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Abstract

Block iterative methods are extremely important as smoothers for multigrid methods, as preconditioners
for Krylov methods, and as solvers for diagonally dominant linear systems. Developing robust and efficient
smoother algorithms suitable for current and evolving GPU and multicore CPU systems is a significant
challenge. We address this issue in the case of constant-coefficient stencils arising in the solution of elliptic
partial differential equations on structured 3D uniform and adaptively refined block structured grids. Ro-
bust, highly parallel implementations of block Jacobi and chaotic block Gauss-Seidel algorithms with exact
inversion of the blocks are developed using different parallelization techniques. Experimental results for
NVIDIA Fermi/Kepler GPUs and AMD multicore systems are presented.
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1. Introduction

Iterative methods such as Jacobi, Gauss-Seidel,
Successive Over-Relaxation (SOR), and their vari-
ants are extremely important as smoothers for
multigrid methods [1, 2], preconditioners for Krylov
methods [3], and as solvers for diagonally dominant
linear systems. Their widespread use in iterative so-
lution methods for linear systems has led to signif-
icant effort being devoted to optimizing their per-
formance on modern GPU and multicore systems.
Much of the attention has been focused on point-
wise versions of these methods to exploit parallelism
[4].

However, block versions of these methods, in par-
ticular line and plane smoothers, are extremely
important as key components of robust geomet-
ric multigrid methods [5, 6] on uniform struc-
tured grids and as part of multilevel iterative
methods (such as the Fast Adaptive Composite-
Grid (FAC) and Multi-Level Adaptive Technique
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(MLAT) methods [7, 8]) on adaptively refined grids.
Early work by Shortley and Weller [9] and Parter
[10] has shown that even for isotropic diffusion
problems block Jacobi and Gauss-Seidel can have
advantages. More recently, Philip and Chartier
demonstrated how to automatically construct block
iterative methods for fairly general linear systems
based on algebraic measures of coupling [11]. Fur-
thermore, block iterative methods have the po-
tential to increase local computation and decrease
communication on next generation parallel systems
where communication increasingly dominates costs.

In this context, recent work focused on GPU
implementations includes the 2D block based
smoother of Feng et al. [12] and the 1D block-
asynchronous smoother for multigrid methods by
Anzt et al. [13]. However, both works use Jacobi
iterations within each block, rendering them closer
to two-level Jacobi methods or Jacobi-Gauss-Seidel
methods. These can be considered as variants on
the work presented in Venkatasubramanian et al.
[14]. Recent work in the context of multicore CPUs
includes that by Adams et al. [15, 16] on block
Gauss-Seidel algorithms.

In this paper we focus on developing efficient
block-iterative Jacobi and chaotic Gauss-Seidel
methods on current and evolving GPU and mul-
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Figure 1: In Figure 1a a patch is shown with an extraction of cells (shaded). The 7-point stencil in Figure 1c arises from the
shaded cells in Figure 1b. A domain composed of 4 patches is shown in Figure 1d.

ticore architectures. We will demonstrate simple,
efficient and general block smoothing algorithms
with exact inversion of the blocks for 3D constant-
coefficient elliptic problems. This paper will con-
centrate on the case where multiple structured grids
exist either as part of an adaptive mesh refinement
hierarchy or as part of a domain decomposition of
a uniform structured grid. Such problems are of
importance in a wide variety of scientific computa-
tions. We will consider only single node GPU and
multicore algorithms in this paper given that the
processing power and memory capacity of today’s
single node systems enable fairly large simulations
with future work extending to distributed systems.

1.1. Model Problem

We will focus on the model problem for the 3D
Poisson equation

−∇2u (x) = f(x), x ≡ (x, y, z) ∈ Ω,

u (x) = 0, x ∈ ∂Ω, (1)

for simplicity, though the presented methods will be
applicable to any constant-coefficient elliptic sys-
tem such as the recent work by Guy et al. [17]
on block smoothers for Stokes problems. Here ∇2

is the Laplacian operator, f is a source and u is
the solution to Equation (1) on a cubic domain

Ω ≡ [0, 1]
3 ⊂ R3 with Dirichlet boundary condi-

tions on the boundary ∂Ω. We set f (x) = 0 for
simplicity because our focus is on the smoothing
algorithm.

It is assumed that the reader is familiar with dis-
cretization methods and only a brief description is
provided to establish notation. The methods pre-
sented are not tied to any particular discretization,
though for concreteness we use a cell-centered fi-
nite volume (FVM) discretization with variable un-
knowns located at cell centers. FVM discretization

methods for single logically rectangular domains be-
gin by partitioning the continuous domain Ω into a
set of discrete cells that together form a regular
patch with nx, ny, and nz cells in the x-, y-, and
z-directions respectively as in Figure 1a. Each cell
volume is then uniquely indexed by a triple (i, j, k)
specifying location in space: [i · hx, (i+ 1) · hx] ×
[j · hy, (j + 1) · hy] × [k · hz, (k + 1) · hz] with 0 ≤
i ≤ nx − 1, 0 ≤ j ≤ ny − 1, 0 ≤ k ≤ nz − 1. Here
hx, hy, and hz represent the cell widths in each di-
rection. To simplify notation going forward we as-
sume hx = hy = hz = h. A cell-centered finite-
volume approximation of equation (1) then leads
to the following system of equations for each cell:

6ui,j,k − ui−1,j,k − ui+1,j,k − ui,j−1,k

−ui,j+1,k − ui,j,k−1 − ui,j,k+1 = h2fi,j,k, (2)

where ui,j,k represents an approximation to u in
cell (i, j, k). Since the coefficients in Equation (2)
have no spatial dependence a stencil representation
as depicted in Figure 1c can be used to represent
both the coefficient and connectivity information
for each cell in a patch. Cells on patch boundaries
have the same stencil as interior cells, since we as-
sume that each patch has a layer of ‘ghost’ cells
around it (Figure 2b) to which boundary condi-
tions are extrapolated. The methodology outlined
extends with minor modifications to discretizing a
collection of non-overlapping logically rectangular
patch domains as in Figure 1d. Interior ghost cells
at patch interfaces are then used to ensure consis-
tency across patches.

Since our methods were developed in the context
of AMR applications we will now briefly describe
structured AMR hierarchies and set the context for
our methods. Many simulations of physical phe-
nomena often need to resolve extremely fine-scale
features localized in space and/or time [18, 19].
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Figure 2: (a) Left: 3D AMR patch hierarchy with outlines
of 8 patches on level 0 and 8 patches on level 1. Right:
patch with shaded cells corresponding to a geometric block.
(b) 2D patch slice with ghost and neighbor cells for a block
(shaded).

Discretizing the entire physical domain at the re-
quired fine-scale resolution is then often impracti-
cal and not necessary. Instead AMR can be used to
increase the local resolution only where required.
Given a collection of patches that cover the do-
main Ω1 ≡ Ω at some coarse resolution h1 = h,
structured AMR techniques identify a local sub-
domain Ω2 where finer resolution is required (Ω2

may consist of disjoint subdomains). A collection
of patches with the same finer resolution h2 are
then introduced to cover Ω2. Together, they form
a refinement level covering the subdomain Ω2. A
typical choice of h2 is h1/2. Repeating this pro-
cess leads to a set of increasingly finer nested re-
finement levels, each consisting of a collection of
logically rectangular patches. Patches in this hier-
archy are dynamically created and destroyed as the
simulation progresses depending on local resolution
requirements. Large-scale parallel structured AMR
calculations can employ thousands of patches on
each refinement level, with each processor owning
multiple patches from potentially different refine-
ment levels. Methods such as FAC [7] and MLAT
[8] smooth on these patches during the solution pro-
cess. For the purposes of block smoothing, patches
in the refinement hierarchy are typically too large to
be processed efficiently. Instead patches are decom-
posed into smaller geometric blocks. For example,
Figure 2a shows a 2× 2× 2 block (shaded) consist-
ing of 8 cells in a 4 × 4 × 4-cell patch. Thus, the
patch of size 43 cells in Figure 2a is decomposed
into 8 blocks of size 23. Stencil operations for each
block in the patch have dependencies on neighbor
and ghost cell data as shown in Figure 2b.

We wish to again emphasize that this paper
is focused on meeting the need for block relax-
ation methods over collections of multiple struc-

tured patches over a domain or a hierarchy of sub-
domains as components of multilevel methods for
uniform structured grids or AMR grids and not on
the multilevel methods or AMR per se.

The remainder of the paper is organized as fol-
lows. Section 2 describes block-relaxation methods
and algorithm choices based on GPU and multi-
core CPU architectures. Section 3 discusses differ-
ent parallelization strategies and considerations in
the choice of block sizes. We state experimental re-
sults using state-of-the-art hardware including the
NVIDIA Kepler K20X GPU and a CRAY XE6 com-
pute node in Section 4. The last section presents
conclusions and an overview of possible future re-
search directions.

2. Block Smoothing Algorithms

Discretizing equation (1) on a patch or a collec-
tion of patches leads to a linear system of equations,
one equation per grid cell, of the form of equation
(2). The resulting linear system of equations can
be written in matrix form as

Au = f (3)

with A ∈ Rm×m, and u, f ∈ Rm with a suitable
mapping from the matrix ordering to the (i, j, k)
ordering on patches. Let A be partitioned into a
set of submatrices as shown below.

A =


A11 A12 · · · A1s

A21 A22 · · · A2s

· · · · · · · · · · · ·
As1 · · · As,s−1 Ass

 (4)

where Aij , 1 ≤ i, j ≤ s are now s2 matrix sub-
blocks of size qi × qj with

∑s
1 qi = m. The parti-

tioning of A into subblocks could be based on map-
ping to/from geometric blocks of a structured grid
as described earlier or on other considerations such
as anisotropic features in the PDE, or algebraic
strength of coupling measures between variables. It
is assumed that the diagonal blocks, Aii, 1 ≤ i ≤ s,
are invertible. For the purposes of this paper it is
sufficient to consider the matrix blocks as arising
from a lexicographical ordering of geometric blocks
within each patch. Furthermore, from this point
on we will assume that all matrix blocks are of the
same size. A block stationary iterative method can
now be defined by a splitting, A = M−N , where M
is invertible, which leads to the stationary iteration

uk+1 = M−1Nuk +M−1f , (5)

3



where k is the iteration number. The iteration given
above converges if and only if ρ(M−1N) < 1, where
ρ denotes the spectral radius operator. An equiva-
lent formulation of (5) is:

uk+1 = uk +M−1rk (6)

for residual rk = f − Auk, which will be the form
used in this paper. An example of a block iteration
is the block Gauss-Seidel method defined by the
splitting

M =


A11 0 · · · 0
A21 A22 · · · 0
· · · · · · · · · · · ·
As1 · · · As,s−1 Ass

 (7)

and N = M−A. When s = m, the subblocks are of
size one and the iteration reduces to the standard
lexicographic Gauss-Seidel iteration. A block Ja-
cobi algorithm is obtained if Aij = 0 for i > j also
in equation (7). The numerical results presented in
this paper were all performed with block (chaotic)
Gauss-Seidel and damped block Jacobi iterations,
though once the block partitioning is defined we are
free to choose any suitable block-iterative process.

In general, it is difficult to provide theoretical
results that guarantee that a given block-iterative
method formed will converge or that a particular
choice of blocks will lead to a faster rate of conver-
gence as opposed to an alternative choice of blocks.
The interested reader is referred to Varga [20] for
theoretical results on general block iterative meth-
ods and to Parter [10] for some early work on block
iterative methods for elliptic equations.

The block-smoothing iteration derived from
Equation (6) employs a direct solve to compute the
inverse Âb := A−1

ii for the diagonal block Ab := Aii

with b, i = 1, . . . , s. The cost of computing this in-
verse for a block, and restrictions that apply in the
case that the patch size is not a multiple of the block
size, are described in Section 4.3. There it will be
shown that it is sufficient to assume that only one
inversion is necessary for a patch and this inversion
has already been performed before the smoothing
iterations are executed.

Updating the neighbor cells of a spatial block as
in Figure 2b can be performed in different ways.
Our implementation of the block smoothing algo-
rithm employs either a classic Jacobi update or a
chaotic block Gauss-Seidel update scheme between
the blocks. This chaotic relaxation was first pro-
posed by Chazan and Miranker [21]. Some cur-
rent research on chaotic relaxation using shared

and distributed memory systems can be found un-
der asynchronous iteration in [22, 23, 24]. Baudet
[23] defines the term chaotic relaxation scheme to
describe a purely or totally asynchronous method,
which accurately describes our chaotic block Gauss-
Seidel implementation. Bertsekas et al. state in
[25] a general convergence theorem for totally asyn-
chronous algorithms in the case of fixed-point prob-
lems. A modified convergence theorem based on
Chazan and Miranker with constraints on global
memory and communication is presented by Strik-
werda [26]. Blathras et al. state a timing model
and stopping criteria for block asynchronous itera-
tive methods in [27]. A basic outline of the chaotic
block Gauss-Seidel relaxation for multiple patches
either on an AMR refinement level or a multigrid
level is shown in Algorithm 1, assuming that the
inner most loop will be executed asynchronously.
In the block Jacobi update scheme a second vec-

Algorithm 1 Chaotic block Gauss-Seidel relax-
ation algorithm.

for each step k do
for each patch p do

for each block b do
uk+1
b = ukb + Âb

(
fb −Abu

k
b

)
end for

end for
end for

tor v stores the new values of a patch during the
smoothing step. At the end of the iteration the
solution vector u for a patch swaps with v. This
can be done in a very efficient way by using differ-
ent pointers to the corresponding memory areas so
that no additional memory copy is necessary. The
chaotic block Gauss-Seidel update scheme does not
need an extra vector. Advancing the solution can
be done immediately.

No synchronization between the matrix blocks
is necessary while processing the blocks within a
smoothing step when using block Jacobi iteration
or chaotic block Gauss-Seidel relaxation. Therefore
the blocks can be processed independently with-
out any communication. The ghost cells between
patches are updated in a Jacobi fashion at the end
of a complete smoothing step over all patches. To
prevent confusion about blocks on the GPU and
blocks in the physical domain, a block in the do-
main is called a spatial block and a block on the
GPU is called a thread block. The structure of
AMR leads to the possibility to parallelize only
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over patches (patch parallel) or only over spatial
blocks (block parallel) leading to single-level paral-
lelism. Parallelizing over patches and then over spa-
tial blocks leads to two-level or nested parallelism.

A GPU is well suited to exploit the fine-grained
parallelism typically exposed by single-level meth-
ods. It is also possible to exploit the parallel archi-
tecture of a GPU using the two-level parallelism by
processing several patches and spatial blocks con-
currently. For two-level parallelism the number of
patches that can be processed in parallel depends on
the number of spatial blocks that can be scheduled
and executed independently on the GPU. This then
depends on the block size, the hardware architec-
ture of the GPU, and the number of spatial blocks
that are executed per patch.

On multicore CPUs scalable performance is typ-
ically achieved using coarse-grained parallelism.
The work per thread must be large enough to amor-
tize the overhead of scheduling the work. The
block-parallel algorithm in which the spatial blocks
are processed in parallel has a potential bottle-
neck if the work per thread is low for small block
sizes. Using the patch parallel method increases
the workload per thread so that this bottleneck is
avoided. Furthermore, two-level parallelism can im-
prove the performance on a CPU beyond ordinary
single-level parallelization [28] especially in compar-
ison to block-level parallelism, which is also demon-
strated in Section 4.

2.1. Implementation for CUDA

The implementation of block-relaxation algo-
rithms on GPUs is done using the NVIDIA Com-
pute Unified Device Architecture (CUDA). A short
introduction into the technology and programming
of CUDA can be found in [29, 30]. Threads in
CUDA are grouped together into thread blocks
and are executed in a Single Instruction Multiple
Threads (SIMT) fashion of 32 threads called a warp.
Thread blocks are organized into grids and each
CUDA kernel launches one grid of several thread
blocks.

The decomposition of a patch in spatial blocks
shares similarities with the CUDA architecture.
But mapping a spatial block to a thread block or a
patch to a grid on the GPU is nontrivial in the case
of block smoothing. The mapping has an impact on
the level of parallelism that can be achieved using
different spatial block and patch sizes. We suggest
the following two strategies for processing patches
on the GPU:

Strategy 1: One thread block processes all spa-
tial blocks within a patch as in Figure 3a. The
thread block sweeps through the patch. In this case
a GPU grid maps different thread blocks to different
patches. Spatial blocks in different patches are pro-
cessed in parallel resulting in two-level parallelism.

Strategy 2: One patch is processed by several
thread blocks on the GPU as shown in Figure 3b.
Here single-level parallelism exists if the patch size
is large enough that the maximum number of sched-
uled thread blocks on the GPU is reached. In this
case only one patch can be processed at a time on
the GPU. If the patch size is small enough that
multiple patches can be processed in parallel, then
two-level parallelism is possible.

In this paper we explore Strategy 2 for the pre-
sented implementations of the block smoothing re-
laxation. Strategy 1 will be explored in future re-
search projects. In addition to the patch mapping,
the spatial blocks must be mapped to the thread
blocks on the GPU. A common method for spa-
tial blocking is overlapping axis-aligned 3D blocking
[31], in which a spatial block of dimension bx×by×bz
with neighbor cells R is loaded into on-chip mem-
ory, leading to some redundant memory transfers
for the neighbor cells. 3D blocking can be opti-
mized by a 2.5D sliced blocking technique such as
[32] or [31]. In 2.5D slicing, a block is decomposed
into slices of cells. These slices are processed se-
quentially in an alternative blocking that preserves
some cells in the on-chip cache or even registers,
reducing global memory access. 2.5D blocking is
outside the scope of this paper but will be explored
in future work. We focus on 3D blocking of the
domain. Methods of creating a mapping from the
spatial block to the thread block are:

A. Thread blocks are larger than spatial blocks.
Several spatial blocks can be processed by one
thread block (Figure 3c).

B. Thread blocks are smaller than spatial blocks.
The thread blocks have to sweep through each
spatial block (Figure 3d).

C. Thread blocks are the same size as spatial
blocks. One thread block processes one block
in the spatial domain (Figure 3e).

The 2.5D slicing is the (B) block mapping, where
the thread block sweeps through slices of a spatial
block. Mapping (C) is used for the implementa-
tion of the block smoothing algorithm described in
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Figure 3: Examples demonstrating how to map patches to a GPU grid and how to map a spatial block to a thread block.
Figure 3a shows several patches that are mapped to one GPU grid and 3b shows one patched mapped to one GPU grid. In
Figure 3c the thread block (dashed) is larger than the spatial block (shaded), in 3d a thread block is smaller than the spatial
block and in 3e a thread block has the same size as a spatial block.

this paper. This mapping differs in two major ways
from the other mappings. First, it is not neces-
sary to sweep through the spatial domain, avoiding
the introduction of additional for-loops as would be
necessary for mapping (B). Second, there is no need
for a more fine-grained partitioning like in mapping
(A). A fine-grained partition means that in order to
identify a corresponding spatial block for a thread
in mapping (A) additional indexing must be per-
formed.

In mapping (C) each thread in a thread block b is
assigned a 3D index (i, j, k) corresponding directly
to the cell with the cell-centered spatial index. A
thread resides in two index spaces: the global 3D
space that is the index in the patch and the local
3D space that is the index within a thread block.
The global 3D index calculation in CUDA without
ghost cells using standard lexicographical ordering
can be performed in the following manner:

i = blockIdx.x× blockDim.x+ threadIdx.x

j = blockIdx.y × blockDim.y + threadIdx.y

k = blockIdx.z × blockDim.z + threadIdx.z.

(8)

For the calculations with respect to the ghost cells,
the thread index must be shifted by the ghost cell
width. The local 3D index is given by the three
threadIdx values in CUDA.

Cells of a patch including the ghost values are
stored in a 1D array. The right-hand side of Equa-
tion (3) needs no ghost values. Accessing both vec-
tors on the GPU kernel requires different indexing.
Thus a thread resides in additional 1D index spaces:
the global 1D space with and without ghost val-
ues. If the on-chip shared memory is used within a
thread block, an additional local 1D space is also re-
quired. The index calculation for the 1D space is a
simple axis projection either on the local blockDim

or the global blockDim× gridDim axis. In the re-
sulting block Jacobi iteration on the GPU, as shown
in Algorithm 2, each thread in a thread block b com-
putes the new value of a cell in the physical domain.
In the first step of Algorithm 2 the computation of

Algorithm 2 Block Jacobi algorithm on GPUs.

{Step 1 - Thread block computes residual}
rb = fb −Abub
{Barrier for shared memory update}

syncthreads()
{Step 2 - Thread block computes dgemv}
rb = Âbrb
{Step 3 - Thread block advances solution}
vb = ub + ωrb
{Step 4 - Swap the vectors}
u = v

the block residual rb is performed, including the 7-
point stencil operation from Equation (2) that each
thread performs. The computed residual rb for a
particular spatial block b is stored in shared mem-
ory on the GPU because all threads in a block must
access the residual in order to compute the matrix-
vector operation in step 2.

The second step of Algorithm 2 consists of multi-
plying the block-diagonal inverse Âb ∈ Rn×n (where
n is the product of the block dimensions) with the
block residual rb. Each thread in a thread block
performs a dot product for its particular cell. The
matrix is stored in column-major ordering to opti-
mize the memory access pattern. Step 3 advances
the solution of a spatial block. In the case of Jacobi
iteration the relaxation parameter ω = 0.8 is used
and the new block solution is stored in a second
vector v. The chaotic block Gauss-Seidel updates
the solution to ub + ωrb with ω = 1 without any
intermediate vector v. Swapping the vector v with
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u in step 4 is only necessary for the block Jacobi
iteration.

A feature of the NVIDIA GPUs is that the
GPU supports concurrent data transfers, transfer-
execution or kernel-execution overlapping [33]. De-
pending on the instruction stream in the algorithm,
either concurrent data transfers, transfer-execution
or kernel-execution overlapping is performed.

For transfer-execution overlapping, the instruc-
tions must be executed in depth-first order where
for all patches the instruction chain: memory trans-
fer to the GPU, kernel execution and the memory
transfer back to the host is executed. In this case
the transfers from and to the GPU memory can
overlap with kernel execution. To execute kernels
concurrently, the sequence of instructions must be
in breadth-first order in which the transfer for all
patches is started, then the kernel execution for all
patches and at last the transfer back to the host for
all patches. The overlapping of kernel executions is
possible only when the number of blocks executed
by one kernel does not exceed the number of blocks
that can be scheduled concurrently on the GPU.

2.2. Implementation for a Multicore Architecture

In the serial implementation of block Jacobi,
Algorithm 3 will be executed for each patch.
The CPU implementation first computes the block
residual. After this step the block residual is multi-
plied with the spatial block inverse in step 2. This is
done using the optimized Basic Linear Algebra Sub-
programs (BLAS) Level-2 (dgemv) function. Step
3 must be executed separately from step 2 because
accessing the vector v requires a global 3D index
computation. Finally advancing the solution using
the block Jacobi update scheme has to be done after
all blocks are processed in step 4.

Algorithm 3 is parallelized with OpenMP [34] di-
rectives by implementing the single-level and two-
level parallelism. OpenMP is a compiler exten-
sion that enables portable, automated thread par-
allelism for multicore CPUs. Additional informa-
tion about OpenMP programming can be found in
[35, 36]. For the single-level parallelism the im-
plementation parallelizes either the processing of
patches or the processing of blocks. In the two-
level parallelism p threads process the patches and
spawn additional q threads to process the blocks.

An OpenMP parallel for loop is used to paral-
lelize in the single-level parallelism over either the
blocks or the patches. For the two-level parallelism
an OpenMP parallel region is created to parallelize

over the patches and an additional region is created
to parallelize over the blocks using the OpenMP 3.0
collapse directive to collapse the loops over the 3 di-
mensions x, y, z.

Algorithm 3 Block Jacobi algorithm on CPUs.

for block index in Z do
for block index in Y do

for block index in X do
{Step 1 - Compute block residual}
rb = fb −Abub
{Step 2 - Compute dgemv}
rb = Âbrb
{Step 3 - Create block solution}
vb = ωrb

end for
end for

end for
{Step 4 - Advance the patch solution}
u = u+ v

The chaotic block Gauss-Seidel version of Algo-
rithm 3 uses only the single-level block parallelism
or nested parallelism to process the blocks asyn-
chronously.

3. Estimating Spatial Blocking

The block size in the physical domain influences
the convergence and smoothing properties of the al-
gorithm. For multilevel algorithms it is the latter
criteria that is of more importance and is also less
well understood theoretically other than for specific
cases. However, it is important that the algorithm
converges all error modes and our numerical exper-
iments in this subsection demonstrate this.

The results of numerical experiments on conver-
gence behavior with different block sizes for block
Jacobi and chaotic block Gauss-Seidel relaxations
are presented in Figure 4. The following block
sizes (bx, by, bz) are used: (2, 2, 2) = 8, (4, 2, 2) =
16, (4, 4, 2) = 32, (4, 4, 4) = 64, (8, 4, 4) = 128,
(8, 8, 4) = 256, (8, 8, 8) = 512. We use (4, 2, 2) in-
stead of (2, 4, 2) or (2, 2, 4) because the x-dimension
provides the fastest memory access in our im-
plementation. We note that for problems with
anisotropic coefficients this may not be the best
choice.

For the convergence study a patch size of 643 is
used. The relative error estimate is computed af-
ter 3 smoothing steps with a random initial guess.
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Figure 4: Convergence study of block Jacobi and chaotic block Gauss-Seidel relaxation.

In multigrid applications, performing at most 3
smoothing steps is usually sufficient to smooth the
oscillatory error modes. The selection of the 643

patch size is based on the volume to surface-area
ratio and the overall memory required to store a
patch. Considering a ghost cell width of 1, a 323

domain with ghost cells needs overall 343 cells. The
memory overhead to store the ghosts cells is 6536
cells, around 20% of the overall memory needed for
323 cells. By using a patch size of 643 the overhead
is only 10% and for 963 only 6%. Larger patches
need more memory space so that a patch size of 963

requires about 14 Megabytes in double precision to
store u and f for all cells in the Gauss-Seidel algo-
rithm and about 21 Megabytes in the Jacobi algo-
rithm. With bigger patches the number of patches
that can be processed within a GPU or CPU drops
which impacts the balance of the patch distribu-
tion across different processes. Choosing patches
between 643 and 963 is a trade-off between the num-
ber of patches, memory usage and load balancing.

In Figure 4a the relative error ‖rk‖ / ‖r0‖ is
shown for different block sizes for k = 3. Figure 4b
shows the asymptotic behavior of the convergence
factor k

√
‖ri+k‖ / ‖ri‖ where i, k defines a sliding

window for a random initial guess and a large num-
ber of smoothing steps (i ≈ 5000). The asymptotic
convergence rate for block Jacobi is reached after a
relatively few number of steps while in the case of

chaotic block Gauss-Seidel the rate will jitter from
step to step because of the chaotic updates but nev-
ertheless the estimation is fairly accurate.

The block Jacobi and chaotic block Gauss-Seidel
convergence study shows an overall monotonic im-
provement in relative error and convergence factor
by increasing the block size for a random initial
guess. The convergence in smoothing is necessary
but does not reflect in general which types of modes
have been smoothed and is outside the scope of this
paper. However, the convergence behavior serves
as a baseline for the performance evaluation with
respect to the block size for the presented imple-
mentation.

4. Experimental Results

This section presents the experimental results for
various GPU and multicore CPU implementations
of our block smoothing algorithm. In Section 4.1
the speedup of a 24-core Maranello system will be
presented. The speedup S(p) of p processors is de-
fined as the fraction of sequential over parallel wall
time on p processors. Estimating S(p) with a con-
stant problem size and increasing processor count
is called strong scaling. A speedup of S(p) = p
is ideal, as the wall time improves proportional to
the number of processors that are added. Strong
scaling gives a good understanding of how well the
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(a) Block Jacobi block size of 43.
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(b) Block Jacobi block size of 83.

2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

16

18

20

22

24

Threads

S
p
ee
d
u
p

Ideal
2-level

1-level block
1-level patch

(c) Chaotic block Gauss-Seidel block size of 43.
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(d) Chaotic block Gauss-Seidel block size of 83.

Figure 5: Speedup of block Jacobi and chaotic block Gauss-Seidel relaxation using different levels of parallelism.

algorithm scales with the tested parameter set. We
can derive the efficiency E(p) of a parallel system
with p processors from the speedup. The efficiency
is defined by the ratio S(p)/p between the speedup
and the number of processors that reaches the par-
ticular speedup.

Section 4.2 compares the wall time of different
parameter sets executing the block-relaxation algo-
rithms on the GPUs and CPUs. For the bench-
marks different hardwares including a CRAY XK7
node from the “Titan” supercomputer at Oak Ridge

National Laboratory are used. Finally in Section
4.3, we provide detailed benchmarks for inverting
the diagonal-block matrices of equation (7) with
different block sizes. All measurements presented
in this section include the update of the ghost cells
between patches.

4.1. Multicore Speedup

A state-of-the-art Symmetric Multiprocessing
(SMP) compute node equipped with two AMD
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Opteron 6168 Magny Cours CPUs is used to bench-
mark the multicore implementations. Each CPU
contains 2 dies with 12 cores, and each die has 6
shared 256 bit floating-point units. Using the two-
level parallelism 4 threads (number of dies that the
system has) are spawned to process the patches in
parallel and overall 24 threads are processing the
blocks in parallel. Figure 5 shows the strong-scaled
speedup for the block Jacobi and chaotic block
Gauss-Seidel algorithm processing 96 patches with
patch size of 643 using two different block sizes. The
selected block sizes are 43 and 83 because the ex-
periments in Section 3 suggest a good convergence
factor for 83. The block size of 43 is used to pro-
vide a contrast to the 83 with respect to the cost
of the matrix-vector multiplication, the inversion of
the block diagonal matrix and performance on the
GPU and CPU.

The results from the multicore benchmarks show
that using the patch-parallelism, block-parallelism
or two-level parallelism gives similar scalability, es-
pecially when using block size of 83 though the
patch-parallelism is the best for block size 43. A
maximum speedup around 18 is reached for the
block Jacobi and 20 for chaotic block Gauss-Seidel
using block size 83.

This leads to an efficiency of about 80% on
the 24-core machine. Choosing a block size of 43

drops the maximal speedup for both algorithms
to about 12 for block Jacobi and 14 for chaotic
block Gauss-Seidel. The patch-parallel version of
the chaotic block Gauss-Seidel is in fact a standard
block Gauss-Seidel relaxation without chaotic up-
dates because the blocks are processed in serial.

A larger block size leads to better scalability with
respect to efficiency for both algorithms. The two-
level parallelism scales as well as the patch-parallel
version and allows the chaotic block update in the
Gauss-Seidel scheme.

From the speedup results we see that the block
Jacobi algorithm gains more from processing the
patches in parallel than processing the blocks in
parallel, because the block-parallel version does not
scale well with smaller block sizes. The patch-
parallel or nested-parallel versions of Jacobi scale
better because the solution uk+1 is advanced for
the patches in parallel. In the case of the chaotic
block Gauss-Seidel the block parallel version scales
better for smaller block sizes than the two-level par-
allelism. The stairstep pattern in the speedup of
the two-level parallelism indicates a workload im-
balance caused by adding block parallelism to the

patch parallel version.

4.2. Algorithm Performance

In this section we present measurements that
have been taken on the systems listed in Ta-
ble 1 and from now we reference the system by
its name. One system named ‘Maranello’ con-
sists of two AMD Opteron 6168 CPUs and one
NVIDIA TESLA C2050 (Fermi) [37]. The other
system named ‘Interlagos’ is a CRAY XE6 [38] node
equipped with two AMD Opteron 6272 CPUs and
a CRAY XK7 node [39] provides the benchmarks
for the NVIDIA TESLA K20X (Kepler) GPU [40].
Floating-Point Units (FPUs) on the NVIDIA Fermi
GPU are arranged as a set of 32 in each Streaming-
Multiprocessor (SM), while on the NVIDIA Ke-
pler GPU, each Streaming-Multiprocessor (SMX)
comprises of 192 single-precision CUDA cores, 64
double-precision units, 32 special function units,
and 32 load/store units. On the CPUs the arrange-
ments of FPUs are different as for Maranello each
die consists of 6 FPUs and for Interlagos each die
has 4 FPUs but 8 integer units. The different FPU
arrangements reflect one difference between the two
AMD architectures. All benchmarks in this section
exclude the time to compute the inverses. Timings
to compute the inverses are presented in Section
4.3.

The GPU has the option to overlap as described
in Section 2.1. A benchmark is used to explore
the performance of the different overlapping tech-
niques to estimate which method should achieve the
best performance for different patch sizes. Figure 6
shows the wall time for 3 smoothing steps varying
numbers of patches and the patch size on the Kepler
GPU by exploiting kernel overlapping (breadth-
first) or kernel transfer overlapping (depth-first).
Figure 6 also shows the wall time for the Interlagos
system using the two-level parallelism for compari-
son.

The depth-first overlapping strategy is slightly
better than the breadth-first approach for patch size
of 163, and they give almost identical timings for
patch sizes 643. Moreover, they both outperform
the CPU timings taken on Interlagos by a factor
around 2.5. Note that all these timings include up-
dating the ghost cells among the patches. The bot-
tom line in Figure 6a and 6b is the time required
to update the ghost cells. When the patch size is
163, updating the ghost cells takes about 70% of
the GPU time and 25% of the CPU time, and while
the patch size is 643, it consumes around 15% of the
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Name Processors Cores Speed GFLOPS Watts

Interlagos (XE6) 2 × AMD 6272 4× 8 = 32 2.1 GHz ∼295 230

Maranello 2 × AMD 6168 4× 6 = 24 1.9 GHz ∼202 230

Fermi 1 × NVIDIA C2050 14× 32 = 448 1.2 GHz ∼515 238

Kepler (XK7) 1 × NVIDIA K20X 14× 192 = 2688 0.73 GHz ∼1310 235

Table 1: Test systems for the performance benchmarks. The column Cores shows the processor core configuration, the columns
Speed and GFLOPS the chip clock speed and the theoretical peak performance in double precision of the cores and the column
Watts the power consumption in Watts.
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(a) Patch size 163 and block size of 83.
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(b) Patch size 643 and block size of 83.

Figure 6: Chaotic Gauss-Seidel relaxation on Kepler using different overlapping techniques.

GPU time and 5% of the CPU time. This indicates
that using patch size of 643 or larger may be more
preferable in AMR applications.

For the benchmarks the focus is on patch sizes
of at least 643 so that the timings are taken with
depth-first asynchronous memory transfer from and
to the GPU in each smoothing step, while the CPU
implementation does not need to execute memory
transfers after each step. Timings for the CPU code
are taken from the two-level nested version. In Fig-
ure 7 the wall time, smoothing selected parameter
sets is shown for the block Jacobi and for chaotic
block Gauss-Seidel relaxations.

Three smoothing steps are executed on varying
parameter sets. Each parameter set is defined by
patch size, number of patches and block size. Sets
with patch sizes of 643 and 963 and block sizes of
43 and 83 are benchmarked. The Interlagos out-

performs the Maranello because of its higher peak
performance.

Both GPUs perform better than the multicore
systems. The Kepler is faster then the Fermi be-
cause of the new architecture and higher peak per-
formance. The wall time using the parameter set
(643/96/83) for both algorithms on the Kepler is
about 2.2× faster than the multicore time on the
32-core Interlagos machine.

The selected application parameter sets use the
same patch sizes which are characteristic of one
class of AMR methods. However, for another class
of AMR applications the patch size can vary. We
benchmark the performance of the block smoothers
using different patch sizes to better reflect the prac-
tical performance for this latter class of AMR meth-
ods. For estimating the practical performance, a
benchmark executing the smoothing algorithms on
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(a) Block Jacobi relaxation.
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(b) Chaotic block Gauss-Seidel relaxation.

Figure 7: Time to smooth with chaotic block Gauss-Seidel and block Jacobi relaxations. The data is grouped by parameter
set (patch size / number of patches / block size) for different systems.

Patch size # #Cells Block size

64× 64× 64 80 62,914,560 8× 8× 8

80× 80× 80 80 122,800,000 8× 8× 8

Mixed 80 130,252,800 8× 8× 8

96× 96× 96 80 212,336,640 8× 8× 8

Table 2: Patch sets for smoothing fixed number of 80 patches
using sets of the same and mixed sizes.

patch sets with the same patch sizes and sets with
different sizes as listed in Table 2. All sets consist of
80 patches and the mixed patch set is divided into
subsets of 16 patches with 643, 723, 803, 883 and
963. The ratio of cells between 643 and 803 is 1.89
and the ratio of cells between 643 and the mixed
set is 2.07. The ratio of cells between 803 to 963 is
1.72 and the ratio of cells between mixed and 963

is 1.63.

Figure 8 shows the wall time for smoothing
patches of the same and mixed sizes using block
Jacobi or chaotic block Gauss-Seidel on the fastest
GPU and the CPU system. The time for smoothing
the patches on the GPU increases roughly propor-
tionally to the number of cells independent of the
mixed patch sizes for both algorithms. This behav-
ior is expected because no synchronization is needed
at the end of a processed patch and the memory
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Figure 8: Smoothing sets of patches with the same and with mixed sizes.

transfer overlaps with the kernel execution. Es-
sentially the GPU just batch processes block after
block without stalling. However, the behavior is not
the same in the CPU implementation. In the CPU
implementation the wall time increases proportion-
ally to the patch size for constant-size patches. For
the mixed patch size set the wall time is closer to the
time that is needed to smooth the largest patches.
The reason for the poor performance of the mixed
set is that the OpenMP threads looping over the
blocks must join after the patches are processed,
and end up waiting for the largest patches.

Load balancing in the case of mixed patch sizes
is an issue that depends on the ordering of the
patches. In reality, the ordering of patches is ran-
dom and in the worst case one thread gets all the
larger patches. Using a naive approach by parti-
tioning the patches without respect to the size has
a potential for imbalance. The computation of an
optimal partitioning is a variation of the bin pack-
ing problem which is known to be NP-hard. We
can control the ordering of patches in the bench-
mark and if the patches are partitioned perfectly
(each thread has the same amount of work) then
the wall time for the mixed set drops to 4.37 sec-
onds for block Jacobi and 3.96 seconds for chaotic
block Gauss-Seidel.

Smoothing using mixed patch sizes accelerates
the GPU wall time more than 2.9× over the CPU

wall time in the case of block Jacobi relaxation and
chaotic block Gauss-Seidel when the patches are im-
balanced. A balanced patch partitioning improves
the wall time on the CPU for the mixed set, but to
be fair the additional cost for partitioning must be
taken into consideration because it is not necessary
on the GPU.
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Figure 9: Kernel performance for chaotic block Gauss-Seidel
using different block sizes with patch size 643.

But as discussed in Section 3, another important
factor contributing to the wall time is the block
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size. The number of floating-point operations for
the stencil is constant for a thread in a thread block
regardless to the block size, so the performance
is dominated by the matrix-vector multiplication
of the block inverse with the residual. Figure 9
shows the wall time for smoothing 3 iterations on
64 patches with a patch size of 643 using differ-
ent block sizes for the chaotic block Gauss-Seidel
method.

The GPU outperforms the CPU for all cases con-
sidered. For a block size of 83 more than 67 million
cells per second can be smoothed on the Kepler and
around 31 million cells per second on the Interlagos.

4.3. Block inversion

Our block-relaxation algorithms require block in-
versions of diagonal blocks from the matrix that
corresponds to the discretization over the AMR do-
main. In the case of constant-coefficient stencils
the computation of the inverse must be performed
only once if the patch size is a multiple of the block
size. If the patch size is not a multiple of the block
size then two possibilities exist. Either the blocks
that do not fit at the end of the patch overlap with
the previous ones, which can potentially change the
convergence behavior, even resulting in divergence
of the smoothing algorithm for chaotic updates, or
all inverses for these cases must be precomputed.
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Figure 10: Total time to compute the inverse of either one
matrix or all block matrices for different block sizes.

Computing all inverses is a robust approach that
needs more memory and more computation time
upfront. A total of bn = bxbybz inverses are po-
tentially needed for a block of size bx × by × bz. To

estimate the inverse computation overhead a bench-
mark computes either one inverse for a block or all
inverses for a particular block size as shown in Fig-
ure 10.

The inversion is performed using a sequential
BLAS library on the Interlagos system. Comput-
ing the inverses can be done in parallel but the cost
of computing the inverses in serial is negligible in
both cases. For example, computing the inverse
of the block size 83 takes 0.06 seconds on Interla-
gos, or about 4% of the wall time of 1.51 seconds
needed for one simulation iteration smoothing three
steps with 64 patches of size 643 using chaotic block
Gauss-Seidel on the same system. In the case of
multiple inverses this fraction increases but is also
negligible because the inverses have to be computed
only once for the whole simulation in the case of
constant-coefficient stencils and therefore the time
for precomputing the inverses is amortized over a
few simulation steps. For example, in our typical
AMR simulations the inverses can be reused thou-
sands of times.

5. Conclusions and Future Work

We implemented our block smoothing algorithm
for structured adaptively refined meshes using block
Jacobi and chaotic block Gauss-Seidel relaxations
for modern GPUs and multicore CPUs. Our multi-
core implementation scales on a 24-core machine
with an efficiency of 80%, achieving a speedup
around 20 by exploring multiple parallel strategies.
The GPU version is about 2.2× faster than our best
multicore system using patches of the same sizes. In
practical benchmarks with mixed patch sizes we can
observe about 2.9× improvement using a GPU. The
peak performance of Kepler is about 4.4× the peak
of the newest CRAY XE6 compute node. An over-
all wall time acceleration from 2.2×-2.9× on Kepler
is a good result but there is still room to improve
both implementations.

The way asynchronous memory transfer on the
GPU will be issued does not have an impact on the
Kepler GPU. Comparing the block Jacobi with the
chaotic block Gauss-Seidel shows that both algo-
rithms scale in the same fashion and the chaotic
block Gauss-Seidel algorithm gives a better wall
time. The chaotic block Gauss-Seidel gives better
results in terms of convergence and relative error for
the random initial guess for almost all tested block
sizes. Increasing the block size further improves the
convergence factor for both algorithms.
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In addition we presented strategies for the paral-
lelization of the block smoothing algorithm in the
context of adaptively refined meshes. Different ab-
stract mapping strategies for the GPU were also
presented and can be used independently from the
smoothing in future structured AMR-based algo-
rithms. The implemented OpenMP versions use
single-level and two-level parallelism approaches to
realize these mappings.

Our future investigation is to optimize our block-
relaxation implementations for the next hybrid su-
percomputer architecture by exploring more GPU
parallelism like tiling the blocks or other patch map-
ping strategies. Moreover a hybrid implementation
by smoothing patches on the GPU and CPU is nec-
essary because the memory transfer and kernel ex-
ecution on the GPU is asynchronous so that the
CPU is idle during the processing on the GPU. This
wasted compute power can be used in future imple-
mentations. We also plan to use the implemented
block relaxation algorithms in multilevel precondi-
tioners to solve complicated multi-physics problems
on distributed systems.
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