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I review recent progress in calculating |Vus| from lattice QCD from koan and

hyperon system. A preliminary result from the first dynamical calculation in the

hyperon channel is also included.

I. INTRODUCTION

The Standard Model has successfully used quantum fields to describe most of the strong

interactions in the past, where universe is composed by the the quarks with three flavors,

which interact via glunoic gauge boson. Although the electromagnetism and strong interac-

tions are not affected by quark flavor, the weak interaction, however, may change the flavor

of the quarks. This amount of overlap between the various generations is described by the

Cabibbo-Kobayashi-Maskawa (CKM) matrix.

In 1963, Cabibbo first introduced a 2 × 2 quark mixing matrix to explain semileptonic

decay in baryons; Kobayashi and Maskawa later extended the matrix to include the then-

undiscovered bottom quark sector. This becomes the CKM matrix that we are familiar with

today:

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (1)

The Standard Model requires this matrix to be unitary. This gives six unitarity con-

straints, each of which may be graphically depicted as a unitarity triangle; one such con-

straint is

|Vud|2 + |Vus|2 + |Vub|2 = 1. (2)

∗Electronic address: hwlin@jlab.org



2

From the latest PDG 2006, Vud in this unitarity equation is both the dominant term and also

very well determined from proton beta decay, 0.97377(27); Vub is very small, 4.21(30)×10−3.

This leaves the third matrix element Vus as the weak link in deciding whether or not this

unitarity equation holds. From the latest PDG number, Vus = 0.2257(21) is determined

to only 0.1%. In this proceeding, I will describe how this number can be obtained using

calculations from lattice QCD. Note that although currently Vus seems to indicate that this

unitarity equation holds within error bars, the number has been shifting around a lot during

the past few years. In 2003, it was 0.2195(23), which is more than 10 standard deviations

away from its current best value.

In quantum chromodynamics (QCD), physical observables are calculated from the path

integral. For calculations where the coupling is weak, one can perform the integral by

hand. However, for long distances the perturbative QCD series no longer converges. Thus,

to calculate from first principles, one needs help from lattice gauge theory. Lattice QCD

discretizes space-time such that the path integral over field strengths (especially at strong

coupling) can be calculated numerically. Since the real world is continuous and infinitely

large, by the end of the day we will have to take the lattice spacing a → 0 and the volume

V → ∞ limits to connect to the physical world. However, to simulate at the real pion

mass (while at the same time keeping the lattice box big enough to avoid finite-volume

effects) would require much faster supercomputers that have not yet been born. Thus, we

normally calculate with a few unrealistically large values of the pion mass, and then use

chiral extrapolation to get back to the physical pion mass.

Here, we quickly mention a few choices of fermion action that have been commonly used

in lattice QCD calculations. Each has its own pros and cons. They differ primarily by how

they maintain symmetry, their calculation cost and their discretization error. (Improved)

Staggered fermions (asqtad)[1–3] are relatively cheap for dynamical fermions, but it intro-

duces mixing among parities and flavours or “tastes”, which make its baryonic operators a

nightmare to deal with. The O(a)-improved Wilson (Clover) fermion action[4] is moderate

in cost and free of the disadvantages of the staggered actions. However, chiral symmetry

is badly broken at non-zero lattice spacing which causes operator mixing issues. Chiral

fermions (e.g. Domain-Wall or Overlap)[5–8] are free of all the above problems. They are

automatically O(a) improved, suitable for spin physics and weak matrix elements. These

benefits comes at a great cost in computation power. Last but not least are mixed actions,
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FIG. 1: A depiction of the difference between full QCD and the quenched approximation in the

example of a two-point Green function.

where one chooses difference valence and sea quark discretizations. Later in this work,

we present work done using staggered sea quarks (cheap) with domain-wall valence quarks

(chiral); we match the sea Goldstone pion mass to the DWF pion.

Before we discuss the details of the lattice calculation, it is important to mention the

“quenched” approximation or 0-flavor calculations. There are a couple of calculations men-

tioned later which use this approximation. In the path integral, the correct way to carry

out the fermionic part of integral is to integrate out the quark/antiquark fields first. This

leaves the remaining integral as a function only of the gauge links and introduces a fermionic

determinant. The “quenched” approximation fixes the fermionic determinant as a constant.

This means that when we calculate, say, a two-point Green function, as depicted in Fig-

ure 1, such as a meson correlator, internal fermion loops have been omitted; thus, there are

no internal fermion loops.

The quenched approximation was a product of the old days when the computers were

slow and algorithms were not yet sped up to today’s standards. Quenching very greatly

reduces the cost of a lattice calculation by eliminating the fermionic determinant. Of course,

modern calculations have moved on to focus on unquenched calculations. This is a lot better,

since when one ignores the fermion loops, it is very difficult to estimate how much this

will affect the final numbers; the size of the effect tends to vary greatly between different

physical quantities. However, since the calculations using the quenched approximation can

be done very fast, one can test new methodologies and ideas using this approximation before

performing unquenched (dynamical) calculations. The first lattice calculations in Kl3 and

hyperon semileptonic decay calculations were demonstrated in this approximation.

In the following, I will review the latest Vus calculations. There has been a series of works

devoted to Kl3 decays but only quenched calculations in the hyperon channel so far. In the
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second half of this work, I will show the first lattice dynamical calculation of hyperon decays

using mixed action. In the final part, I will summarize the current standing of Vus from

lattice QCD and give some future outlook.

II. LATTICE Vus CALCULATIONS

In this work, we will concentrate on three determinations of Vus: leptonic decay ratios

(mainly for completion), Kl3 decays and hyperon decays. We will compare all of them to the

number listed in PDG 2006. So far, the number from Kl3 decays has the smallest errorbar

for Vus.

A. Leptonic Decays

If one looks at the decays Kµ2 and πµ2, their branching ratios can be written in terms of

Vus/Vud and the ratio of the kaon to pion decay constant:

( |Vus|
|Vud|

)2

=

[(
fK

fπ

)2 MK

(
1−m2

µ/M
2
K

)2

Mπ

(
1−m2

µ/M
2
π

)2

(
1 +

α

π
(CK − Cπ)

)]−1

Γ(K → µν̄µ)

Γ(π → µν̄µ)
, (3)

where CK and Cπ are the radiative-inclusive electroweak corrections, and the rest of the

numbers can be obtained from experimental measurements. William J. Marciano[9] used

decay constant ratios fK/fπ = 1.210(4)(13) from a 2+1f staggered fermion calculation of

fπ and fK in 2004 done by MILC collaboration and found Vus = 0.2219(25). Of course,

there have been other full-QCD calculations since 2004. For example, RBC/UKQCD use

dynamical chrial fermions (DWF) to obtain the ratio 1.24(2)[10]. However, none of the other

collaborations have come out with a number with competitive errorbar yet In 2006, MILC

updated their own calculation, 1.208(2)(7
14)[11]; this yields Vus = 0.2223(26

14).

B. Kl3 decay

Another way to determine Vus is to look at the Kl3 decay. When one integrates out the

short-distance dependence, one is left with a low energy non-perturbative matrix element for

K to π, which can be calculated directly in lattice QCD. Using Lorentz invariance, we can

decompose the matrix element into two form factors (f+ and f−) with differing momentum
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FIG. 2: Momentum extrapolation from Ref. [13]

dependence:

〈π(p′)|Vµ|K(p)〉 = (pµ + p′µ)f+(q2) + (pµ − p′µ)f−(q2). (4)

The so-called “double ratio” technique:

〈π|sγ0u|K〉〈K|uγ0s|π〉
〈K|sγ0s|K〉〈π|uγ0u|π〉 = |f0(q

2
max)|2

(mK + mπ)2

4mKmπ

, (5)

which has been used to look at B-to-D decays[12], can also be applied to the K to π decay.

The result is a form factor that only depends on q2, the momentum transfer between the

initial and final states, and some kinetic factors. This f0 can be connected to f± through

f0(q
2) = f+(q2) +

q2

m2
K −m2

π

f−(q2). (6)

When we extrapolate to q2 = 0, f0 = f+. We sometimes study different extrapolation forms

to estimate the systematic error caused by such an extrapolation:

f0(q
2)Linear = f0(0)(1 + λ0q

2) (7)

f0(q
2)Quadratic = f0(0)(1 + λ0q

2 + cq4) (8)

f0(q
2)Polar = f0(0)/(1− λ0q

2), (9)

which is shown in Figure 2 by Becirevic et al. [13]

To remove uncertainty due to the momentum extrapolation, we can calculate the matrix

element directly at q2 = 0. The trick to this technique is to include help from “twisted”
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boundary conditions on the fermions as

ψ(x + ejL) = e2πiθjψ(x). (10)

The discretized momenta on the lattice will reflect the choice of this θj as pj = θj
2π
L

+

nj
2π
L

with nj integer. We can select θ wisely to cancel out the mass difference, so that

we can obtain f+(0) directly. Guadagnoli et al.[14] first demonstrated the advantage in

the quenched approximation. Later, UKQCD made an exploratory study on a 2+1-flavor

DWF calculation[15]. They showed that with 50% more statistics, one can get number

competitive with conventional extrapolation calculations. The advantage of this method

over the conventional one is smaller or no systematic error due to q2 extrapolation. Thus,

total error on the calculation is reduced.

After we obtain f0(0), the next step is: how do we extrapolate the pion mass to the

physical one? We can get some help from the Ademollo-Gatto (AG) theorem[16, 17]. We

know that the SU(3) symmetry-breaking Hamiltonian is:

H =
1√
3

(
ms − md + mu

2

)
qλ8q (11)

The AG theorem tells us that there is no first-order correction due to SU(3)-breaking; thus,

the correction starts at second order

f0(0) = f0(0)SU(3) + O(H2). (12)

What would be a good measure for SU(3) breaking? The most natural candidate would

be the mass splitting between the kaon and pion. So, we expect the remaining correction

should be small; thus, one would expect the “corrected” lattice f0 (after subtracting the

chiral log), f ′, should differ from f
SU(3)
0 by only a small amount. If we construct a ratio

R(mK ,mπ) =
fSU(3) − |f ′(0)|
a4(m2

K −m2
π)2

, (13)

where fSU(3) is the SU(3)-limit value; in this case, it is 1. We expect the remaining mass

dependence in Eq. 13 should be relatively small. We then extrapolate the remaining mass

dependence to the physical sum of the pion and kaon masses-square

R(mK , mπ) = c0 + c1a
2(m2

K + m2
π). (14)

Thus, Vus can then be obtained from

Γ(Kl3) =
G2

F M5
K

128π3
|Vus|2SEW|f+(0)|2C2

KI l
K(λi)(1 + δK

SU(2) + δKl
EM). (15)
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Group Nf Sf Mπ (GeV) # conf f+(0)

SPQcdR[20] 0 Wilson 0.500–1.000 230 0.961(09)

JLQCD[21] 2 Clover 0.440–0.960∗ N/A 0.967(06)

RBC[22] 2 DWF 0.475–0.700 94 0.955(12)

HPQCD[23] 2+1 Staggered 0.500–0.700 N/A 0.962(11)

RBC/UKQCD[19] 2+1 DWF 0.390–0.700 150 0.961(05)

TABLE I: Summary of existing published f+ calculation from Kl3 decay

The decay width, Γ(Kl3), is taken from experiment, while the phase-space integral I l, isospin

breaking ∆SU(2), long-distance electromagnetic corrections ∆EM and short-distance radiative

corrections SEW are taken from perturbative calculations.

Table I summarizes the results from various lattice QCD groups: quenched, partially

quenched and full QCD, fermion action variety and the range of the pion mass. Figure 3

f+ is taken from individual calculations; combined with the latest PDG 2006 number for

|f+Vus| = 0.2169(9). Note the Vus number may be very be different from the ones given in

the original papers, due to the updated progress in experimental measurements. The grey

band in the graph is the range allowed assuming unitarity holds. All the lattice calculations

so far have agreed with the old estimation from Leutwyler-Roos in 1984[18]. However, not

every paper has complete estimations of the systematic errors due to lattice artifacts. The

work done by RBC/UKQCD[19] is one of the exceptions, and thus I quote their number as

representative of the Vus from Kl3 decay channel: 0.2257(14).

C. Hyperon decays

Hyperon decays provide us with an additional independent channel for determining Vus.

We start by looking at the low-energy contribution of the transition matrix elements for

hyperon beta decay, B1 → B2e
−ν; in low-energy effective theory this can be written as

M =
Gs√

2
uB2(O

V
α + OA

α )uB1ueγ
α(1 + γ5)vν . (16)
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FIG. 3: Lattice |Vus| summary with unified experimental numbers from PDG

From Lorentz symmetry, we expect the matrix element composed of any two spin-1/2 nucleon

states, B1 and B2, to have the general form

OV
α = f1(q

2)γα +
f2(q

2)

MB1

σαβqβ +
f3(q

2)

MB1

qα (17)

OA
α =

(
g1(q

2)γα +
g2(q

2)

MB1

σαβqβ +
g3(q

2)

MB1

qα

)
γ5 (18)

with transfer momentum q = pB2 − pB1 and V, A indicating the vector and axial currents

respectively.

The vector form factor is connected to Vus via

Γ = G2
F |Vus|2 ∆m5

60π3
(1 + δrad) (19)

×
[(

1− 3

2
β

) (|f1|2 + |g1|2
)

+
6

7
β2

(
|f1|2 + 2|g1|2 + Re(f1f

∗
2 ) +

2

3
|f 2

2 |
)

+ δq2

]
,(20)

with ∆m = mB1 −mB2 , β = ∆m/mB1 , the radiative corrections δrad, and δq2(f1, g1) taking

into account the transfer-momentum dependence of f1 and g1 [24]. Generally, the ratios

of g1/f1 from experiment and f2/f1 in the SU(3) limit are used to get Vus from hyperon

decays.

In 2003, Cabibbo et al.[25] used f2/f1 and f1 in the SU(3) limit, combined with exper-

imental decay width (or rate) and g1/f1, to obtain Vus from various channels of hyperons
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Channel f
SU(3)
1 |f1Vus| (g1/f1)

SU(3) (g1/f1)
exp

n → p 1 n/a F + D 1.2670(30)

Λ → p −
√

3/2 0.2221(33) F + D/3 0.718(15)

Σ− → n −1 0.2274(49) F −D −0.340(17)

Ξ− → Λ
√

3/2 0.2367(97) F −D/3 0.25(5)

Ξ− → Σ0
√

1/2 n/a F + D n/a

Ξ0 → Σ+ 1 0.216(33) F + D 1.32(22)

TABLE II: Summary of a few hyperon numbers

decay, as shown in Table II. It is not hard to see that if lattice calculations can provide

better estimates of g1/f1, we can improve the precision of Vus from hyperon decays and

possibly get a better estimation than the Kl3 channel ones.

So far, there are only two quenched lattice calculations of hyperon beta decay, and they

are in different channels, Σ → n and Ξ0 → Σ+. Guadagnoli et al.[26] extrapolate the matrix

element Σ → n via an AG ratio, similar to the discussion in the Kl3 decay case, but using a

dipole form to extrapolate to the zero-transfer momentum point. All of the pion masses are

larger than 700 MeV; their final numbers are f1 = −0.988(29)stat and Vus = 0.230(5)exp(7)lat.

Sasaki et al.[27] use lighter pion masses 530–650 MeV and DWF to look at the Ξ0 decay

channel. They extrapolate the vector form factor f1 via the variable δ = (mB2 −mB1)/mB2 .

The Ademollo-Gatto theorem suggests the leading-order effect should be δ2, and thus one

can fit f1(0) to the form c0 + c1δ
2. Their final numbers are f1 = 0.953(24)stat and Vus =

0.219(27)exp(5)lat. Unfortunately, the experimental determination of the decay rate is lousy;

despite f1 in Ξ decay channel being compatible within errors, Vus is not well-determined.

This may further improve in the future with updates from Fermilab KTeV and CERN NA48

collaborations. One important thing to note is that neither of the calculations has systematic

error estimate from quenching effects, which we expect might be significant.

We have taken data looking at both hyperon channels with a dynamical lattice calculation

for the first time. We use a mixed action, meaning that the sea (staggered) and valence

(DWF) fermions have different discretization. Our pion masses are relatively lighter than

the quenched calculations. We only simulate one strange quark mass, which unfortunately

does not reproduce the correct strange-strange Goldstone mesons. We find a box size around
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Label mπ (MeV) mK (MeV) Σ− → n conf.

m010 358(2) 605(2) 600

m020 503(2) 653(2) 420

m030 599(1) 688(2) 561

m040 689(2) 730(2) 306

TABLE III: Configuration information

2.6 fm and list a few other important parameters in Table III. In this work, we report

on our preliminary calculation in the Σ− → n channel. We use a projection operator

T = (1−γ5γ3)(1+γ4)/2 in both two- and three-point Green functions and construct a ratio

Rjµ =
ZV ΓΣN

µ,GG(ti, t, tf ,
→
pi,

→
pf ; T )

ΓNN
GG (ti, tf ,

→
pf ; T )

√
ΓΣΣ

PG(t, tf ,
→
pi ; T )

ΓNN
PG (t, tf ,

→
pf ; T )

×
√

ΓNN
GG (ti, t,

→
pf ; T )

ΓΣΣ
GG(ti, t,

→
pi ; T )

√
ΓNN

PG (ti, tf ,
→
pf ; T )

ΓΣΣ
PG(ti, tf ,

→
pi ; T )

, (21)

to cancel out kinetic and overlap Z factors. With multiple intertions of the momentum, we

can solve for the individual form factors in Eq. 17.

We need to extrapolate to zero momentum. We use a dipole form, as has been used in mo-

mentum extrapolation for many baryons’ momentum dependence. For the mass extrapola-

tion, a similar approach to the Kl3 case can be applied here with the help of Ademollo-Gatto

theorem. We first construct a ratio and then extrapolate the mass dependence according to

Eq. 13, as shown in Figure 4. Since our heaviest pion mass is much closer to the strange

Goldstone meson mass, due to the mass difference in the denominator of the ratio, the

magnitude of this point, both central value and especially the errorbar size, increases a lot.

Thus, it provides only very weak constraint to the fit; hence this is not an ideal solution for

our data.

Alternatively, we can combine the given two-step process into one, by performing a two-

dimensional fit to the sum and difference of kaon and pion masses, as shown in Figure 5.

But this fit is not ideal either since the constraints from the data points are not strong: only

four points to define a two-dimensional surface.

A better constrained fit can be composed by combining the momentum and mass depen-
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dence into a single simultaneous fit:

f1(q
2) =

1 + (M2
K −M2

π)
2
(A1 + A2 (M2

K + M2
π))(

1− q2

M0+M1(M2
K+M2

π)

)2 . (22)

Figure 6 shows the result from simultaneously fitting over all q2 and mass combinations.

The z-direction indicates f1, while the x- and y-axes indicate mass and transfer momentum.

The surface is the fit using Eq. 22 with color to indicate the different mass. The columns

are the data and the momentum points from different pion masses line up in bands. Our

preliminary result for f1 is −0.88(15). This leads us to a Vus somewhat larger in central

value than the other calculations but still agrees with them due to the large errorbar. The

statistics will be greatly improved at the lightest pion mass data in the near future.

III. CONCLUSION AND OUTLOOK

To summarize, there are various ways that lattice QCD calculations can help to determine

Vus in the CKM matrix. (Similar approaches can be applied to the rest of the elements

with effective lattice fermion actions.) Firstly, we can use the lattice input from the kaon

and pion decay constant ratios. Currently, MILC has best determined ones, resulting in

Vus = 0.2226(26
15). Secondly, we can use the form factor from Kl3 decay matrix elements:

here we use the number from RBC/UKQCD, 0.2257(14), in which a sound study and proper
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systematics are included.

Finally, we can use the form factors from hyperon decays. We have started the first

full-QCD 2+1-flavor dynamical calculation. Our preliminary results show consistency with

previous calculations, but have larger errorbar due to the choice of lighter pion mass. The

larger statistical error is partially compensated by the decrease in systematic error due to

extrapolating the pion mass to the physical one. To improve the Vus value from the hyperon

decays, reducing our statistical error on vector form factor and improving the accuracy on

g1/f1 to replace the experimental one. Using these strategies, we can make our calculation

of |Vus| equivalent to or better than the one from the Kl3 channel.
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