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Abstract 
 
Future colliders such as NLC and JLC will require a highly-polarized macropulse with 

charge that is more than an order of magnitude beyond that which could be produced for 

the SLC. The maximum charge from the SLC uniformly-doped GaAs photocathode was 

limited by the surface charge limit (SCL). The SCL effect can be overcome by using an 

extremely high (≥1019 cm-3) surface dopant concentration. When combined with a 

medium dopant concentration in the majority of the active layer (to avoid depolarization), 

the surface concentration has been found to degrade during normal heat cleaning (1 hour 

at 600 °C). The Be dopant as typically used in an MBE-grown superlattice cathode is 

especially susceptible to this effect compared to Zn or C dopant. Some relief can be 

found by lowering the cleaning temperature, but the long-term general solution appears to 

be atomic hydrogen cleaning. 
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Introduction 
 
The surface charge limit (SCL), which affects negative electron affinity (NEA) 

semiconductor photocathodes when one attempts to extract very high current densities 

using a laser tuned to the band gap energy, was first observed in 1978 with the first 

SLAC GaAs source, then more completely characterized in 1991 during commissioning 

of the SLC polarized electron source [1]. The phenomenon has been described in the 

literature [2]. An example of a severe SCL effect on emission from a GaAs-type 

photocathode is shown in Fig. 1. For the figure, the laser spatial and temporal profiles 

were held constant while the laser energy at the wavelength corresponding to the band 

gap was increased in approximately equal steps. The suppression of emission after the 

initial few nanoseconds develops at relatively low laser energy. The suppressed emission 

stabilizes after about 200 ns. 

The SLC bunch train consisted of up to 8×1010 e- (at the source) in each of 2 

microbunches separated by 60 ns. At this level the bunches were already affected by the 

SCL, with the effect increasing with time as the quantum efficiency (QE) decreased. The 

JLC/NLC requires 192 microbunches each separated by 1.4 ns. Each microbunch is 

required to have 0.75×1010 e- at the interaction point (IP). It is assumed here that the 

source must produce 1.5×1010 e- or a total of 2.9×1012 e- in the 270 ns bunch train, which 

is an order of magnitude more charge than in the SLC train, which means the “standard” 
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SLC cathodes (MOCVD-grown1 100-nm strained-layer GaAsP/GaAs uniformly Zn-

doped at 5×1018 cm-3) will not work for JLC/NLC. 

Suppression of the Surface Charge Limit 
 
Very early it was observed that at least 3 factors−the QE (relative to the initial QE), the 

excitation wavelength, and the dopant concentration−contribute to the effect of the SCL 

on GaAs-type photocathodes [3]. In 1998 the Nagoya group demonstrated that with a 

superlattice having a high (4×1019 cm-3) dopant concentration at the surface, a train of 12-

ns wide microbunches could be produced with intensities up to the space charge limit of 

the 70-kV gun (20 nC or 1.65 A) with no SCL effect observed. This performance was 

attributed to a combination of the high dopant concentration and the large band gap of the 

superlattice structure. The effectiveness of the high dopant concentration was confirmed 

at SLAC by preparing a series of unstrained 100-nm GaAs cathodes each with uniform 

doping [2]. As shown in Fig. 2, it appears that a dopant concentration ≥2×1019 cm-3 is 

sufficient for a modestly well-activated surface. A high dopant concentration decreases 

the polarization of the emitted electrons, but fortunately only the final few nanometers at 

the surface need be highly doped. The technique of “gradient doping” (low concentration 

in the bulk, high at the surface) is now routinely used for providing polarized beams for 

the SLAC linac. 

The “standard” SLC cathode was modified with gradient doping [4] and used in the 

first phase (2002) of a parity violating experiment (E-158) at SLAC [5]. The experiment 

required a pulse length of ~300 ns, similar to the JLC/NLC macropulse requirement. The 

                                                 
1Bandwidth Semiconductor (formerly SPIRE Corp.), 25 Sagamore Park Dr., Hudson, NH 
03051 USA. 



 4 

flashlamp-pumped Ti:sapphire laser [6] for the source could produce up to 200 µJ in this 

pulse length. Using this cathode, a total charge of 2.3×1012 e-−nearly equal to the total 

charge required for the JLC/NLC macropulse−was produced at the source in a 100-ns 

pulse using a 20-mm diameter laser spot at the cathode, and 1.4×1012 e- for a 14-mm 

spot−corresponding to 3.7 and 2.2 A respectively [4]. 

More recently, the SCL properties of GaAsP/GaAs strained superlattice (SL) 

cathodes−first introduced by the Nagoya group [7]−were explored [8]. The SLAC 

structures were MBE-grown by SVT Associates2. These SL cathodes have a larger band 

gap than the “standard” SLC cathodes, which generally results in a higher (QE). The 

higher QE permits the SCL to be probed at higher charge and current densities. In 

addition, the flashlamp-pumped Ti:sapphire (flash-Ti) laser used for E-158 was 

successfully Q-switched, which greatly increased the available laser power. The resulting 

maximum current of 5.5 A, which exceeded the 4.8 A peak current required for 

JLC/NLC, is shown in Fig. 3. The curvature is due to the space charge limit of the 120-

kV gun. This type of cathode was used in the final run (2003) of E-158, producing a 

polarization of 90% (online value). The flash-Ti laser was not Q-switched during the 

experiment. NLC requirements and the results achieved at SLAC are summarized in 

Table 1. 

Although the gradient doping technique has been shown to work, in practice it 

presents a serious problem. The cathodes must be activated by adding Cs and an oxidizer 

to the atomically-clean surface. The final cleaning is universally done in accelerator 

sources by heating the cathode to 600 ºC for ~1 hour. Frequently, multiple cleanings are 
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necessary to achieve a high QE. The Zn-doped MOCVD-grown cathodes can be heat 

cleaned at least twice with no serious diminution of the gradient doping. However, the 

Be-doped MBE-grown cathodes must be cleaned at temperatures well below 600 ºC to 

prevent the diffusion of the Be dopant at the surface, which sometimes results in a poor 

activation as indicated by a low initial QE. One solution is to use atomic hydrogen 

cleaning (AHC), which does not require temperatures >400 ºC [9]. Ideally an AHC 

system would be integrated with the gun. An alternative may be to coat the AHC-cleaned 

crystal with Sb and then transport it to the gun where the remainder of the activation can 

take place after the Sb is evaporated at a modest temperature. 

 

Conclusion 
 
Gradient doping has been shown to suppress the SCL sufficiently to allow peak currents 

in excess of NLC/JLC requirements. Implementing for JLC/NLC gradient doping using 

the best photocathode structures available today will require a low-temperature heat-

cleaning technique such as atomic hydrogen cleaning.  
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Figure Legends 
 

Fig. 1. Electron emission current from a GaAs-type photocathode showing a severe SCL 

effect. The laser energy was increased in approximately equal steps keeping the spatial 

and temporal (flat) profiles constant. 

Fig. 2. Electron emission current from uniformly doped unstrained, 100-nm GaAs 

cathodes. The QE for each sample was 0.45, 0.9, 0.4 and 0.4% in the order of increasing 

dopant concentration. The laser energy was increased in approximately equal steps to 150 

W/cm2 keeping the spatial and temporal (flat) profiles constant. 

Fig. 3. Electron emission current produced by the flashlamp-pumped Ti:sapphire laser. 
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Fig. 1. 
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Fig. 2.  
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Fig. 3. 
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Table 1. Summary of SLAC Results. 
 
 

Cathode Laser λ Pulse Charge QE  Laser Peak Dia. Current 
 Energy  Length per pulse  Pk Power Current  Density 
 µJ nm ns e-/pulse % kW A mm Acm-2 
          
NLC requirement         
   micropulse   0.5 1.5x1010   4.5   
   macropulse   270 2.9x1012      
2002 [4]          
BW-Semi 200 805 100 2.3x1012 0.31 2 3.7 20 1.1 
strained-
layer          
GaAsP/GaAs 150 805 100 1.4x1012 0.25 1.5 2.2 14 1.5 
2003 [8]          
SVT strained 247 780 75 2.6x1012 0.44 3.3 5.5 14 3.6 
GaAsP/GaAs          
superlattice 225 780 75 2.0x1012 0.42 3 4.3 10 5.5 

 


