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Abstract

Statistical mechanics provides a rigorous framework for the numerical esti-

mation of free energy di�erences in complex systems such as biomolecules.

This paper presents a brief review of the statistical mechanical identities un-

derlying a number of techniques for computing free energy di�erences. Both

equilibrium and nonequilibrium methods are covered.
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The development of ab initio methods of computing free energy di�erences represents
an essential component of progress in computational biology and chemistry. Protein-ligand
binding aÆnities, hydrophobic forces, potentials of mean force, chemical potentials, reaction
times, thermodynamic stability ... all these are quantities either expressed as, or determined
by, free energy di�erences. However, for all but the simplest of systems, computing a free
energy di�erence �F can be notoriously time-consuming. Despite decades of e�ort, the �rst-
principles calculation of �F for many problems of practical importance remains too slow
for satisfaction, and the need for improved eÆciency of free energy computations remains
high.

The aim of this contribution is to present a brief review of several identities of statistical
mechanics which provide the theoretical foundation for a number of free energy computa-
tional methods. Traditionally, these methods have relied on equilibrium sampling: estimates
of �F are constructed from a number of randomly generated microstates of the system
under consideration, and those microstates are assumed to be statistically representative of
speci�ed thermal equilibrium states of the system. It is convenient to think of the numerical
generation of a sequence of such microstates as a dynamical simulation, representing the
evolution of the system in thermal contact with a heat reservoir. Often, �nite relaxation
times mean that true equilibrium sampling is unattainable within a realistic amount of com-
puter time, particularly when the aim is to sample from numerous equilibrium distributions.
Roughly speaking, the system inevitably gets forced out of equilibrium during a numerical
simulation whose aim is to generate microstates sampled from a sequence of equilibrium dis-
tributions. In the context of traditional methods, this is a nuisance, introducing systematic
errors into the estimate of �F . In an e�ort to deal with this problem, methods have been
developed which explicitly account for the fact that the sampling which occurs in practice
does not coincide perfectly with the targeted equilibrium distributions. Indeed, in recent
years it has been realized that even if the system is driven far from equilibrium, the value
of �F can still be constructed, in principle, from a number of such simulations.

In Section I, the basic problem of computing a free energy di�erence �F is stated,
followed by a brief discussion of equilibrium (canonical) sampling. Section II summarizes a
number of free energy computational methods based on equilibrium sampling. (For more
comprehensive reviews, see Refs.1;2.) In Section III, nonequilibrium methods are discussed.

I. PRELIMINARIES

A. Statement of the problem

Consider some system with a �nite number of degrees of freedom, and let a microstate of
the system be represented by a point in phase space, z = (q;p). If the system under consid-
eration is a biomolecule, for instance, then q might denote the degrees of freedom specifying
the location of each atom of the molecule, along with a number of solvent molecules, and
p would be the collection of associated momenta. Next, let H�(z) denote a parameter-
dependent Hamiltonian, which gives the internal energy of the system as a function of
microstate for a �xed setting of an external work parameter, �. This work parameter might
specify the strength of an externally applied �eld, or perhaps a volume of con�guration
space within which the system is con�ned (in which case H�(z) is formally in�nite for points
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falling outside of this region of space). The parameter need not be physically realizable. For
instance, in computational alchemy3, � parametrizes the atom-atom interaction forces, so
that by changing � one type of atom or molecule is e�ectively transformed into another.

We will be interested in the situation when the system is in thermal contact with a heat
reservoir at a temperature T . In this case an equilibrium state of the system, for a given
value of �, is represented by a canonical distribution in phase space,

�� =
1

Z�
e�H�(z)=T ; (1)

where

Z� =
Z
dz e�H�(z)=T (2)

is the corresponding partition function. (Throughout this paper, the dependence of Z� on
temperature T will be suppressed, and Boltzmann's constant will be set to unity.) The free

energy of this equilibrium state is then given by

F� = �T lnZ�; (3)

and, following convention, we will be interested in computing the free energy di�erence
between the � = 0 and � = 1 equilibrium states:

�F � F1 � F0 = �T ln
Z1

Z0
: (4)

The problem of computing �F is thus one of computing a ratio of partition functions,
and this is what renders it numerically challenging. The direct computation of Z� would
require the evaluation of a multi-dimensional integral, and is typically out of the question:
the e�ort grows exponentially with the dimensionality of phase space, becoming impractical
for non-ideal systems with more than a modest number of degrees of freedom. Thus what is
needed is a way to estimate Z1=Z0 (hence �F ) without separately computing Z0 and Z1. In
Secs.II and III, we review a number of statistical mechanical identities which, in principle,
allow one to do just that.

We mention in passing that if the parametrization of the Hamiltonian takes the form
H� = H0 + ��H, where �H = H1 � H0, then some of the identities presented below are
modestly simpli�ed.

B. Canonical sampling

The canonical distribution (Eq.1) is central to any discussion of �rst-principles estimation
of free energy di�erences; ultimately, �F can be viewed as just a particular measure of
the di�erence between two such distributions. It is not surprising, then, that methods of
estimating �F rely on sampling from canonical distributions.

Generally speaking, canonical sampling algorithms { that is, algorithms for generating a
sequence of microstates which can be viewed as having been randomly drawn from ��(z) { fall
into two classes: molecular dynamics (continuous) and Monte Carlo (discrete) algorithms.
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In the former case, one numerically integrates equations of motion for the evolution of the
microstate, z(t), meant to mock up the evolution of a system in contact with a heat reservoir.
A sequence of microstates is then obtained by taking \snapshots" of the system at regularly
spaced intervals, which might be as small as the time steps in the integration algorithm.
In the discrete case, by contrast, the system evolves by �nite Monte Carlo steps from one
microstate to the next, resulting in a chain of microstates:

z0 ! z1 ! � � � : (5)

For remarkably simple prescriptions for generating these moves { most famously the
Metropolis algorithm4 { it can be shown that the sequence of microstates samples the
canonical distribution. Throughout this paper, the discussion of free energy methods will be
framed in terms of Monte Carlo algorithms, although the results themselves apply to many
molecular dynamics schemes as well.

Eq.1 de�nes a family of canonical distributions, parametrized by the value of �. We
assume therefore that we have a parametrized family of sampling algorithms as well: when
we implement the sampling corresponding to a particular value of �, we get a chain of
microstates drawn from the associated distribution ��(z).

Associated with any canonical sampling algorithm is an inherent relaxation time. In the
context of discrete, Monte Carlo algorithms, this is the number of steps which must be taken,
starting from any initial microstate z0, before the current microstate becomes statistically
representative of the targeted canonical distribution. To be more precise, imagine using
some arbitrary prescription to randomly choose in�nitely many initial microstates, z0. This
ensemble will be described by a distribution f0(z0). Now imagine evolving each member of
this ensemble by a single Monte Carlo step: z0 ! z1; the distribution of the new microstates
will be given by some f1(z1). Iterating the process, we get a progression of phase space
distributions:

f0(z0)! f1(z1)! � � � ! fn(zn)! � � � ; (6)

where fn describes the ensemble after n Monte Carlo steps. When we say that the Monte
Carlo algorithm samples the canonical distribution ��(z), we mean that

lim
n!1

fn = ��: (7)

The relaxation time is the number of steps characterizing this \relaxation" to ��.
Finite relaxation times are particularly relevant in the context of certain of the compu-

tational methods discussed below, where the sampling takes place as the value of � itself
evolves. That is, consecutive Monte Carlo steps are generated using an ever-changing algo-
rithm, corresponding to small increments in � from one step to the next:

�0 ! �1 ! � � � ! �t ! � � � : (8)

(Here we use the subscript t rather than n, anticipating later sections in which we explicitly
view this as a time-dependent, dynamical process.) If such a process is carried out quasi-
statically { i.e., if we take in�nitely many Monte Carlo steps, changing � in�nitesimally
between steps { then in e�ect we \sweep through" a quasi-continuous sequence of canon-
ical distributions. Each zt is then statistically representative of the canonical distribution
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corresponding to the current parameter value: ft = ��t. In practice, however, if we are to
change � we must do so in �nite increments, and then a lag develops5;6: the instantaneous
canonical distribution ��t becomes in e�ect a moving target, and ft (the distribution from
which zt is sampled) is unable to keep up with this target, as a result of the �nite relaxation
time. The more rapidly we change �, the more signi�cant the lag.

II. EQUILIBRIUM METHODS

In this section we review four identities (Eqs.9, 13, 16, and 21 below) for �F , the free
energy di�erence between two equilibrium states of a system. Each represents the theoretical
justi�cation for a particular method of estimating �F from a number of sampled microstates.
In each case these microstates are, ideally, drawn from canonical distributions, hence these
methods are explicitly based on equilibrium sampling. Moreover, these methods can be
interpreted as limiting cases of a single formula (Eq.26), which gives an estimate of �F in
terms of a long chain of microstates.

A. Free Energy Perturbation

We begin with perhaps the most widely used identity for free energy di�erences7:

e��F=T =
D
e��H=T

E
0
: (9)

Here, �H(z) � H1(z) � H0(z) is the energy di�erence associated with changing the work
parameter from one value (� = 0) to another (� = 1), while holding �xed the microstate z.
The angular brackets h� � �i0 denote an average over microstates sampled from the canonical
distribution �0(z). The derivation of Eq.9 could hardly be simpler:

D
e��H=T

E
0
=
Z
dz �0(z)e

��H(z)=T (10)

=
1

Z0

Z
dz e�H1(z)=T =

Z1

Z0
; (11)

using Eqs.1,2.
Eq.9 is the basis of the free energy perturbation method of estimating �F , which amounts

to averaging e��H=T over microstates sampled from the canonical distribution �0:

e��F=T � 1

N

NX
n=1

e��H(zn)=T ; (12)

where z1; � � � ; zN denote the N sampled microstates. By Eq.9, this approximation becomes
an equality in the limit of in�nitely many samples, N !1.

The perturbation method runs into practical diÆculties if the � = 0 and � = 1 equilib-
rium states are signi�cantly dissimilar. More precisely, if the canonical distributions �0(z)
and �1(z) overlap very little in phase space, then the convergence of the perturbation esti-
mate (the right side of Eq.12) will be slow. Heuristically, this makes sense: �F quanti�es
a di�erence between two canonical distributions; if we sample microstates typical of one
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distribution (�0) but atypical of the other (�1), then we will very slowly accumulate infor-
mation about the latter. At the level of implementation, we will �nd in this situation that a
small fraction of the sampled microstates produce relatively huge values of e��H=T , so that
the average is dominated by these few samples. Hence, most of the computational e�ort is
devoted to generating microstates that have little impact on the average being computed,
and consequently the estimate converges slowly.

A number of re�nements of the perturbation method have been developed over the years.
Perhaps most notable are Bennett's overlapping distributions method8, and the umbrella

sampling scheme proposed by Torrie and Valleau9. Interestingly, these can be viewed as
complementary techniques, involving an intermediate phase space distribution which enjoys
overlap with both �0 and �1.

10 (See also Refs.1;2 for discussions of these and related methods.)

B. Window Sampling and Thermodynamic Integration

Given that poor convergence results from little overlap between the distributions �0
and �1, the following strategy naturally suggests itself: divide the � interval [0; 1] into M
\windows" [�m; �m+1], where for instance �m = m=M , then use the perturbation method to
compute the free energy di�erence associated with each window:

�F =
M�1X
m=0

ÆFm (13a)

ÆFm = F�m+1
� F�m = �T ln

D
e�ÆHm=T

E
�m
; (13b)

where ÆHm � H�m+1
�H�m . By choosing M suÆciently large, the overlap between any ��m

and ��m+1
can be improved to the point where ÆFm is computed easily using the perturbation

method. This is known as window sampling.
It is interesting to consider window sampling in the limit M ! 1. Applying Eq.9 to

a particular window, and expanding the exponentials to �rst order in the window width,
Æ� =M�1, we get

ÆFm =
D
ÆHm

E
�m

+O(Æ�2): (14)

Dividing both sides by Æ� and taking the limit M !1 then gives:

@F�
@�

=

*
@H�

@�

+
�

: (15)

This identity, due to Kirkwood11, is the basis of the thermodynamic integration (TI) method
of computing �F . The implementation is again straightforward: @F�=@� is estimated at a
number of � values, by averaging @H�=@� over microstates sampled from the corresponding
canonical distributions, and the integral

�F =
Z 1

0
d�

@F�
@�

=
Z 1

0
d�

*
@H�

@�

+
�

(16)

is in turn estimated from these values.
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Window sampling and thermodynamic integration rely on generating microstates from
numerous canonical distributions, corresponding to parameter values �0; �1; � � � ; �M�1. The
sampling from each of these distributions is usually preceded by a number of relaxation
steps, during which the system adjusts to the value of �. It is often convenient to use
the �nal microstate sampled at �m as the seed for the relaxation sequence preceding the
sampling at �m+1 (rather than starting with a new microstate), since if the �'s are closely
spaced, then a typical microstate sampled from ��m will be \nearly typical" of ��m+1

, and
therefore relatively few relaxation steps will be required. Thus, implementation of window
sampling or thermodynamic integration might proceed as follows. Following generation of
an initial microstate z0 sampled from the canonical distribution �0, ns sampling steps are
taken with the work parameter held at �0, and the value of ÆF0 is estimated { using either
Eq.13b or Eq.14 { from the ns microstates thus generated. The parameter � is then changed
from �0 to �1, and nr relaxation steps are taken to allow the system to adjust to the new
parameter value. The cycle is iterated, ultimately resulting in a long chain of microstates,
with sampling intervals of length ns alternating with relaxation intervals of length nr as the
value of � marches through the sequence �0; �1; � � � ; �M�1. (Here the \length" of a relaxation
or sampling interval just refers to the number of Monte Carlo steps in that interval.) The
�nal estimate of �F is obtained by adding together theM estimates of ÆFm, each computed
from the values of ÆHm measured during the corresponding sampling interval. The number
of contributing values of ÆHm is thus Mns.

C. Slow Growth

In the above scheme, the total number of microstates in the chain is given by

� =Mns + (M � 1)nr; (17)

corresponding to M sampling intervals and M � 1 relaxation intervals. (This count does
not include the relaxation steps used to generate the initial microstate z0.) For a given
amount of computer time { e�ectively, a given total number of steps, � { one must strike a
compromise between the number of � intervals (M), and the number of relaxation steps (nr)
and sampling steps (ns) taken at each �. While there is no simple prescription for optimizing
these quantities, given a �xed � , a common implementation involves sampling only a single
microstate at each parameter value (ns = 1), and by dropping the relaxation steps altogether
(nr = 0), thus allowing for a huge number of tiny � intervals.5 This is the slow growthmethod,
which can be viewed as follows. After generation of the initial microstate z0, the value of
� is instantaneously \switched" from �0 = 0 to �1 = 1=� , resulting in a small change in
the energy of the system, ÆW0 = H�1(z0) � H�0(z0). A new microstate is then generated,
z0 ! z1, using a single Monte Carlo step taken at the parameter value �1. The process is
then iterated, with evaluations of

ÆWt = H�t+1(zt)�H�t(zt) = ÆHt(zt) (18)

alternating with Monte Carlo steps zt ! zt+1 generated at �t+1, where �t = t=� . This
ultimately produces a chain of microstates

z0 ! z1 ! � � � ! z� ; (19)
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as � progresses in small increments from 0 to 1, and at the end �F is estimated as the sum
of the small energy changes accumulated by the sequence of changes in �:

�F � W �
��1X
t=0

ÆWt: (20)

(The �nal microstate z� does not actually contribute to this estimate, hence is unnecessary.
However, for purpose of presentation, it is convenient to assume that the last Monte Carlo
step is the one from z��1 to z� , generated at � = 1.) Note the subtle shift in interpretation:
we now view each value of ÆHt(zt) as a small change in the energy of the system due to a
sudden change in �, rather than simply the value of a function ÆHt at a sampled microstate
zt. This shift represents a somewhat more dynamical point of view: we think of the chain
in Eq.19 as a trajectory, depicting the evolution of the system (in discrete time steps t) as �
is switched incrementally from 0 to 1.

The slow growth approximation, Eq.20, becomes an equality in the quasi-static limit of
in�nitely many, in�nitesimal increments in �:

�F = W1 � lim
�!1

��1X
t=0

ÆWt: (21)

As this point is not immediately obvious { and perhaps not universally appreciated { it
merits a brief, semi-quantitative discussion.

In the quasi-static limit, each microstate zt is sampled from the instantaneous canonical
distribution ��t(z); see Section IB. Now, as the work parameter advances across a tiny
but �xed interval [�; � + ��], the system takes n�� = ��� � 1 Monte Carlo steps. The
contribution from this interval to the slow growth estimate of �F is thus a sum of n��
values of ÆWt:

F�+�� � F� �
X
t

0

ÆWt; (22)

where
P
0

t denotes a sum over �� � t < (� + ��)� . But ÆWt = (@H�=@�) � ��1 + O(��2),
hence

X
t

0

ÆWt ! ��1
X
t

0@H�

@�
(zt) = �� �

"
1

n��

X
t

0@H�

@�
(zt)

#
; (23)

to leading order. In the limit � ! 1 (hence n�� ! 1), the term in square brackets
converges to a unique value:

lim
�!1

1

n��

X
t

0@H�

@�
(zt) =

*
@H�

@�

+
�

+O(��): (24)

Now summing up over adjacent intervals of width �� spanning [0; 1], and �nally taking the
limit ��! 0 (after having taken � !1), we get:

lim
�!1

��1X
t=0

ÆWt = lim
��!0

X
��

��

"*
@H�

@�

+
�

+O(��)
#
=
Z 1

0
d�

*
@H�

@�

+
�

= �F: (25)
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D. Synthesis

The methods discussed so far { free energy perturbation, window sampling, thermody-
namic integration, and slow growth { can all be viewed as special cases of a general formula
for the numerical estimation of �F , namely:

�F est(M;ns; nr) =
M�1X
m=0

�T ln

"
1

ns

nsX
n=1

e�ÆHm(zm;n)=T

#
: (26)

Here, we are assuming the procedure discussed above: sampling intervals of length ns alter-
nate with relaxation intervals of length nr, atM discrete values of the work parameter; zm;n
represents the n'th microstate sampled at �m. �F

est(M;ns; nr) is the numerical estimate of
�F , for given values of M , ns, and nr. Note that the dependence of the right side of Eq.26
on nr is implicit rather than explicit: the microstates generated during a given relaxation
intervals do not contribute directly to the estimate of �F , but rather \set the stage" for the
subsequent sampling interval.

The identities on which the various methods are based (Eqs.9, 13, 16, 21) are recovered
as limiting cases of Eq.26:

free energy perturbation M = 1 ns !1
window sampling M > 1 ns !1
thermodynamic integration M !1 ns !1
slow growth M !1 ns = 1 nr = 0

Note that M = � for slow growth, i.e. one Monte Carlo step per � interval. Further-
more, when M � 1 (as in slow growth and thermodynamic integration), it is convenient to
include only the leading-order contribution to the term summed on the right side of Eq.26:

�F est(M;ns; nr) =
M�1X
t=0

1

ns

nsX
n=1

ÆHm(zm;n) +O(M�1): (27)

The various limiting cases listed above can be summarized by the identity

�F = lim
Mns!1

�F est(M;ns; nr): (28)

This tells us that the estimate, �F est, converges to the exact value of �F as the total number

of contributing values of ÆHm goes to in�nity.

III. NONEQUILIBRIUM METHODS

The free energy methods discussed to this point rely on the assumption of equilibrium
sampling: each microstate which actually contributes to the estimate of �F is assumed to
have been drawn from a canonical distribution ��(z). This is usually an idealization, as most
sampling algorithms converge only asymptotically to the targeted distribution. Sometimes
this idealization is a good one. For instance, in the basic implementation of the perturbation
method, it is often feasible to take suÆciently many relaxation steps prior to the commence-
ment of sampling, that the subsequent microstates are to a very good approximation drawn
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from �0(z). In other cases, the equilibrium assumption is noticeably violated. This is par-
ticularly evident in slow growth, where no relaxation steps are taken once the value of �
begins to change.

This section discusses the use of nonequilibrium methods of estimating �F . As in the
equilibrium case, these methods are based on the sampling of microstates, but here it is
explicitly not assumed that these are drawn from canonical distributions. The motivation
for developing such methods is to some extent a desire to face reality, especially in the
context of slow growth: if the system is going to be driven away from equilibrium by the
�nite rate of switching the work parameter, then we ought to develop ways to cope with
this inevitability. However, nonequilibrium methods can also be useful in their own right.
Even when we have available the computer time to perform a nearly quasi-static slow growth
computation, there may be advantages to using a nonequilibrium method instead.

A. Dynamical interpretation

In Section IIC we mentioned the dynamical interpretation of the chain of microstates
z0 ! z1 ! � � � ! z� generated during a slow growth estimation of �F . Namely, we view
this chain as a trajectory depicting the evolution (in discretized time) of our system, as the
work parameter � is changed in small increments from 0 to 1. We now elaborate on this
interpretation, which plays a central role in the free energy methods discussed below.

We interpret our trajectory speci�cally as representing the evolution of a system in

contact with a heat reservoir at temperature T . A slow growth calculation then represents
the numerical simulation of the following switching process: an initially equilibrated system
evolves with time, in contact with a heat reservoir, as an external work parameter is switched
from 0 to 1. The total number of steps, � , represents the switching time, i.e. the duration
of the switching process; and 1=� is the rate of switching. If the process is not carried out
suÆciently slowly, then the system gets driven away from equilibrium as a result of the �nite
rate of variation of the work parameter. That is, the lag mentioned in Section IB develops.

Recall that the quantity W de�ned by Eq.20 is the sum of energy changes resulting from
increments in � (see also Eq.18). This is not equal to the net change in the internal energy
of the system, since it does not include energy changes due to the Monte Carlo steps, the
sum of which we will denote by:

Q =
��1X
t=0

ÆQt �
��1X
t=0

h
H�t+1(zt+1)�H�t+1(zt)

i
: (29)

As easily veri�ed, the net change in internal energy of the system, �E � H1(z� )�H0(z0),
is given by:

�E =W +Q; (30)

with W and Q de�ned above.
The use of the symbolsW andQ is meant to be suggestive: we interpretW as the external

work performed on the system over the course of the switching process, by whatever agent
drives the work parameter from 0 to 1.5;12;13 Then Q is the net heat absorbed by the system,
and Eq.30 is simply a statement of the �rst law of thermodynamics. This point of view allows
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us to interpret the foundation of the slow growth method, Eq.21, in terms of another basic
law of thermodynamics, which states that the external work performed on a system over

the course of a reversible, isothermal process is equal to the free energy di�erence between

the initial and �nal states of the system.14 In e�ect, the slow growth method represents an
attempt to compute �F by simulating such a process.

To be truly reversible, a switching process must be carried out in�nitely slowly (� !1).
For switching processes carried out at a �nite rate, the second law of thermodynamics tells us
that the work performed actually represents an upper bound on the free energy di�erence12;13:

W > �F: (31)

In other words, to the extent that the system gets driven out of equilibrium, additional work
is required to change � at the speci�ed rate. Let us now consider this inequality in greater
detail, as this will lead naturally to consideration of the use of repeated, nonequilibrium
switching simulations to estimate �F .

B. Statistical and systematic errors

For a given switching process, the value of W which emerges from a simulation depends
on a string of random numbers: those used during relaxation to the initial microstate z0,
and those used to generate the subsequent Monte Carlo steps zt ! zt+1. If we were to
carry out the same switching process repeatedly, keeping all things the same except the
string of random numbers, then we would obtain a collection of di�erent trajectories, and
correspondingly di�erent values ofW . These represent di�erent microscopic realizations { or
histories { of the same switching process, with values of W which di�er from one realization
to the next as a result of microscopic 
uctuations. Now, Eq.31 is not necessarily true for
every realization of a given process, but is true on average:

W > �F; (32)

where the overbar now indicates an average over the ensemble of possible realizations of the
given switching process.15 Thus, by performing N independent switching simulations, we
obtain N independent work values, scattered around an average greater than �F .

Imagine that we have indeed performed N such simulations, perhaps using N di�erent
computers or processors, and let W1; � � � ;WN be the values of work obtained from these
simulations. How do we construct an estimate of �F from these values? Perhaps the �rst
estimate that comes to mind is simply the ordinary (linear) average of these values:

�F � 1

N

NX
n=1

Wn: (33)

This average is of course subject to statistical error, which is easily estimated as �W=
p
N � 1,

where �2W is the variance of the N work values. More problematic is the systematic error

{ due to the fact that on average the work W will over-estimate the free energy di�erence
�F (Eq.32) { which does not vanish in the limit N !1. How do we cope with this bias?
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Reinhardt et al12;13 have suggested using Eq.32 to place upper and lower bounds on �F .
A number of forward switching simulations (with � switched from 0 to 1) are performed, and
the average work is taken as an upper bound on �F . Then a number of reverse simulations
(� : 1! 0) are carried out, and the average of these work values represents an upper bound
on ��F = F0 � F1; hence a lower bound on �F . Combining the two sets of simulations,
we get

�W 1!0 < �F < W 0!1: (34)

As discussed in Refs.12;13, minimizing the di�erence between the upper and lower bounds is
an objective criterion for optimizing the parametrization of H�, given �xed \end points" H0

and H1. This is the variational path optimization scheme. Very recently, this method has
been used in conjunction with a metric scaling strategy16; the combination shows promise
of dramatically improving the eÆciency of certain free energy calculations.

Taking a di�erent approach, Hermans17 has related the systematic bias (W � �F ) to
the variance of the work values, �2W :

�F =W � �2W
2T

+O(��2): (35)

Thus, by adjusting the estimate of �F downward by an amount �2W=2T , we remove the
leading-order systematic error. Here, both W and �2W are de�ned with respect to in�nitely
many independent realizations of the same switching process. In practice, one estimates
these quantities from a �nite number of realizations. Eq.35 is a near-equilibrium result.
Therefore, if the parameter � is switched rapidly enough to drive the system signi�cantly
away from equilibrium over the course of a typical simulation, then the O(��2) corrections
to Eq.35 may be large.

C. Fast Growth

In recent years, the following non-equilibrium work relation has been derived:20;21

e�W=T = e��F=T : (36)

(This result was subsequently shown to follow from a �nite-time extension of detailed
balance22, and more recently from the well-known Feynman-Kac theorem of stochastic
processes23.) Again, the overbar denotes an average over an ensemble of realizations. Eq.36
suggests the following fast growth method of computing free energy di�erences: N inde-
pendent switching simulations are performed, and then the exponential average of the work
values, W x, is taken as the estimate of the desired free energy di�erence:

�F � W x � �T ln

 
1

N

X
n

e�Wn=T

!
: (37)

By Eq.36, this approximation becomes an equality in the limit of in�nitely many simulations,
N !1, for any value of � :

12



�F = lim
N!1

W x ; arbitrary �: (38)

Thus, no matter how slowly or rapidly each simulation is carried out, the value of �F can
be estimated to arbitrary accuracy, given suÆciently many simulations. This remains true
even if the system is driven far from equilibrium as � is varied from 0 to 1.

We can understand Eqs.37 and 38 as follows. For a �nite number N of independent
switching simulations, the fast growth estimate of �F , Eq.37, is subject to both statistical
and systematic error.21;24 As we perform more and more simulations, however, both the

statistical and the systematic errors vanish. Thus, the exponential average W x converges to
�F as N !1, in contrast with ordinary average which converges to a value W > �F .

It is interesting to consider the relationship between fast growth and some of the pre-
viously discussed free energy methods. First, consider the extreme case in which the value
of � is switched from 0 to 1 in a single step (� = 1). In this situation, W = �H(z0) (see
Eqs.18 and 20), and the average over \trajectories" is simply an average over microstates
z0 sampled from the � = 0 canonical distribution. Hence, fast growth reduces to the free
energy perturbation method in this limit of sudden switching. By contrast, when � ! 1
fast growth becomes equivalent to slow growth: W = �F for every realization (Eq.21),
and so the average of exp(�W=T ) is trivially exp(��F=T ). Thus, at the two ends of the
spectrum { namely, instantaneous switching (� = 1) and quasi-static switching (� !1) {
fast growth reduces to two tried and true methods of computing free energy di�erences. The
real novelty of Eq.36 resides in its validity for all intermediate values of the switching time
(1 < � <1), corresponding to simulations during which the system is genuinely driven out
of equilibrium.

Combining Eq.36 with Jensen's inequality, exp x � exp x (see Ref.1, p. 137), we imme-
diately obtain

W � �F: (39)

The equality holds only in the reversible limit � ! 1, hence Eq.36 implies W > �F
for irreversible processes. Recall that this is the theoretical basis of the variational path
optimization method.

Finally, taking the logarithm of both sides of Eq.36, then expanding ln exp�W=T in
terms of cumulants of W 20 and keeping only the �rst two cumulants, we get Hermans' result

�F � W � �2W
2T

: (40)

As discussed elsewhere24, truncation after the second term in the cumulant expansion ought
to be valid precisely when the switching is suÆciently slow to maintain the system near
equilibrium, in agreement with the discussion following Eq.35.

Eq.36 thus o�ers a common point of contact for a number of earlier free energy identities
and methods.

Because fast growth drops the requirement of reversibility, it allows us to estimate �F
using switching simulations of considerably shorter duration than with slow growth; there
is no explicit need to maintain the system near equilibrium. The price paid, however, is
the need for numerous simulations, as the convergence of W x to �F is guaranteed only in
the limit N !1. Thus, as with methods based on equilibrium sampling, fast growth only
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recovers the exact value of �F if we devote an in�nite amount of computational time to the
problem. A question of practical importance is therefore: given a �xed amount of computer
time, which method is likely to produce the best estimate of �F ? In other words, is it
better to devote all the computer time to a single, long simulation, or to perform a number
of shorter one and compute the exponential average of the corresponding work values? In
Ref.24, this question was addressed in the context of computing the excess chemical potential
for a (modi�ed) Lennard-Jones argon 
uid. (The excess chemical potential is the free energy
di�erence associated with \turning on" the interactions between a tagged particle and the
rest of the 
uid.) For various values of the switching time � , fast growth was compared with
slow growth. It was found that, except for the smallest value of � , fast and slow growth
yielded comparably accurate estimates of �F , for the same amount of computational e�ort.
As discussed in greater detail in Ref.24, this suggests two possible advantages of fast growth.
The �rst is the easy estimation of statistical errors, as �F is obtained from a number of
independent values of W , in contrast with slow growth which produces only a single value.
The second is the parallelizability of fast growth: it is much simpler to let N copies of a
simulation code run independently on N processors, than to eÆciently distribute a single
simulation code over those processors. It should be stressed that these conclusions have
been reached in the context of the particular system studied in Ref.24. Whether they are
more generally valid remains to be seen.

The nonequilibrium work relation on which fast growth is based, Eq.36, is similar in
structure to the free energy perturbation identity, Eq.9. This means that it is subject to
the same potential problem of poor convergence: if the distribution of work values is very
wide, then W x will be dominated by the small fraction of simulations which happen to
produce the lowest values of W . On the other hand, it may be possible to take advantage
of the similarity between Eqs.9 and 36: a number of the re�nements developed over the
years for improving the eÆciency of the perturbation method might easily carry over to fast
growth. Frenkel25 has suggested a version of fast growth analogous to Bennett's overlapping
distributions method. Hummer26 has shown that higher-order cumulant expansions derived
in the context of the perturbation identity, Eq.9, are readily extended to Eq.36. Hu, Yun,
and Hermans27 have found empirically that taking the ordinary average of two exponential
averages { W x

0!1 obtained from a set of forward switching simulations, and W x
1!0 from a

set of reverse switching simulations { can yield an estimate of �F in which the systematic
errors inherent in both W x

0!1 and W
x
1!0 cancel.

IV. CONCLUSION

The computation of a free energy di�erence �F is ultimately a problem in statistical
mechanics. The purpose of this paper has been a review of a number of rigorous results {
speci�cally, Eqs.9, 16, 21, 34, 35, and 36 | which provide the theoretical basis for various
methods of computing free energy di�erences. As these results are not completely inde-
pendent of one another, an e�ort has been made to point out the relationships between
them.

We end by mentioning a closely related and important problem. In this paper the free
energy has been considered to be a function of an externally controlled work parameter, �
(see Eq.3). In many cases of interest, however, it is more physically relevant to de�ne the
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free energy as a function of an order parameter of the system, �; then F (�) is a potential of

mean force1. Several of the free energy techniques discussed in this paper can be modi�ed
so as to allow for the computation of potentials of mean force. For instance, the weighted

histograms method28;29 is essentially an extension of the free energy perturbation method
(or rather its re�nement, umbrella sampling). More recently, schemes have been developed
for reconstructing potentials of mean force from steered molecular dynamics simulations30,
roughly analogous to the slow growth method. Finally, Hummer and Szabo23 have in e�ect
introduced a fast growth method for using steered molecular dynamics to compute potentials
of mean force. It bears mention that the choice of order parameter is itself not a trivial
problem, especially in reactions in which the transition path from the initial to the �nal
state is not obvious; for recent progress on this aspect of the problem, see Ref.31.
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