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Abstract. Charmonium is an attractive system for the application of lattice QCD methods
owing to the possibility of computing with the physical quark mass in a reasonable time. While
the sub-threshold spectrum has been considered in some detail in previous works, it is only very
recently that further properties such as radiative transitions and two-photon decays have come
to be calculated; herein we discuss this recent progress.

1. Introduction
Between 3 and 3.7 GeV a number of states exist which are believed to be the bound states of a
charm quark and an anti-charm quark and whose widths are narrow owing to their being below
the threshold to decay to a pair of open charm mesons coupled with the supression of annihilation
channels at this high mass scale. Because the hadronic contributions to their widths are so small,
radiative transitions between them constitute considerable branching fractions, and the rates of
these transitions have been measured with some accuracy by a number of experiments [1].
Additionally the C = + states can decay to a pair of photons - this process when time-reversed
can serve as a production mechanism (two-photon fusion) at e+e− machines.

Rates for these radiative processes have been computed in various varieties of quark-model,
and are typically fairly successful when one sets parameters using the experimental spectrum,
however corrections beyond approximations like non-relativistic dynamics are often uncontrolled
in these models.

In two recent papers, these quantities were addressed in a relativistic, field-theoretic
realization of QCD. The theory is rendered computable by considering space-time to be a finite
grid of points, allowing numerical evaluation of Euclidean correlation functions. Additionally,
an approximation is made in that the effect of light-quark degrees-of-freedom were neglected,
as were the effects of closed charm-quark loops. This ’quenched’ approximation is a reasonable
approximation to a version of QCD in which there is one heavy flavour of quark - its main
differences with respect to the threory manifested in nature is believed to lie in the incorrect
running of the coupling (via an incorrect beta-function) and the neglect of coupling to open
charm meson decay channels.



0 1 2 3 4 5

Q
2
 (GeV

2
)

0

0.2

0.4

0.6

0.8

1

f η c(Q
2 )

temp. pf = (000)

spat. pf = (000)

temp. pf = (100)

spat. pf = (100)

VMD (mV = 2.917 GeV)

0 1 2 3 4 5

Q
2
 (GeV

2
)

0

0.2

0.4

0.6

0.8

1

f χ c0
(Q

2 )

temp. pf = (000)

spat. pf = (000)

temp. pf = (100)

spat. pf = (100)

Figure 1. ”form-factors” of (a) ηc and (b) χc0

2. Radiative Transitions
In [2], radiative transitions between charmonium states were extracted from a combination of
two- and three-point functions. Details can be found in [2], here we will just mention that we used
Domain Wall Fermions on anisotropic quenched lattices with antiperiodic boundary conditions
in the temporal direction. We warn the reader that these are computations at one lattice spacing
only, so that one should assume some undetermined systematic error from extrapolation to the
continuum.

2.1. Vector Current “Form-Factors”
Charge-conjugation eigenstates do not have electromagnetic form-factors. At the quark level this
can be attributed to the equal and opposite charge of the quark and the antiquark. Nevertheless
by coupling a vector current to the quark only one can measure a “form-factor” that gives
information about the internal structure of the state.

The ηc, analogously to the pion, has one vector form factor defined by 〈ηc(~p′)|jµ(0)|ηc(~p)〉 =
fηc(Q2)(p′ + p)µ. Figure 1(a) shows fηc(Q2) as extracted in this calculation.

The orange curve in Figure 1 is the result of a fit to the data assuming the form f(Q2) =
exp[− Q2

16β2 (1 + αQ2)] where β = 480(3)MeV, α = −0.046(1)GeV−2. This corresponds to a
’vector current radius’ of 0.25 fm, somewhat justifying our use of a box of spatial length 1.2 fm.
These numerical results are compared with quark models in [3].

The J/ψ, like the deuteron, has three vector current form-factors. A convenient set, known
as the charge, magnetic dipole and electric quadrupole form-factors are defined in e.g. Ref [2].
Our results are shown in figure 2. Note that they are in accord with non-relativistic intuition -
the charge radius is rather similar to that of the ηc, the magnetic dipole moment (µ = GM (0)

2MJ/ψ
)

is rather close to 2, and the quadrupole moment (corresponding to D-wave admixture) is very
small.

The scalar χc0 has a form-factor decomposition identical to the ηc. Our results, shown in
figure 1(b) indicate a larger charge radius than the ηc as expected for a P -wave state with a
centrifugal barrier.

2.2. Transition Form-Factors
Radiative transition rates with real (Q2 = 0) transverse photons have been measured for a
number of charmonium states. Our lattice kinematics are such that we can explore the transition
form-factors as a function of Q2 for both transverse and longitudinal photons. Our general
method is to express the matrix element in terms of multipoles.



0 1 2 3 4 5

Q
2
 (GeV

2
)

0

0.2

0.4

0.6

0.8

1

G
C

J/
ψ
(Q

2 )

temp. pf = (000)

spat. pf = (000)

temp. pf = (100)

spat. pf = (100)

0 1 2 3 4 5

Q
2
 (GeV

2
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

G
M

J/
ψ
(Q

2 )

spat. pf = (000)

temp. pf = (100)

spat. pf = (100)

0 1 2 3 4 5

Q
2
 (GeV

2
)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

G
Q

J/
ψ
(Q

2 )

temp. pf = (000)

temp. pf = (100)

Figure 2. “form-factors” of the J/ψ
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Figure 3. Transition form-factors for (a) J/ψ → ηcγ and (b) hc → ηcγ

The J/ψ → ηc transition has only a single, magnetic dipole (M1) contribution:

〈ηc(~p ′)|jµ(0)|J/ψ(~p, r)〉 = 2V (Q2)
mηc +mψ

εµαβγp′αpβεγ(~p, r). (1)

In figure 3 we plot V̂ defined by V (Q2) = 2× 2
3e× V̂ (Q2). The relation to the decay width is

Γ(J/ψ → ηcγ) = α
|~q|3

(mηc +mψ)2
64
27
|V̂ (0)|2. (2)

The data is fitted with an exponential in Q2 which allows the extrapolation back to the physical
photopoint.

There is only one direct experimental measurement of this width [4], ΓCB(J/ψ → ηcγ) =
1.14(33)keV. Also shown is an indirect estimate constructed from product branching ratios.

There is an essential ambiguity in how we compare our lattice results with the experimental
data which arises from the fact that our charmonia masses, as computed on this lattice, do
not coincide exactly with the physical masses. The problem lies in whether we should use
experimental or lattice masses in equation 2. |~q| is closely related to the hyperfine splitting
which is rather sensitive to details of the lattice calculation, hence we observe considerable
difference in using lattice or experimental masses.

The χc0 → J/ψγ transition has both a transverse, electric dipole form-factor (E1) and a
longitudinal form-factor C1. The covariant multipole decomposition is derived in [2] and shown
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Figure 4. Transition form-factors for χc0 → J/ψγ. (a) E1 multipole, (b) C1 multipole

below

〈χc0(~pS)|jµ(0)|J/ψ(~pV , r)〉 = Ω−1(Q2)

(
E1(Q2)

[
Ω(Q2)εµ(~pV , r)− ε(~pV , r).pS(pµV pV .pS −m2

V p
µ
S)

]

+
C1(Q2)√

q2
mV ε(~pV , r).pS

[
pV .pS(pV + pS)µ −m2

Sp
µ
V −m2

V p
µ
S

])
.

At the photopoint there are no longitudinal photons and the width is given by

Γ(χc0 → J/ψγ) = α
|~q|
m2
χc0

16
9
|Ê1(0)|2. (3)

Our results are shown in figure 4. The fit form for E1(Q2) is

Ê1(Q2) = Ê1(0)

(
1 +

Q2

ρ2

)
exp

[
− Q2

16β2

]
, (4)

which will be discussed later in the context of the non-relativistic quark model. The fit is
excellent and notably extrapolates through the negative Q2 points which were not included in
the fit. The agreement with PDG and CLEO data at Q2 = 0 is quite encouraging.

With real photons the χc1 → J/ψ transition receives contributions from two multipoles,
the dominant electric dipole (E1) and a much suppressed magnetic quadrupole (M2).
Experimentally the M2 contribution is measured through the angular distribution of photons -
the PDG[1] average the two extractions performed[5, 6], each of which found a number consistent
with zero, to give

M2(0)√
E1(0)2 +M2(0)2

= −0.002+0.008
−0.017. (5)

The covariant relation connecting the transition matrix element with the multipole amplitudes
is given in [2]. Results are shown in figure 5, where agreement with experiment within large
lattice statistical error bars is seen.

The hc, with JPC = 1+−, was only recently observed with high significance by the CLEO
collaboration [8, 7]. The reason for the delay of discovery with respect to the other ground
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Figure 5. Transition form-factors for χc1 → J/ψγ. (a) E1 multipole, (b) M2 multipole.

state charmonia lies in the difficulty of production - the process eventually utilised was the
isospin violating ψ(2S)→ π0hc with a subsequent hc → ηcγ. Since only the product branching
fraction B(ψ(2S) → π0hc)B(hc → ηcγ) is measured, our calculation of Γ(hc → ηcγ) constitutes
a prediction.

The form-factor decomposition is identical to the χc0 → J/ψγ case. We plot the extracted
E1(Q2) in figure 3(b).

Our value at Q2 = 0 corresponds to a width

Γ(hc → ηcγ) =663(132)
601(55) keV. (6)

where the upper value uses lattice masses and the lower value physical masses with the difference
indicative of lattice systematic errors.

The fit forms we have used are motivated by the kind of functional forms one gets in simple
non-relativistic quark models and indeed the β and ρ values we extract are very much in line
with the expectations of such models, see [2] for details.

3. Two-Photon Decays
At first sight it is not clear how one would go about evaluating the matrix element for the process
ηc → γγ in lattice QCD. In the previous section we outlined how to extract the matrix element
for a radiative transition between two QCD eigenstates from a three-point function evaluated at
large Euclidean times. This issue here is that the photon is not an eigenstate of QCD - taking
a vector interpolating field to large Euclidean time would not yield a photon state, but instead
the lightest QCD vector eigenstate (the J/ψ in this case).

However, all is not lost, for while the photon is not a QCD eigenstate, it can be constructed
from a linear superposition of QCD eigenstates. The precise field-theoretic mechanism for this
is the LSZ reduction. The connection in Euclidean space-time, for a different physical process, is
made in [9] and for the process in question an outline appears in [10]. The end result is that the
following equation connects the matrix element of interest to a Euclidean three-point function
computable on the lattice: 〈M(p)|γ(q1, λ1)γ(q2, λ2)〉 = limtf−t→∞

e2
εµ(q1, λ1)εν(q2, λ2)
ZM (p)
2EM (p)e

−EM (p)(tf−t)

∫
dtie

−ω1(ti−t)〈0|T
{ ∫

d3~x e−i~p.~xϕM (~x, tf )
∫
d3~y ei ~q2.~yjν(~y, t)jµ(~0, ti)

}
|0〉

(7)
The difference with respect to the radiative transitions between hadrons considered above is

that an integral over the Euclidean time position of a vector source is now involved.
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In this case an isotropic 243 × 48 lattice with a = 0.047 fm[11] was utilised, with a
non-perturbatively determined Clover fermion action[12] and Dirichlet temporal boundary
conditions. While the computation cost was reduced with respect to the DWF used previously,
we had to accept the possibility of larger discretisation errors. We used the conserved vector
current[13].

In figure 6(a) we display the integrand of equation 7, having computed with a psuedoscalar
interpolating field fixed at t = 37, a conserved vector current insertion at t = 4, 16, 32 and a
vector interpolating field at all possible source positions, t = 0 → 37. It is clear that provided
one is not too close to the dirichlet wall or to the sink position, one can capture the entire
integral by summing timeslices. In figure 6(b) the results of summing timeslices to compute the
integral for all possible insertion positions and a number of Q2 are shown.

Given the confidence that the integral can be captured on a lattice of this temporal length,
one can use a much faster method to compute the transition form-factor that places the sum
over timeslices into a ’sequential source’, reducing the computation time by a factor of O(Lt).

The Clover fermion action is ’improved’ in that it seeks to reduce the effect of O(a)
discretisation errors on extracted quantities (relative to the Wilson fermion action). The same
improvement procedure that is applied to the action can be applied to the operators that appear
in matrix-elements. Since the publication of [10] we have reanalysed our data implementing the
conserved, improved vector current of [13]. The results, for the faster ’photon as sequential
source’ method, are shown in figure 7 along with the results using just a conserved current. The
difference indicates the degree to which O(a) discretisation errors may be affecting our results -
future computations will need to consider the a-scaling behaviour of these quantities.

The ηc → γγ∗ data is fitted with a simple one pole parameterisation F (Q2) = F (0)/(1+ Q2

µ2 ).
The result F (0) = 0.210(5) (where the error is purely statistical, taking no account of the
discretisation or quenching uncertainties) is in approximate agreement with the experimental
value. The effective pole position µ = 3.43(3)GeV is somewhat larger than the J/ψ mass
indicating that in a vector meson dominance approach one would need to consider the effect
of excited vector charmonia. More precise data might allow a fit more sophisticated than this
simple one-pole form.
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The χc0 → γγ∗ data fit yields G(0) = 0.119(15) and µ = 2.81(4)GeV.

4. Higher Spins, Exotic JPC and Excited States
In [2, 10] only states with JPC = 0±+, 1−−, 1+± were considered. This limitation arises from
the choice of ψ̄(x)Γψ(x) as meson interpolating field. States of other JPC can be accessed by
introducing covariant derivatives into the fermion bilinear, e.g. ψ̄ Γ(←−Dj−−→Dj)ψ[14]. By using the
symmetrised derivative one ensures eigenstates of charge conjugation at finite three-momentum.

We show in figure 8 some preliminary effective mass plots using operators of this type.
As well as higher spins we are also interested in excited states within a given JPC . Extracting

excited state transitions from Euclidean three-point functions is a challenging task since it
requires one to accurately consider the sub-leading exponentials. In principle if one has
accurately extracted masses and overlap factors for the excited states from two-point functions
one can fit for the excited state transitions simulateously with the ground state transition. In
[2] this was found to be unsuccessful owing to an unfortunate side-effect of using temporal
anti-periodicity where other time-orderings mimicked excited states.

Currently work using dirichlet temporal boundary conditions seems to indicate that given
sufficiently precise two-point function fits, one can extract excited state transitions, although
with very much larger statistical errors than in the case of ground-state transitions.

5. Summary
First investigations of radiative transitions using lattice QCD have been performed and the
results are promising given caveats surrounding the quenched approximation and computation
at a single lattice spacing. With the three-point function technology now developed, future
studies can endevour to get control of the systematic errors by moving to dynamical gauge fields
and computing at multiple lattice spacings.
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