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Program Definition 

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in 

energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical 

processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable 

and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, 

separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties 

compared to conventional molecular solvents, and they provide a new and unusual environment to test our 

theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence 

physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby 

affect the courses of chemical reactions and product distributions. 

Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be 

significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary 

steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their 

effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate 

pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed 

above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in 

ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and 

consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic 

Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to 

evaluate the influence of ILs on charge transport processes. 

Methods. Picosecond pulse radiolysis studies at BNL’s Laser-Electron Accelerator Facility (LEAF) are used to 

identify reactive species in ionic liquids and measure their solvation and reaction rates. We and our collaborators (R. 

Engel (Queens College, CUNY) and S. Lall-Ramnarine, (Queensborough CC, CUNY)) develop and characterize 

new ionic liquids specifically designed for our radiolysis and solvation dynamics studies. IL solvation and rotational 

dynamics are measured by TCSPC and fluorescence upconversion measurements in the laboratory of E. W. Castner 

at Rutgers Univ. Investigations of radical species in irradiated ILs are carried out at ANL by I. Shkrob and S. 

Chemerisov using EPR spectroscopy. Diffusion rates are obtained by PGSE NMR in S. Greenbaum’s lab at Hunter 

College, CUNY and S. Chung’s lab at William Patterson U. Professor Mark Kobrak of CUNY Brooklyn College 

performs molecular dynamics simulations of solvation processes. A collaboration with M. Dietz at U. Wisc. 

Milwaukee is centered around the properties and radiolytic behavior of ionic liquids for nuclear separations. 

Collaborations with C. Reed (UC Riverside), D. Gabel (U. Bremen) and J. Davis (U. South Alabama) are aimed at 

characterizing the radiolytic and other properties of borated ionic liquids, which could be used to make fissile 

material separations processes inherently safe from criticality accidents. 

 

Recent Progress 

EPR studies of radical species in ILs. Since our standard technique of transient optical detection cannot detect 

many important intermediates that lack strong absorption features, particularly hole-derived species, we have begun 

to use EPR to identify ionization products in ILs [11]. Radical intermediates were generated by radiolysis or 

photoionization of low-temperature ionic liquid glasses composed of ammonium, phosphonium, pyrrolidinium, and 

imidazolium cations and bis(triflyl)amide, dicyanamide, and bis(oxalato)borate anions. Large yields of terminal and 

penultimate C-centered radicals are observed in the aliphatic chains of the phosphonium, ammonium and 

pyrrolidinium cations, but not for imidazolium cation (where the ring is the predominant site of oxidation). This 

pattern is indicative of efficient deprotonation of a hole trapped on the parent cation (the radical dication) that 

competes with rapid electron transfer from a nearby anion. This charge transfer leads to the formation of stable N- or 
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O-centered radicals; the dissociation of parent anions is a minor pathway. Production of •CF3 from (CF3SO2)2N
-
 

evidently proceeds primarily through an excited state of the anion rather than via ionization. 

Radiolysis of simulated IL-based nuclear extraction systems. Addition of 10-40 wt% of trialkylphosphate (a 

common agent for nuclear separations) has relatively little effect on the fragmentation of the ILs. The yield of the 

alkyl radical fragment generated by dissociative electron attachment to the trialkylphosphate is < 4% of the yield of 

the radical fragments derived from the IL solvent. The currently used hydrocarbon/tributylphosphate extraction 

systems involve a highly resistant, structurally simple solvent (like kerosene) that efficiently transfers charge
 
and 

energy
 
to the functional solute (tributylphosphate), resulting in the fragmentation of the latter and degradation of 

extraction efficiency. The results suggest a different paradigm for radiation protection: a solvent in which the 

damage transfer is reversed. Such a solvent actively protects the functional solute in a sacrificial way, but overall 

radiolytic damage is still kept to a low level by the radiolytic properties of the solvent [11] (in collaboration with I. 

Shkrob and S. Chemerisov, ANL). 

Charge transfer in ionic liquids - effects on driving force/thermodynamics, reorganization energy and 
reorganizational dynamics. Charge transfer processes in ionic liquid (IL) media are important to understand 
because of their applications in solar photoelectrochemical cells, electrochromic displays, fuel cells, batteries and 
other advanced devices where the properties of ILs provide advantages. Our program to investigate the effects of 
ionic liquids on intramolecular charge transfer reactions continued with the development of a new peptide-bridged 
donor acceptor complex incorporating coumarin 343 and the excited-state electron acceptor and 
dimethylphenylenediamine as the donor (C343-(pro)n-DMPD). This complex was chosen over the previously 
studied system using a tetramethylrhodamine acceptor because of the latter chromophore’s conformational lability 
and resultant complicated photodynamics. The C343 chromophore has several advantages, the first being that it is 
conformationally rigid. The photophysics of the structurally 
similar coumarin 153 have been well characterized, and it has 
been used previously to measure solvation dynamics in many 
ionic liquids, as well as molecular solvents, by means of the 
emission Stokes shift. Solvation dynamics in ionic liquids are 
known to be slower than in molecular solvents and to have 
components that are spread across picosecond to nanosecond 
time scales. To the extent that the solvation process extends into 
the time scale for electron transfer (ET), it affects the 
thermodynamics and reorganization energy of the ET process, resulting in complicated kinetics that need to be 
understood in order to exploit the advantages of ILs in the above-mentioned applications. The emission Stokes shift 
of the C343 chromophore provides an internal gauge of the solvation process while at the same time participating in 
the electron transfer reaction. In preliminary work, the subject compounds have been prepared and studies in 
methanol (where solvation is much faster than ET) have indicated an electron transfer process with straightforward 
kinetics (  ~ 470 ps at 21 °C for C343-(pro)1-DMPD). (in collaboration with H. Y. Lee, E. W. Castner, S. S. Isied, 
and Y. Issa, Rutgers Univ.) 

Ultrafast Single-Shot radiolysis of ionic liquids. UFSS experiments were done on the ionic liquids C4mpyr 

NTf2 and MeBu3N NTf2 in neat form and with various concentrations of several electron scavengers. Data collected 

at 900 nm with increasing benzophenone concentrations shows the disappearance of the spectral shift associated 

with the electron solvation process, indicating highly effective scavenging of pre-solvated electrons. Additional 

results will be presented. 

 

Future Plans 

Electron solvation and reactivity. The competition between the electron solvation and electron capture 

processes in ionic liquids will be explored to test the validity of pre-solvated electron scavenging mechanisms 

advanced in the literature. Electron solvation dynamics in several families of ILs will be measured by pulse-probe 

radiolysis and ultrafast single-slot spectroscopy (UFSS) developed at BNL by Andrew Cook.. Solvation phenomena 

in ionic liquids will also be measured by observing the time-resolved absorption spectral shift of highly 

solvatochromic benzophenone anion and time-resolved fluorescence Stokes shifts of solvatochromic dyes such as 

coumarin 153. Our experimental work will be supported by molecular dynamics simulations performed by Prof. 
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Mark Kobrak of Brooklyn College, CUNY. Subsequently, scavengers will be added to measure the kinetics of pre-

solvated electron capture. It is well known from work in molecular solvents that many scavengers, for example 

SeO4
2-

, have widely different reactivity profiles towards pre-solvated and solvated electrons. We have begun 

quantitative measurement of the scavenging profiles of benzophenone, SeO4
2-

, NO3
-
, and Cd

2+
 using the UFSS 

detection system. By quantitative measurement of the scavenging profiles of many reactants, we seek to provide a 

mechanistic basis for understanding scavenging profiles that can be applied to real-world applications such as 

predicting radiolytic product distributions during the processing of radioactive materials. 

The influence of ionic liquid on charge transfer reactions. Pulse radiolysis and flash photolysis will be used to 

study how ionic liquids affect electron-transport reactions related to solar energy photoconversion systems, where 

their characteristics may prove valuable. IL-based photoelectrochemical cells have already been reported. Focus 

areas will be the combined effects of ionic solvation and slow solvent relaxation on the energy landscape of charge 

transport, including specific counterion effects depending on the ionic liquid, and the influence of the lattice-like 

structure of ionic liquids on the distance dependence of electron transport reactions. 

The studies of ionic liquid environment effects on photoinduced electron transfer in the C343-(pro)n-DMPD 

system will be continued with extensive measurements on the n = 1, 2, 3 systems in several ionic liquids and 

representative molecular solvents (methanol, water, acetonitrile, dichloromethane). Electrochemistry will be used to 

estimate the reaction driving forces and kinetic measurements will be used to obtain activation parameters (including 

pressure dependence) for the ET systems in the various ionic and molecular liquids. The ionic liquids will be 

selected so as to vary the solvation time scales across the electron transfer regime, but the early work will focus on 

low-viscosity, quick-relaxing ionic liquids that most resemble molecular solvents. Conformational and electronic 

structure calculations will be performed on the donor-acceptor systems to aid interpretation of the experimental 

results. This detailed information will allow elucidation of ionic liquid effects and quantitative comparison of the 

differences between ionic and molecular liquids. In the second year, electron transfer studies on the C343-(pro)n-

DMPD system will be carried forward into ionic liquids that are more viscous and have solvation dynamics on 

longer timescales than electron transfer in order to examine the influence of dynamics on the electron transfer 

process, a long-sought but difficult to achieve goal when working with molecular solvents. The results with the 

C343 chromophore will be supplemented by studies using the system we studied previously in molecular solvents 

(J. Phys. Chem. B. 2007, 111, 6878) with pyrenesulfonate in place of C343. The dipole change in the pyrene excited 

state is much smaller than for C343, making the Stokes shift negligible and providing another vantage point from 

which to examine the ET process. (in collaboration with H. Y. Lee and E. W. Castner, Rutgers Univ.) 

EXAFS studies of structure and reaction dynamics in ionic liquids. In collaboration with R. Crowell and D. 

Polyanskiy, we are using Br EXAFS to study IL structure and Br
-
 ion solvation environment in neat and diluted 

bromide ionic liquids and the effect of solutes. We will use photoionization coupled with time-resolved EXAFS to 

probe the solvation dynamics of Br
0
 atoms in ILs and the effect of the ionic liquid environment on the Br

-
 + Br

0
  

Br2
- 
reaction. The results can be applied to understanding related iodide systems of interest in solar photoconversion. 
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