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I present brief descriptions of two top quark analyses performed using DO data from pp collisions
at /s = 1.96 TeV: the search for flavor-changing neutral-current couplings (FCNC) of the top
quark with a charm or an up quark with the exchange of a gluon, and the search for the standard
model production of single top quarks. The search for FCNC couplings of a gluon to the top quark
is the first such analysis at hadron colliders. I describe the application of the Bayesian approach
for comparing our physics models to the observed data in both analyses and, in one of them, to

separate small signals from large backgrounds.

INTRODUCTION

It has been over a decade since the top quark was dis-
covered at the Fermilab Tevatron by the CDF and DO col-
laborations [1]. Since then, several properties of the top
quark have been examined and measured. These include
studies and measurements of the kinematical properties
of top quark production and measurements of the top
quark mass and the production cross section. The most
striking feature of the top quark is its large mass, which is
intriguingly close to the scale of electroweak (EW) sym-
metry breaking. This fact raises a number of interesting
questions that remain unanswered. Is the top quark mass
generated by the Higgs mechanism as postulated by the
standard model (SM) and is its mass related to the top
to Higgs Yukawa coupling? Or, does the top quark play
a fundamental role in the breaking of EW symmetry? If
there exist new particles lighter than the top quark, does
the top quark decay into them? Could non-SM physics
manifest itself in non-standard couplings of the top quark
and show up as anomalies in top quark production and
decays? My goal in studying top quark physics is to help
answer these questions in the most effective manner pos-
sible by developing and applying state of the art methods
of analysis.

I have worked on many different aspects of top quark
physics, but in this paper I describe the application of the
Bayesian approach to two different analyses: the search
for non-SM flavor-changing-neutral-current (FCNC) cou-
plings of the top quark with a charm or an up quark, and
the search for the SM production of single top quarks.
These searches were performed using data collected by
the DO detector [2] in Run II.

SEARCH FOR NON-SM SINGLE TOP QUARKS

The top quark was discovered in the top-antitop (f)
pair production mode via the strong interactions. But
the SM also predicts the production of single top quarks
via the electroweak interactions. There are two domi-
nant modes of production at the Tevatron, the s-channel
in which a top quark is created in association with a bot-
tom quark (¢b) and the ¢-channel in which a light quark
accompanies the ¢ and b quarks (tgb). The cross sec-
tions for the s-channel and ¢-channel are predicted to be
0.88 4 0.14 pb and 1.98 4 0.30 pb [3], respectively. The
main tree-level Feynman diagrams for these processes are
shown in Fig. 1.
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FIG. 1: Main tree-level Feynman diagrams for (a) s-channel
single top quark production, and (b) ¢-channel production.

Besides the SM, several other models make testable
predictions about the production of single top quarks,
typically, via new interactions [4, 5]. In the SM, FCNC
interactions of the top () quark with a charm (¢) or an up
(u) quark can occur via the exchange of a photon, Z bo-
son or gluon through higher-order radiative corrections,
but the effect is too small to be observed. Consequently,
any observable signal arising from FCNC couplings would
be unequivocal evidence of physics beyond the SM and
would shed additional light on flavor physics in the top



quark sector. At present, strong constraints exist for
FCNC processes via photon or Z boson exchange [6-8],
while the search for FCNC couplings of a gluon (g) to the
top quark is the first such analysis at hadron colliders [9].
To date, the best constraints on these processes are from
the DESY ep Collider (HERA): k,/A < 0.4 TeV~!, at
95% C.L. [10], where k4 are the anomalous couplings and
A is the new physics cut-off scale.

I developed an analysis to search for FCNC [9] that
was based upon a previous search for SM single top
quarks [11] using 230 pb~! of DO data from pp col-
lisions at /s = 1.96 TeV. The FCNC couplings in-
volving the gluon are predicted to be dominant in top
quark production rather than in its decay for values of
kg/N S 0.2 TeV—! [12]. Therefore, for this search, we
assume that the top quark decays into a b quark and a
W boson as in SM, and the W boson subsequently de-
cays leptonically (W — lv, where £ = e, u or 7, with the
7 decaying either to an electron or a muon, and two neu-
trinos). This gives rise to an event with a charged lepton
of high transverse momentum (pr), significant missing
transverse energy (Zr) from the neutrinos, and at least
two jets, one of which is a b jet (from the top quark de-
cay), and the other a jet from a ¢ quark, u quark, or a
gluon. Displaced secondary vertices are used to identify
b jets. The largest physics backgrounds to these events
are from SM production of W+jets and tt, along with
smaller contributions from SM production of single top
quarks (tb and tgb) and dibosons (WW and WZ). An
additional source of background is from multijet events
in which a jet is incorrectly identified as an electron or in
which a muon from a heavy flavor decay appears isolated.

The FCNC signal kinematics for the top-charm-gluon
(tcg) and top-up-gluon (tug) processes are modeled using
CoMPHEP [13], a leading order (LO) parton-level event
generator. The LO cross sections are scaled to next-to-
leading (NLO) order by a K-factor (the NLO/LO cross
section ratio evaluated at some renormalization and fac-
torization scale) of 1.6 [14]. Representative Feynman di-
agrams for the FCNC production of single top quarks are
shown in Fig. 2. The production cross section depends
quadratically on the coupling x4/A and can be signif-
icantly larger than that for the SM process as seen in
Table I.  Since there is no interference between the tcg

TABLE I: The production cross sections of single top quarks
through a gluon exchange in pp collisions at /s = 1.96 TeV
for different values of k4/A, as obtained from CoMPHEP and
scaled to NLO by a K-factor of 1.6.

kg /A [TeV™T] o(t) [pb]
tcg tug
(kg = 0) (kg = 0)
0.01 0.05 0.88
0.03 0.45 7.92
0.07 2.40 42.61
0.11 5.86 104.78
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FIG. 2: Representative 2—2 Feynman diagrams for single top
quark production through flavor-changing neutral currents in-
volving the gluon.

and tug processes two sets of signal events are generated:
one for the tcg process only, in which 7y is set to zero,
and the other for the fug process only, in which x{ is
set to zero. A value of 0.03 TeV~! is used for k,/A in
each case. Since the effect of these couplings is negligi-
ble in top quark decay, the kinematics of signal processes
at any other value of k4/A are obtained by appropriate
scaling of the generated events. The parton-level sam-
ples from COMPHEP are processed with PyTHIA [15]
to model fragmentation, hadronization, and the underly-
ing event, and use the CTEQS5L [16] parton distribution
functions. The generated events are processed through a
GEANT-based [17] simulation of the DO detector. The
modeling of non-single top backgrounds as well as SM
single top quarks is the same as in Ref. [11].

The event selections applied to the simulated signals
and backgrounds and to the D0 data are summarized in
Table II. The resulting numbers of events in all samples,
along with their systematic uncertainties [9], are shown
in Table III. The observed numbers of events agree with
the predicted numbers for the SM backgrounds within
uncertainties in both the electron and muon channels.
Hence, we set limits on the anomalous coupling param-
eters, ky/A. But note that the FCNC signals are pre-
dicted to be a tiny fraction of the SM backgrounds, there-
fore, optimal signal to background separation is needed
to maximize the sensitivity to a putative signal. This sep-
aration is done with a neural network based multivariate
discriminant.

TABLE II: Summary of event selections.

Electron channel Muon channel

Lepton| Er > 15 GeV pr > 15 GeV
In| < 1.1 In| < 2.0
r 15 < Fr < 200 GeV

Jets 2, 3 or 4 jets, Er > 15 GeV, |n| < 3.4
Er(jetl) > 25 GeV, |n(jetl)| < 2.5
exactly one b-tagged jet

The neural network is constructed using the ten in-
put variables listed in Table IV. The distribution of one
representative variable is plotted in Fig. 3a. The com-



TABLE III: Event yields after all selections for the electron
and muon channels. The signal yields are evaluated at kg /A =
0.03 TeV~!. The yields for t¢ include both lepton-+jets and
dilepton final states, and those from W +jets also include the
diboson backgrounds.

Source Electron channel Muon channel
teg 0.6+£0.2 0.6+£0.2
tug 8.4+2.1 9.8 £2.7
SM single top (tb+tgb) 6.4+1.4 6.1+1.4

tt 31.8+6.9 31.44+7.0

W +jets 84.6 +10.2 76.8+8.5
Multijets 13.7+£4.3 17.2+1.5
Total SM background 136.5+13.4 131.5+£12.7
Observed no. of events 134 118

bination of several variables in this manner and training
the FCNC signals (the sum of the tcg and tug processes)

|

against all backgrounds permits separation of the FCNC
signals not only from the dominant backgrounds (W +jets
and tf) but also from the SM single top quark processes,
as can be seen in Fig. 3b. Here the neural network out-
puts for the combined electron and muon channels are
shown from different sources normalized to unity. The
FCNC signals are evaluated at rkg/A = 0.03 TeV~!. Fig-
ure 3¢ shows the output distributions normalized to the
DO data with backgrounds summed. There is general
agreement between the observed spectrum and the pre-
dicted SM background.

We use a Bayesian approach to set upper limits [20]
on the FCNC coupling parameters simultaneously in a
two-dimensional plane of (x¢/A)? and (k2/A)?. Given
N observed events, we compute the posterior probability
density as follows

p([E /A, (52 /AP | N) o / / / LN | 1) 1 (for furb) o[ /AJ%) ps([2 /A1) dfud fudb, (1)

where L is a Poisson likelihood with mean n, and p; (i =
1,2, 3) are prior probability densities of the respective pa-
rameters. The likelihood L is a product of the likelihoods
over all bins of the neural network output distributions,
and n is the predicted number of events, equal to the sum
of signal (s) and background (b) yields:

n=s+25 (2)
= fo x (8g/A)? + fu x (kg/A)* + b,

where the constant factors f. and f, are obtained from
the simulated signal samples at x,/A = 0.03 TeV~!. The
prior probability density p; is a multivariate Gaussian
with the mean and standard deviation defined by the
estimated yields and their uncertainties, to take into ac-
count correlations among the different samples and bins.
Since the signal cross sections depend quadratically on
tig/ A, for ps and p3 we choose priors flat in (k$/A)? and
(k%/A)? respectively, in order to be consistent with the
conventional choice of a prior flat in cross section.

From the two-dimensional posterior probability den-
sity, allowed regions at different levels of confidence (k)
are defined as contours of equal probability that enclose a
volume k around the peak of the posterior density. These
contours are shown in Fig. 4, using data from both elec-
tron and muon channels. The one-dimensional posterior
probability density over any dimension is obtained by in-
tegrating the two-dimensional posterior over the other
dimension. The resulting limits, translated to x,/A, us-
ing data (observed limits) as well as the expected limits
for which the “observed” count is set to the predicted

[
background yield in any bin, are summarized in Table V.

In summary, this search for the production of single
top quarks via FCNC interactions in 230 pb~! of lep-
ton-+jets data collected at DO yielded no deviation from
SM predictions. Hence limits are set on anomalous cou-
pling parameters, x5 /A and xj /A, based on distributions
of multivariate neural network discriminants. The ob-
served (expected) limits are 0.15 (0.16) TeV~" on x{ /A,
and 0.037 (0.041) TeV~" on x% /A at 95% C.L. These lim-
its on FCNC couplings of a gluon to the top quark and a
charm or up quark, the first from a hadron collider, are
a factor 3-11 times better than those from HERA.

SEARCH FOR SM SINGLE TOP QUARKS

Using a much larger dataset than was available for the
search described above (0.9 fb~! of lepton+jets data),
DO reported evidence for the production of SM sin-
gle top quarks at a significance of 3.4 standard devia-
tions [21]. Since the single top quark signals have a cross
section roughly half that of ¢f production and larger back-
grounds, due to the presence of only one massive object
in the final state, they are extremely challenging to iden-
tify. At DO, three different multivariate techniques were
used to create a discriminant

D(x) = p(x]S)

= 215) + pIB)’ ®)



TABLE IV: Input variables used in the neural network analysis.

pr(jetl) Transverse momentum of the leading jet
Pr(jetliageed) Transverse momentum of the b-tagged jet
n(lepton) Pseudorapidity [18] of the lepton

Er Missing transverse energy

pr(jetl, jet2)
Hr(jetl, jet2)

Transverse momentum of the two leading jets
Scalar sum of the transverse momenta of the two leading jets

Invariant mass of the reconstructed top quark using the W boson [19] and the b-tagged jet

pr (W) Transverse momentum of the reconstructed W boson
M(VV’ jetltagged)
M (alljets) Invariant mass of all jets

cos(jetl,lepton)ia, Cosine of the angle between the leading jet and lepton in the laboratory frame of reference
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FIG. 3: Distributions of (a) an input variable to neural networks, and outputs normalized to (b) unity, and (c) 230 pb~! of data
with backgrounds summed. The FCNC signal is for the summed tcg and tug processes, each evaluated at x4/A = 0.03 TeV 1.
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FIG. 4: Allowed regions at various levels of confidence using
230 pb~! of DO data in both the electron and muon channels.

TABLE V: Upper limits on x5/A and &y /A, at 95% C.L.

Observed (expected) limits [TeV ™)

Kg/A Ky /A
Electron channel|  0.16 (0.19) 0.046 (0.052)
Muon channel 0.21 (0.21) 0.049 (0.050)
Combined 0.15 (0.16) 0.037 (0.041)

to separate the small signals (tb+tgb) from the large back-
grounds. Here p(x|S) and p(x|B) are the probability
density functions for the signal and background, respec-

tively, with each event described by the variables x. The
multivariate techniques used were: boosted decision trees
(DT) [22, 23], Bayesian neural networks (BNN) [24], and
matrix elements (ME) [25, 26]. The DT analysis approx-
imates the discriminant D(x) using an average of many
piece-wise approximations to D(x). The BNN analysis
uses nonlinear functions that approximate D(x) directly,
that is, without first approximating the densities p(x|S)
and p(x|B). Both methods used several input variables
based on object kinematics, global event variables and
angular variables. The ME method approximates the
densities p(x|S) and p(x|B) semi-analytically, starting
with leading-order matrix elements, and computes D(x)
from them using the basic observables:

1. missing transverse energy 2-vector (Er, @),

2. lepton 4-vector (E7,n,¢), assuming massless lep-
tons,

3. jet 4-vector (E7,n, ¢), assuming massless jets, and
jet-type, that is, whether it is a b jet or not, for
each jet.

Since the first evidence reported in 2007 [21], several
improvements were made to the BNN and ME analyses,
and also the results from the three techniques (DT, BNN
and ME) were combined, resulting in an enhanced signif-
icance of the single top cross section measurement (3.6
standard deviations) [27]. My principal contribution was



in improving the BNN analysis and developing, testing,
and performing the combined analysis of the results of
the DT, BNN, and ME analyes as well as performing
exhaustive ensemble studies of the entire Bayesian ma-
chinery, to which I also made significant contributions.

Bayesian Neural Network Analysis

The current DO BNN analysis is a considerable im-
provement over the previous one and is as sensitive as
the DT and ME analyses, as can be seen from the power
curves in Fig. 5. The principal reasons for the improve-
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FIG. 5: The power computed from the SM sig-
nal+background ensemble (power=1-(3 on the y-axis) versus
the significance from the background-only ensemble (o on
the x-axis) for reference cross sections varying monotonically
from 0 — 10pb. Power is the probability to accept the sig-
nal+background hypothesis, if it is true, while significance
is the probability to reject the background only hypothesis,
if instead it is true. For a given significance, one wants the
power to be as large as possible.

ment are the following:

1. systematic selection of input variables for each
analysis channel (based on lepton flavor: electron
or muon, jet multiplicity: 2-jet, 3-jet or 4-jet, and
number of b-tags: 1-tag or 2-tags)

2. reduced sensitivity of the Bayesian posterior den-
sity of the network parameters to noise in the train-
ing sample

The variables for each channel are selected using an al-
gorithm called RuleFit [28] that orders them according to

their discrimination importance (on a scale of 1 to 100).
Variables with discrimination importance greater than 10
are used, which results in the selection of between 18 and
25 variables in the different channels. For example, the
variables for the electron+2jets/1tag channel are shown
in Fig. 6.

For the network parameters, a single hidden layer with
20 nodes is used, with 10,000 events in the training sam-
ple. The background MC events used turned out to be
especially noisy because of the large dynamic range of
their event weights. An obvious way to reduce the ef-
fect of events with abnormally large weights is simply
to discard them from the training sample. However, we
chose to keep all events, but to reduce the influence of
those with very large weights by limiting the growth of
the network parameter values. This was done by fixing
the width of the (Gaussian) prior for each network pa-
rameter to one of a small set of values determined from a
study of the distribution of parameter values. The use of
this non-adaptive, and therefore noise-insensitive, prior
led to a dramatic improvement with respect to the pre-
vious analysis.

RuleFit ranking for e+2jets/1tag channel
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cos(best,€)pestiop |
5
M+(W)
cos(notbestl, €)pestiop |
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FIG. 6: BNN input variables according to their RuleFit rank-
ing for the electron+2jets/1tag channel.

Figure 7 shows the observed BNN distribution summed
over all channels, superimposed on the summed signal
+ background model. There is excellent agreement be-
tween observed data and model, with an excess (although
within uncertainties) over SM backgrounds in consecu-
tive bins at large BNN output values.
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FIG. 7: The observed BNN output distribution summed over
all 12 channels superimposed on the summed signal + back-
ground model, in the high BNN output region.

After performing a one-dimensional Bayesian statisti-
cal analysis [20] using the BNN output distribution, and
with the tb+tgb cross section as the parameter of interest,
we obtain the following result:

o (pp — th+tgb+ X) = 4.471-S pb.

The Bayesian posterior densities using data (observed)
and the signal+background hypothesis (expected) are
shown in Fig. 8. From an ensemble study, this results in
a p-value of 0.08%, corresponding to a 3.2 standard devi-
ation significance. The p-value from the SM value of 2.86
pb for the signal cross section is 1.6%, which corresponds
to a 2.2 standard deviation expected significance. It is
interesting to note that with fewer input variables, 18-25
across the different channels, the BNN has an expected
significance as good as the DT analysis (2.1 standard de-
viation) which uses 49 input variables.
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FIG. 8: Expected (SM) and observed Bayesian posterior den-
sity distributions for the BNN analysis. The shaded regions
indicate one standard deviation above and below the peak
positions.

Combination of Results

Since each multivariate analysis uses the same dataset
to measure the single top quark cross section, their results

are highly correlated. However, because the correlation is
rather less than 100%, one can still gain some additional
sensitivity by combining the results. The three cross sec-
tion measurements, o; (¢ = DT, BNN, ME) are com-
bined using the best linear unbiased estimate (BLUE)
method [29-31]; that is, a new estimate of the cross sec-
tion is defined by the weighted sum

o= Zwi oi, (4)

with }°, w; = 1, and with the weights chosen so as to
minimize the variance

Var(y) = Z Z w; w; Cov(o;,05), (5)

where Cov (0;,0;) = (0;0;) — (0;)(0;) are the matrix
elements of the covariance matrix of the measurements.
The variance is minimized when

_ > Cov™!(04,05)
> Zj COV?l(O'ia ‘7'1')7

where Cov™ (a7, 0;) denotes the matrix elements of the
inverse of the covariance matrix.

(6)

w;

Weights, Correlations, and Combined Measurements

We use an ensemble of simulated cross sections results,
based on the SM signal+background hypothesis, to de-
termine the weights w; and the correlation matrix. The
cross section measurements from this ensemble are shown
in Fig. 9 for the individual and combined analyses. The
mean and square root of the variance obtained from these
distributions give the following expected measurements:

oSM-ens (p5 — th + tqb + X)

=29+1.6pb (DT)
=27+15pb (BNN)
=32+14pb (ME)
=3.0+1.3 pb (Combined).

The weights w; for the three analyses are found to be
e wpr = 0.127,
e wpNn = 0.386,
o wyg = 0.488.

with correlation matrix

%
$
1 0.66 0.64 DT
Correlation matrix = 066 1 0.59 BNN .

0.64 0.59 1 |/ ME
(7)
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FIG. 9: Distributions of the measured cross sections from (a)
the individual analyses, and (b) the combined analysis, using
the SM ensemble.

The one-standard-deviation coverage probability of the
(Bayesian) confidence interval is 0.67.

The observed measurements for the individual as well
as combined analyses are summarized in Fig. 10.

D@ 0.9 fb™
Decision trees —e—i 49 j‘: pb
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FIG. 10: The measured single top quark cross sections from
the individual analyses and their combination.

Measurement Significance

The background-only ensemble is used to determine
the signal significance corresponding to the observed
measurement and the SM value of 2.86 pb for the sin-
gle top quark production cross section. Distributions of
the ensemble-results from all the analyses are shown in
Fig. 11. The observed (expected) p-value, and the associ-
ated significance in Gaussian-like standard deviations, is
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FIG. 11: Distributions of the cross sections measured from
background-only ensemble by the three analyses and their
combination. The arrow shows the combined cross section
measurement, 4.7 pb.

obtained by counting how many background-only pseu-
dodatasets yield a measured cross section greater than
the observed (2.86 pb) cross section measurement. The
results are tabulated in Table VI for the individual as
well as combined analyses.

TABLE VI: The observed (expected) p-values, and signifi-
cances for the individual and combined analyses, using the
observed measurement (SM value of 2.86 pb) for the single
top quark production cross section as the reference point in
Fig. 11.

p-value significance (std. dev.)
Analysis H Observed (Expected) Observed (Expected)
DT 0.00037 (0.018) 34 (2.1)
BNN 0.00083 (0.016) 3.1 (2.2)
ME 0.00082 (0.031) 3.2 (1.9)
Combined 0.00014 (0.011) 3.6 (2.3)

Using the SM (signal+background) ensemble, we also
quantify the compatibility of our result with the SM ex-
pectation by counting how many pseudodatasets result
in a cross section with the observed value or higher for
each of the analyses. The probabilities for the different
analyses are 10% for the DT analysis, 13% for the ME
analysis, 13% for the BNN analysis, and 10% for the
combined analysis.

In the method described above, we have used the SM
ensemble to determine the weights for the individual
analyses in the combined result. But one could have used
a different ensemble, for example, one generated with a
signal value different from 2.86 pb. This may yield a dif-
ferent set of results using the BLUE method. A more
ideal approach would be to perform a three-dimensional
probability density estimate of the results of the three
analyses (DT, BNN and ME) for sets of ensembles, each
generated with a different value of the tb+tqb cross sec-
tion between zero and a sufficiently large upper bound.
This density estimate, p(opr,oBNN, oME|0), evaluated



at the triplet of measured cross sections would serve as
a likelihood function in a Bayesian analysis [20] to mea-
sure the cross section using the combined results. The
merit of this approach is that all possible hypotheses for
the signal cross section are taken into account in order
to derive the combined result. I am currently exploring
this technique to compare its results with those from the
BLUE method.

Single Top Projections

For the measurement of the single top production cross
section discussed so far, a one-dimensional Bayesian pos-
terior density was constructed as a function of the tb+tgb
cross section, assuming the SM ratio between the s and ¢
channel cross sections. I also extended the BNN analysis
to build a two-dimensional posterior density in the plane
of tb versus tqb cross sections where the s and ¢ channel
cross sections are allowed to vary independently of each
other. A prior density flat in both variables is chosen,
again by convention. Fig. 12 shows the expected allowed
regions at 68% and 95% confidence levels for different
values of integrated luminosity. No systematic effects are
included in these projections but their effect is expected
to be compensated by improvements to the analysis that
have not yet been incorporated. These studies indicate
that at about 7 fb~! it is possible to rule out several
non-SM processes.

Projections for 68% CL contours based on D0 0.9 fth
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FIG. 12: Projections at different values of integrated luminos-
ity for the expected allowed regions at 68% and 95% confi-
dence levels based on 0.9 fb~! of DO data in both the electron
and muon channels.

Finally, as discussed in Ref. [27], the one-dimensional
Bayesian posterior density estimation can be extended
to measure the CKM matrix element |V;p| also since the
single top cross section depends quadratically on this pa-
rameter. Fig. 13 shows projections made for the expected
resolution of the |V;p| measurement using the BNN out-
puts. All systematic effects are included. We see that at
DO it is possible to reach a resolution of 15% at about
7 fb~!, which, interestingly, is comparable to the reach
at the LHC.
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FIG. 13: Projections at different values of integrated lumi-
nosity for the expected resolution of the |Vi| measurement
based on 0.9 fb~! of DO data in both the electron and muon
channels.

FUTURE PLANS

I plan to explore further the Bayesian approach, both
as a multivariate technique as well as a statistical infer-
ence tool. In the former, I would like to test the perfor-
mance using the the four-vector variables directly (taking
care to break the azimuthal symmetry of events) as in-
puts to construct the discriminant, D(x). We note that
the derived variables, multi-object variables or angular
correlations, contain no more information than is con-
tained in the original degrees of freedom. The reason we
use them is that for some numerical approximation meth-
ods, it may prove easier to construct an accurate approxi-
mation to D(x) if it is built using carefully chosen derived
variables than one constructed directly in terms of the
underlying degrees of freedom. However, the greater the
number of variables used, the larger is the effect on the
outputs from certain types of systematics, for example
the jet energy scale. This is one of the dominant sources
of uncertainty in our analysis (6 — 10% across the differ-
ent channels), and a large number of jet-related variables
could result in large fluctuations in the discriminant out-
puts. Secondly, the networks are expected to converge
faster with fewer input variables.

In the Bayesian method used for comparing our model



(background-only hypothesis, or signal+background hy-
pothesis) to the observed numbers of events, a necessary
input is a prior probability density, both for the nuisance
parameters such as backgrounds and acceptances, as well
as for the parameters of interest, namely the signal cross
sections. So far, we have assumed Gaussian densities for
the systematic effects on the nuisance parameters. But
small values of expected yields can result in truncation
of the Gaussian density, since the numbers of events are
constrained to be positive. I would like to explore differ-
ent possibilities for modeling the systematics, for exam-
ple, using the Gamma distribution, which goes to zero
for zero expected counts. As for the prior for the signal
cross section, we have used a density flat in cross section.
This has been the convention so far in our field, but I
would like to explore building a prior, in a more formal
way, in order to maximize the expected sensitivity of our
measurement.

To conclude, I have used the Bayesian approach ex-
tensively to separate small signals from large back-
grounds and I have also extended it from the usual one-
dimensional case to two-dimensions, and from cross sec-
tions to parameters of physical interest (eg. FCNC cou-
plings k4/A or |Vip|). I am currently exploring new ideas
and techniques in this approach in order to maximize the
sensitivity of the single top analysis at DO . Although this
work is being done in the single top context, it is an ex-
tremely useful test-bed for several other analyses in the
field of high energy physics, specially those in which the
signal processes are dominated by huge backgrounds.

This paper has been originally prepared as part of
Fermilab’s Tollestrup award competition for outstanding
post-doctoral research work, and I would like to thank all
my collaborators at DO, specially those within the single
top group, without whom the work described here would
not have been possible.
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