P; is a position of the feature (an z coordinate
in our case), and the denominator is essentially a con-
stant.

This constant is very small since we need to dis-
tinguish the emergence of events and keep significant
features while avoiding discontinuities. This allows for
increased effects of noise. To prevent such occurrences
in the velocity plots, a smoothing procedure is used to
diffuse second differences. The smoothing is by po-
sitions, but it is designed to affect velocity plots. It
finds the smoothest curve that varies no more than
the specified maximum pixel error from the original
unsmoothed data. This constrained smoothing is per-
formed by iteratively averaging out (diffusing) the sec-
ond differences d; of the position arrays P; and clamp-
ing values back to within the constraints as needed:

P+ Py

d= P -~ (7)
Pl=p+ (dz—l‘;‘dz’-i-l ) (8)

P} ifP] € [P;—e, P+ €]
P'=q Pi—e ifP/<Pi—e (9)

P, +e otherwise



where ¢ is a step size, e is a maximum pixel error, and
P! and P/’ represent updates before and after applying
the constraint, respectively.

Note that the constrained smoothing for the crack-
tip positions assumes a pixel error e of +/- 4 pixels
with respect to the full-resolution (3100x790) images.
For the transverse-wave-speed intersection positions,
the error assumption increases to +/- 16 pixels be-
cause of the change in scale in that detection process.

4 Summary and Conclusions

In this paper we presented a completely automated
tracking and analysis system that measures speed and
examines behavior of dislocations. It provides the ba-
sis for a quantitative analysis for a discovery in molec-
ular dynamics. Recent simulations have shown that
velocities of crack propagations in crystals under cer-
tain conditions can become supersonic, which is con-
trary to classical physics. In this research, we pre-
sented a framework for tracking and motion analysis
of crack propagations in crystals. It includes line seg-
ment extraction based on Canny edge maps, feature
selection based on physical properties, and subsequent
tracking of primary and secondary dislocations. This
tracking is completely automated; it runs in real time
on three 834-image sequences using forty 250 MHZ
processors. Results supporting physical observations
were presented in terms of both feature tracking and
velocity analysis. Molecular dynamics simulations and
their quantitative analysis have shed light on the ques-
tion of whether and how a crack undergoes the tran-
sition from subsonic to intersonic velocities.

Acknowledgment
We would like to thank Farid F. Abraham from
IBM Almaden Research Center who developed super-
sonic cracks studies. This work was done as a part of
LLNL VIEWS and SAVAnTS visualization projects.

References

[1] F. F. Abraham and H. Gao. How fast can cracks prop-
agate?  Physical Review Letter, 84(14):3113-3116,
2000.

[2] G. A.Borges and M.-J. Aldon. A split-and-merge seg-
mentation algorithm for line extraction in 2-D range
images. In Proc. ICIP, pp. 441-444, Barcelona, Spain,
September 2000.

[3] J. F. Canny. A computational approach to edge detec-
tion. IEEE Trans. on PAMI, 8(6):679-698, November
1986.

[4] M. Heath, S. Sarkar, T. Sanocki, and K. W. Bowyer.
A robust visual method for assessing the relative per-
formance of edge detection algorithms. IEEE Trans.
on PAMI, 19(12):1338-1359, December 1997.

[6] R. Jain, R. Kasturi, and B. G. Schunck. Machine
Vision. McGraw-Hill, New York, 1995.

[6] Q. Jiand R. M. Haralick. An optimal bayesian hough
transform for line detection. In Proc. ICIP, vol. 2, pp.
691 — 695, Kobe, Japan, October 1999.

[7] Z. W. Kim, A. Huertas, and R. Nevatia. Automatic
description of complex buildings with multiple im-
ages. In IEEE Workshop on Applications of Computer
Vison, pp. 155 — 162, Palm Springs, CA, December
2000.

[8] J. W. Lee and I. S. Kweon. Extraction of line features
in a noisy image. Pattern Recognition, 30(10):1651—
1660, October 1997.

[9] G. Lohmann and F. Kruggel. Extracting lines of max-
imal depth from mr images of the human brain. In
Proc. ICPR, vol. 3, pp. 518 — 522, Vienna, Austria,
August 1996.

[10] M. Marder. Molecular dynamics of cracks. Com-
puting in Science and Engineering, 1(5):2-9, Septem-
ber/October 1999.

[11] D. Nandy and J. Ben-Arie. Generalized feature ex-
traction using expansion matching. IEEE Trans. on
Image Processing, 8(1):22 — 32, January 1999.

[12] R. L. Pires, P. De Smet, and I. Bruyland. Line ex-
traction with the use of an automatic gradient thresh-
old technique and the hough transform. In Proc.
ICIP, vol. 3, pp. 909 — 912, Vancouver, BC, Canada,
September 2000.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
Cambridge, MA, 1993.

[14] K. Price. Urban street grid description and verifica-
tion. In IEEE Workshop on Applications of Computer
Vison, pp. 148 — 154, Palm Springs, CA, December
2000.

[15] X. Shen and P. Palmer. Uncertainty propagation and
the matching of junctions as feature groupings. IEEE
Trans. on PAMI, 22(12):1381 — 1395, December 2000.

[16] M. C. Shin, D. B. Goldgof, and K. W. Bowyer. An
objective comparison methodology of edge detection
algorithms using a structure from motion task. In
Proc. CVPR, pp. 190-195, Santa Barbara, CA, June
1998.

[17] Edge Detector Performance Evaluation Study.
fto://figment.csee.usf.edu/pub/Edge_Comparison/
source_code/canny.src.

[18] S. E. Umbaugh. Computer Vision and Image Process-
ing. Prentice-Hall, Englewood Cliffs, NJ, 1998.

[19] F. van der Heijden. Edge and line feature extraction
based on covariance models. IEEE Trans. on PAMI,
17(1):16-33, January 1995.





