

 Linear Collider Collaboration Tech Notes

LCC- 0060
April 2001
Rev.1 July 2003

Guide to LIBXSIF, a Library for Parsing the Extended Standard
Input Format of Accelerated Beamlines

Peter G. Tenenbaum

Stanford Linear Accelerator Center
Stanford University

Stanford, CA

Abstract: We describe LIBXSIF, a standalone library for parsing the Extended Standard Input Format of accelerator beamlines.
Included in the description are: documentation of user commands; full description of permitted accelerator elements and their
attributes; the construction of beamline lists; the mechanics of adding LIBXSIF to an existing program; and “under the hood”
details for users who wish to modify the library or are merely morbidly curious.

Work supported by Department of Energy contract DE-AC03-76SF00515.

SLAC-TN-03-063

Guide to LIBXSIF, a Library for Parsing the Extended Standard Input
Format of Accelerator Beamlines

P. Tenenbaum
LCC-Note-0060

18-July-2003

Abstract

We describe LIBXSIF, a standalone library for parsing the Extended Standard Input Format
of accelerator beamlines. Included in the description are: documentation of user commands; full
description of permitted accelerator elements and their attributes; the construction of beamline
lists; the mechanics of adding LIBXSIF to an existing program; and “under the hood” details
for users who wish to modify the library or are merely morbidly curious.

Contents

1 Version Information 3

2 Introduction 3

3 General Syntax 4
3.1 More on Names . 5
3.2 Named Parameters . 5
3.3 Elements . 5
3.4 Beamlines . 6

4 Commands in XSIF 6
4.1 CALL . 6
4.2 CLOSE . 6
4.3 CONSTANT . 7
4.4 ECHO . 7
4.5 LINE . 7
4.6 NLC . 7
4.7 NOECHO . 7
4.8 NONLC . 7
4.9 OPEN . 7
4.10 PARAMETER . 7
4.11 PATH . 7
4.12 RETURN . 8
4.13 USE . 8

5 Accelerator Elements 8
5.1 DRIFT . 8
5.2 SBEND . 9
5.3 RBEND . 9
5.4 QUADRUPOLE . 9
5.5 SEXTUPOLE . 9
5.6 QUADSEXT . 9

1

5.7 OCTUPOLE . 11
5.8 MULTIPOLE . 11
5.9 DIMULTIPOLE . 11
5.10 SOLENOID . 12
5.11 RFCAVITY . 12
5.12 LCAVITY . 12
5.13 ROLL, SROT . 13
5.14 ZROT, YROT . 13
5.15 HKICK, VKICK . 13
5.16 GKICK . 13
5.17 HMONITOR, VMONITOR, MONITOR . 14
5.18 BLMONITOR, PROFILE, WIRE, SLMONITOR, IMONITOR, INSTRUMENT . . 14
5.19 MARKER . 14
5.20 ECOLLIMATOR, RCOLLIMATOR . 14
5.21 ARBITELM . 14
5.22 MTWISS . 14
5.23 MATRIX . 15
5.24 BETA0 . 15
5.25 BEAM . 15

6 How to Use LIBXSIF 16
6.1 Fortran-90 Modules . 16
6.2 Initializing and Activating the Parser . 17

6.2.1 XSIF IO SETUP . 17
6.2.2 RDINIT . 17
6.2.3 CLEAR . 17
6.2.4 INTRAC . 17
6.2.5 XSIF CMD LOOP . 18
6.2.6 XSIF IO CLOSE . 18
6.2.7 XSIF RELEASE MEM . 18
6.2.8 XUSE2 . 19

6.3 Extracting the Beamline and Elements . 19
6.3.1 Evaluation of Parameters . 19
6.3.2 Storage of the Beamline and Element Data 19

6.4 Examples . 20

7 Technical Information 20
7.1 Global Data Storage – LIBXSIF Module Files . 21

7.1.1 Module XSIF SIZE PARS . 21
7.1.2 Module XSIF ELEM PARS . 21
7.1.3 Module XSIF ELEMENTS . 22
7.1.4 Module XSIF INOUT . 22
7.1.5 Module XSIF CONSTANTS . 22
7.1.6 Module XSIF INTERFACES . 25

7.2 How LIBXSIF Works . 25
7.2.1 File Handling . 25
7.2.2 Dynamic Allocation . 25
7.2.3 Named Parameters and Element Parameters 25

2

7.2.4 Elements and Beamlines . 26
7.3 Useful Subroutines and Functions in XSIF . 27

7.3.1 Subroutine ELMDEF . 27
7.3.2 Subroutine PARAM . 27
7.3.3 Subroutines LINE and DECLST . 27
7.3.4 Subroutines XUSE and EXPAND, Function XUSE2 27
7.3.5 Function PARCHK . 27
7.3.6 Subroutine PARORD . 27
7.3.7 Subroutines DECEXP and PAREVL . 28
7.3.8 Subroutine RDLOOK . 28
7.3.9 Subroutines RDINIT and CLEAR . 28
7.3.10 Function XSIF IO SETUP and Subroutine XSIF IO CLOSE 28
7.3.11 Function XSIF CMD LOOP . 28

8 Where to Get LIBXSIF 28

9 Acknowledgements 28

1 Version Information

This Note describes LIBXSIF version 2.0, Version Date 01-Jun-2003.

2 Introduction

The Standard Input Format (SIF) for accelerator beamline description was created in 1984 to
respond to the need for a more user-friendly lingua franca for the accelerator world [1]. SIF had
several notable improvements over previous languages (such as TRANSPORT format [2]):

• SIF permitted highly repetitive elements, from magnets to beamline symmetry units, to be
defined once and reused repeatedly

• SIF permitted the beam optics to be defined independently of the beam energy, by declaring
magnet strengths in quantities normalized to the energy (for example, defining the strength
of a bend magnet by its total bend angle rather than its integrated magnetic field)

• SIF permitted many beamlines to be defined in a single file, and allowed the user to select
which one was to be simulated

• SIF permitted the user to define named parameters, and allowed beamline element parameters
to be defined in terms of arithmetic relationships between constants, named parameters, and
parameters of other elements

• SIF permitted decks to be spread over multiple files, so that the actual beamline description
and commands for the simulation program could be kept separate; this in turn permitted a
single deck to be used without modification by many users, each of whom performed different
simulations with different command files

• SIF permitted a more relaxed and intuitive syntax than the existing beamline description
languages.

3

The standard input format was immediately adopted by the CERN simulation program MAD
(Methodical Accelerator Design) [3], and was later added to the programs DIMAD [4], TRANS-
PORT [5], TURTLE [6], and COMFORT [7]. Nonetheless, the widespread adoption of SIF has
been impeded by the absence of a single, standalone version of the deck parser that can easily be
added to any existing simulation program. In addition, the absence of linear accelerator elements
in SIF has delayed its usage in programs in which such elements are critical, such as LIAR [8].

In this Note, we document a software solution to both of the problems above. LIBXSIF is a
standalone library for the parsing of Extended Standard Input Format (XSIF) decks. Software
engineers need add only a few calls to routines in this library to allow their programs to read and
manage decks in the XSIF language. The standard is “extended” from SIF in the following ways:

• Linear accelerator elements, using the DIMAD keyword LCAVITY, are permitted

• Elements have an APERTURE attribute

• A handful of non-SIF elements, such as GKICKs, are included.

LIBXSIF is written in Fortran-90, and the latest version (v1.2) is available for Solaris, NT, Linux-
i86, and VMS-Alpha platforms. The present version of LIAR uses LIBXSIF, as does the present
version of NLC-DIMAD (v2.8). The use of a common library to perform all XSIF parsing has
greatly eased maintenance and expansion/extension of the code.

3 General Syntax

XSIF input is free format: blank spaces are ignored, all text (except for file names) is case-
insensitive. By default, XSIF statements are confined to one 80-column line; continuation to the
next line is indicated by a “&” symbol at or prior to column 80 of the current line, and all text
after the continuation symbol is ignored. An exclamation point (“!”) indicates a comment, and all
text after the exclamation point is ignored:

APARAM := & all this text is ignored
! so is all this text
1.5 + 2.5 ! complete the statement here

An entry in an XSIF file may be an element, a beamline, a named parameter, or a command.
The syntax for these different entries is as follows:

• An element is specified by a name of up to 8 characters which is followed by a colon and an
element keyword; the keyword must be at least 4 characters, and up to 8 characters of the
keyword are significant. The keyword is followed by a comma, and a comma-deliniated list
of element properties follows, for example:

ELEMNAME : QUAD, L = 1.0, APERTURE = 0.01

• A beamline is specified by a name of up to 8 characters which is followed by a colon and
the keyword LINE; this is followed by an equals-sign (“=”), and a comma-delineated list of
elements contained within parentheses. For example:

FODO : LINE = (QF, D1, QD, QD, D1, QF)

4

• A named parameter is specified via one of three syntaxes: A name followed by a colon and
the PARAMETER keyword, a name followed by a colon and the CONSTANT keyword, or a
name followed by a colon and an equals sign and a value. Examples:

PAR1 : PARAMETER = 1.0
PAR2 : CONSTANT = 2.0
PAR3 := 3.0

• A command is a single word, sometimes followed by a comma-delineated argument list and
in a few cases followed by an additional argument on the next line. For example:

USE, FODO

3.1 More on Names

Element, beamline, and parameter names may be from 1 to 8 characters in length. The first
character must be a letter, and the remaining 7 characters may be a letter, a digit, a dollar sign
(“$”), an underscore (“ ”), or a decimal point (“.”). Each element and beamline must have a unique
name. Each named parameter must also have a unique name; however, since named parameters
are stored separately from beamlines and elements, a named parameter may have the same name
as a beamline or an element.

3.2 Named Parameters

A named parameter may be set equal to a numerical constant or to an arithmetic expression which
includes numerical constants and other named parameters. In addition to the standard set of
arithmetic operators (+,-,*,/), XSIF recognizes Fortran functions SQRT, LOG, EXP, SIN, COS,
ATAN, ASIN, and ABS. Arithmetic expressions can include named parameters that have not yet
been defined. XSIF also contains several named parameters that are initialized at startup and
available to the user: PI, TWOPI, EMASS (in GeV), PMASS (in GeV), CLIGHT (in m/s), E
(natural number), DEGRAD (radians to degrees), and RADDEG (degrees to radians). Element
parameters can be used in expressions to define named parameters: in this case, the name of the
element parameter is the name of the element followed by the name of the parameter enclosed in
square brackets. For example, to define a named parameter NEWNAME which takes as its value
the length of element OLDELT:

NEWNAME := OLDELT[L]

Once defined, a named parameter’s value may be changed at will; this includes the predefined
physical-constant named parameters listed above. All other named parameters which depend upon
the changed named parameter will reflect this change. For example, if a parameter THREEPI is
defined by the statement THREEPI := 3*PI, and the value of PI is changed by the statement PI
:= 3.0, then the value of THREEPI will be automatically changed to 9. Note that a parameter
which is defined with the CONSTANT statement can still have its value changed; the CONSTANT
keyword is provided only for compatibility with MAD.

3.3 Elements

Once an element is defined, its name can be used in place of the element keyword for future ele-
ments. For example, the statements:

5

QMASTER : QUAD, L=1, APERTURE = 0.01, K1=0.1
QSLAVE : QMASTER, K1 = -0.1

will cause the definition of a quadrupole named QSLAVE which has the same length and aperture
as QMASTER but a different K1 value. In this case, redefinition of QMASTER is prohibited, but
in general elements can be readily redefined just as named parameters can be.

Element parameters can be defined by arithmetic expressions; the syntax is exactly the same
as for named parameters.

3.4 Beamlines

A beamline element list can contain either elements or other beamlines that have already been
defined; use of an element or beamline that has not yet been defined is not permitted. Repetition
of beamlines or reflection of beamlines is indicated by the * and - signs, respectively, for example:

FODO1A : LINE = (QF, D1, QD)
FODO1 : LINE = (FODO1A, -FODO1A)
FODO10 : LINE = (10*FODO1)

A beamline definition can also accept formal arguments, in which some of the elements in the
beamline list are variables. For example:

FODO1A(QF,QD) : LINE = (QF, D1, QD)
FODO1 : LINE = FODO1A(QFA,QDA)
FODO2 : LINE = FODO1A(QFB,QDB)

defines two FODO half-cells which have the same drift element D1 but different F and D quads.

4 Commands in XSIF

XSIF recognizes the following commands: CALL, CLOSE, CONSTANT, ECHO, LINE, NLC,
NOECHO, NONLC, OPEN, PARAMETER, PATH, RETURN, USE.

4.1 CALL

Switch input from present logical unit to another. This command can be used in either of the
following two ways:

• CALL, NN causes logical unit NN to be used for input; NN is an integer from 1 to 99.

• CALL, FILENAME = ‘‘filename.xsif’’ causes the filename within single or double quotes
to be used for input. This is the modern MAD-8 syntax for the CALL command.

A CALL is terminated by a RETURN statement (see 4.12). XSIF permits nesting of CALL/RETURN
statements to unlimited depth.

4.2 CLOSE

Closes a logical unit which was opened by a previous OPEN statement (see 4.9). CLOSE, NN causes
whichever file is connected to logical unit NN to be closed.

6

4.3 CONSTANT

Declares a named parameter. APAR : CONSTANT = 1.0 declares named parameter APAR with
value 1.0. As described above, in XSIF the CONSTANT statement is synonymous with PARAME-
TER (see 4.10), and does not preclude changes to the value of the named parameter declared with
a CONSTANT statement.

4.4 ECHO

Causes a copy of the input stream to be written to the error file. Antonym for NOECHO (section
4.7).

4.5 LINE

Declares a beamline definition: ALINE : LINE = (...).

4.6 NLC

Causes a warning whenever an element defintion is found which does not correspond to the NLC
deck standards [9]. Antonym for NONLC (section 4.8).

4.7 NOECHO

Disables copying of the input stream to the error file. Antonym for ECHO (section 4.4).

4.8 NONLC

Disables warning for elements which violate the NLC deck standards. Antonym for NLC (section
4.6).

4.9 OPEN

Opens a file to a selected logical unit number. Syntax:

OPEN, NN
filename

opens the named file to logical unit NN, which is between 1 and 99. The filename must be on the
line after the OPEN statement. The filename can contain the $PATH variable (see PATH, section
4.11).

4.10 PARAMETER

Declares a named parameter: APAR : PARAMETER = 1.0. In general, it is more convenient to use
the syntax APAR := 1.0.

4.11 PATH

Declares an alternate path for use in file operations. Syntax:

7

PATH
pathname

where the name of the path must be on the line following the PATH statement. In subsequent
file operations, such as OPEN statements, the expression $PATH will be replaced by the specified
path name. The $PATH expression can be used in the PATH command to generate extremely long
absolute pathnames.

4.12 RETURN

Ends use of a CALL’ed file for input purposes; when a RETURN is encountered, XSIF switches to
using the file that contained the CALL statement for further input. CALL/RETURN pairs can be
nested; any depth of nesting is permitted.

4.13 USE

The USE command selects a beamline to be expanded for simulation studies by the calling program.
The syntax for the USE command was elucidated in the previous section. While the SYMM and
SUPER arguments of the MAD USE command are recognized, they do not presently do anything!

5 Accelerator Elements

The list of known accelerator elements is a combination of the standard MAD elements and the
standard DIMAD elements. Each element accepts two alphanumeric parameters: a 16-character
string intended for use as an engineering classification, and a 24-character string intended for
use as a database name. These parameters are indicated with the TYPE and LABEL keywords,
respectively, and must be enclosed in single or double quotes (i.e., QUAD, TYPE = ‘‘15Q2.85’’,
LABEL = ‘‘QUAD:CB00,1010’’). Neither TYPE nor LABEL strings must be unique. The present
version of LIBXSIF requires that the first character in a TYPE or LABEL string be a letter, while
the remainder may be any combination of letters, digits, periods (“.”), colons (“:”), hyphens (“-”),
underscores (“ ”), and dollar signs (“$”). With the exception of some parameters of the BEAM
element (see below), all other element parameters require a number or an expression that evaluates
to a number, and all element parameters default to zero if not explicitly defined, with the following
exceptions:

• If the TILT parameter is given without a numerical value, a rotation about the longitudinal
axis from normal to skew orientation is assumed (i.e., 90 degrees for a bend, 45 degrees for a
quad, 30 degrees for a sextupole, etc.)

• LFILE and TFILE parameters expect a file name enclosed within single or double quotes; up
to 80 characters is permitted (including the terminating quotes); use of the $PATH expression
is permitted (see previous section).

5.1 DRIFT

L is the length.

8

5.2 SBEND

This is a sector bend magnet.

L is the path length through the magnet (not the magnet rectan-
gular length).

ANGLE is the bend angle.
K1 is the quadrupole component of the field; see section 5.4.
E1 is the entrance edge angle.
E2 is the exit edge angle.
TILT is the tilt angle.
K2 is the sextupole component of the field; see section 5.5.
H1 is the entrance pole face curvature.
H2 is the exit pole face curvature.
HGAP is the entrance half gap size.
FINT is the entrance fringe field integral, which defaults to 0.5.
HGAPX is the exit half gap size. If HGAPX is not given a value, it defaults

to the value of HGAP.
FINTX is the exit fringe field integral. If FINTX is not given a value, it

defaults to the value of FINT.

5.3 RBEND

The rbend is a parallel faced dipole magnet. Its parameters are the same as those of the sbend.
Parameters E1 and E2 are not provided by the user and are set by the program to half the value
of the bend angle.

5.4 QUADRUPOLE

The strength parameter is defined by K1 ≡ Bpole/(aBρ), where Bpole is the pole-tip magnetic field
and a is the aperture radius.

L is the length.
K1 is the strength.
TILT is the tilt angle.
APERTURE is the magnet aperture.

5.5 SEXTUPOLE

The strength parameter is defined by K2 ≡ 2Bpole/(a2Bρ), where Bpole is the pole-tip magnetic
field and a is the aperture radius.

L is the length.
K2 is the strength.
TILT is the tilt angle.
APERTURE is the magnet aperture.

5.6 QUADSEXT

Combined function quadrupole-sextupole, with strengths defined as in sections 5.4 and 5.5.

L is the length.

9

K1 is the quadrupole strength.
K2 is the sextupole strength.
TILT is the tilt angle; if entered with no argument, an angle of 45

degrees is used.
APERTURE is the magnet aperture.

10

5.7 OCTUPOLE

The strength parameter is defined by K3 ≡ 6Bpole/(a3Bρ), where Bpole is the pole-tip magnetic
field and a is the aperture radius.

L is the length.
K3 is the strength.
TILT is the tilt angle.
APERTURE is the magnet aperture.

5.8 MULTIPOLE

This is an arbitrary high-order multipole.

L or LRAD is the length.
K0L - K20L are the integrated strengths, with KnL ≡ n!Bpole,nL/(anBρ),

and Bpole,n is the contribution to the pole-tip field of the n’th
multipole.

T0 - T20 are the tilt angles. If tn is entered without a value, half-
turn/2(n+1) is assumed.

KZL is the integrated longitudinal strength, KZL = BzL/Bρ.
KRL is the integrated radial strength, KRL = BrL/Bρ.
THETA is the beam crossing angle with respect to the symmetry axis of

the solenoidal component.
Z is the distance in z to the point at which the beam and solenoidal

axes meet.
SCALEFAC is a dimensionless strength factor, used to scale all the strengths

together.
TILT is the overall tilt angle.
APERTURE is the magnet aperture.

NOTE : Parameters KZL, KRL, THETA, and Z are used to simulate a beam passing at
an angle through a solenoidal field slice.

5.9 DIMULTIPOLE

This element is the “traditional” DIMAD multipole. It is used to preserve compatibility with
existing DIMAD decks, since the keywords of the MULTIPOLE have been changed to allow com-
patibility with MAD.

L is the length. If the length is zero, the strengths are interpreted
as integrated strengths.

K0 - K20 are the integrated strengths.
T0 - T20 are the tilt angles. If Tn is entered without a value, half-

turn/2(n+1) is assumed.
SCALEFAC is a dimensionless strength factor, used to scale all the strengths

together.
TILT is the overall tilt angle.
APERTURE is the magnet aperture.

11

5.10 SOLENOID

Note that the KS value is defined to be BS/Bρ in the MAD standard, which differs from the
TRANSPORT definition by a factor of 2.

L is the length.
KS is the solenoid strength.
K1 is the quadrupole strength.
TILT is the tilt angle
APERTURE is the magnet aperture.

5.11 RFCAVITY

This is a storage-ring RF cavity.

L is the length.
VOLT is the cavity voltage, in MeV
LAG is the phase lag of the cavity with respect to a nominal particle

at the start of the machine, in radians/2π.
FREQ is the frequency of the cavity in MHz.
HARMON is the harmonic number of the cavity.
ENERGY is the energy.(GeV).
ELOSS This is the energy loss factor of the cavity, in V/coulomb.
LFILE This is a filename of up to 78 characters enclosed in double

quotes. The file contains longitudinal wakefield data for the cav-
ity, in units of V/coulomb/meter. The filename may use the
$PATH construct to refer to an alternate path.

TFILE This is a filename of up to 78 characters enclosed in double
quotes. The file contains transverse wakefield data for the cavity,
in units of V/coulomb/m2. The filename may use the $PATH
construct to refer to an alternate path.

NBIN,
BINMAX

Used by some simulation programs for histogramming particles
according to their longitudinal coordinates for wakefield compu-
tations.

APERTURE is the aperture.

5.12 LCAVITY

This element is a cavity or structure for linear acceleration.

L is the length.
E0 is the injection energy, typically supplied only for the first cavity.
DELTAE is the energy gain on crest without beam loading in MeV.
PHI0 is the phase offset for a reference particle in radians/2π. A posi-

tive phase indicates that the RF crest is ahead of the bunch.
FREQ is the frequency in MHz.
ELOSS is the cavity beam loading factor in V/Coulomb.
LFILE is a 78-character filename, enclosed in double quotes. The file

contains the cavity’s longitudinal wakefield Green’s Function in
V/C/m. The filename may use the $PATH construct to refer to
an alternate path (see Control Flow, below).

12

TFILE is a 78-character filename, enclosed in double quotes. The file
contains the cavity’s transverse wakefield Green’s Function in
V/C/m2. The filename may use the $PATH construct to refer to
an alternate path.

NBIN,
BINMAX

Used by some simulation programs for histogramming particles
according to their longitudinal coordinates for wakefield compu-
tations.

APERTURE is the aperture.

5.13 ROLL, SROT

This element performs a rotation of the coordinate system about the longitudinal axis.

ANGLE is the rotation angle. A positive angle means the new coordinate
system is rotated clockwise about the s- axis with respect to the
old system.

5.14 ZROT, YROT

This element performs a rotation of the coordinate system about the vertical axis. The angle must
be small.

ANGLE is the rotation angle. A positive angle means the new coordinate
system is rotated clockwise about the local z-axis with respect to
the old system.

5.15 HKICK, VKICK

These are horizontal and vertical steering magnets.

KICK a horizontal (vertical) kick of size kick
TILT rotation angle about the longitudinal axis

5.16 GKICK

This element is a general kick.

L is the length.
DX is the change in x.
DXP is the change in x’.
DY is the change in y.
DYP is the change in y’.
DL is the change in path length.
DP is the change in dp/p.
ANGLE is the angle through which the coordinates are rotated about the

longitudinal axis.
DZ is the longitudinal displacement.
V is the extrance-exit parameter of the kick, which signals to some

programs whether the kick is applied at the beginning or end of
the element and whether it is applied on all turns.

13

T is the momentum dependence parameter. The kicks dx’ and dy’
can be thought of as misalignment errors or as angle kicks of
orbit correctors. In the first case (T=0) they are momentum
independent. When T=1 the kicks dx’ and dy’ vary inversely
with momentum.

5.17 HMONITOR, VMONITOR, MONITOR

These elements are horizontal, vertical, and horizontal and vertical monitors, respectively.

L is the monitor length.
XSERR,
YSERR,
XRERR,
YRERR are the x and y systematic and random errors.

5.18 BLMONITOR, PROFILE, WIRE, SLMONITOR, IMONITOR, INSTRU-
MENT

These are different types of instrumentation.

L is the length.

5.19 MARKER

A marker is a drift element of zero length. It has no parameters.

5.20 ECOLLIMATOR, RCOLLIMATOR

An ecollimator is elliptic, and an rcollimator is rectangular. The particles are checked at the
entrance and at the exit of the collimator.

L is the length.
XSIZE
YSIZE are the x and y collimator apertures. The default apertures are

1 meter.

5.21 ARBITELM

This is the arbitrary element.

L is the length.
P1 - P20 are the parameters.

5.22 MTWISS

This is a general transfer matrix expressed in terms of its matched Twiss parameters and phase
advance.

L is the length.
MUX,
BETAX,
ALPHAX,

14

MUY,
BETAY,
ALPHAY are the twiss parameters for this transfer matrix. betax and betay

have default values of 1.

5.23 MATRIX

This element is a general transfer matrix.

Rij
Tijk are the matrix elements. i,j, and k range from 1 to 6, but j is

always less than or equal to k.

5.24 BETA0

This element is a set of Twiss parameters that can be used, for example, to set the initial conditions
of a transport line.

BETX βx value in meters.
ALFX αx value.
MUX µx value.
BETY βy value in meters.
ALFY αy value.
MUY µy value.
DX ηx value in meters.
DPX η′x value.
DY ηy value in meters.
DPY η′y value.
X x value in meters.
PX x′ value.
Y y value in meters.
PY y′ value.
WX horizontal chromatic amplitude function.
PHIX horizontal chromatic phase function.
DMUX chromatic derivative of the horizontal phase function.
WY vertical chromatic amplitude function.
PHIY vertical chromatic phase function.
DMUY chromatic derivative of the vertical phase function.
DDX horizontal second-order position dispersion in meters.
DDPX horizontal second-order angle dispersion.
DDY vertical second-order position dispersion in meters.
DDPY vertical second-order angle dispersion.
ENERGY beam energy in GeV.

5.25 BEAM

Initial beam condition element. In XSIF, only the element form of the BEAM statement (i.e.,
BEAMELEM : BEAM, ...) is permitted, the standalone version (i.e., BEAM, ... without a colon-
separated name) is forbidden.

15

PARTICLE name of the particle enclosed in single or double quotes.
“POSITRON”, “ELECTRON”, “PROTON”, and “ANTI-
PROTON” are recognized; “POSITRON” is the default.

MASS particle mass in GeV.
CHARGE particle charge expressed in elementary charges.
ENERGY particle total energy in GeV (default: 1) .
PC momentum per particle in GeV/c.
GAMMA Lorentz factor for the particle.
EX horizontal geometric emittance in m.rad (default: 1).
EY vertical geometric emittance in m.rad (default: 1).
ET longitudinal geometric emittance in m.rad (default: 1).
EXN horizontal normalized emittance; for compatibility with MAD

8, this parameter is four times the “conventional” normalized
emittance, i.e., EXN = 4 βrelγrel EX.

EYN vertical normalized emittance; for compatibility with MAD 8,
this parameter is four times the “conventional” normalized emit-
tance, i.e., EYN = 4 βrelγrel EY.

SIGT RMS bunch length in meters.
SIGE RMS relative energy spread.
KBUNCH number of bunches (default: 1).
NPART Number of particles per bunch (default: 0).
BCURRENT Beam current in amperes (default: 0).
BUNCHED Flag indicating whether the beam is bunched, with .T., .TRUE.,

.ON., or .YES. indicating a bunched beam and .F., .FALSE.,

.OFF., or .NO. indicating unbunched (default: .F.).
RADIATE Flag indicating whether SR is to be considered, with syntax iden-

tical to the BUNCHED parameter (default: .F.).

6 How to Use LIBXSIF

The standalone XSIF library contains 89 object files at present. Fortunately, most of these object
files contain subroutines which are only needed by other XSIF subroutines, and the user only
needs to use a handful of them in the program which is to call XSIF. Once parsing is complete,
it is necessary for the calling program to transfer the element definitions and their order in the
USEd beamline to its own internal data structures; typically this can be accomplished in a single
subroutine.

6.1 Fortran-90 Modules

The data used by XSIF is distributed amongst a number of Fortran-90 shared-data structures
called Modules. These are integrated into the subroutines that require them by “USE Associa-
tion:” the required modules are named in USE statements that appear prior to the IMPLICIT
statement. The subroutine that calls the XSIF parsing routines needs to USE the following mod-
ules: XSIF INOUT, XSIF INTERFACES, XSIF ELEMENTS. The subroutine that transfers data
from the XSIF data structures to the calling-program data structures needs to USE the following
modules: XSIF SIZE PARS, XSIF ELEMENTS, XSIF ELEM PARS.

16

6.2 Initializing and Activating the Parser

The following subroutines and functions are relevant for the initialization and activation of the
parser:

6.2.1 XSIF IO SETUP

This is an INTEGER*4 function which takes 9 arguments:

• A CHARACTER*(*) which is the path and filename of the XSIF deck

• A CHARACTER*(*) which is the path and filename for the error stream

• A CHARACTER*(*) which is the path and filename of XSIF’s standard output

• An INTEGER*4 which is the logical unit number to be used for the deck

• An INTEGER*4 which is the logical unit number to be used for the error stream

• An INTEGER*4 which is the logical unit number to be used for the standard output

• An INTEGER*4 which is the logical unit number to be used for any warnings or error
messages from XSIF IO SETUP itself

• A LOGICAL*4 which indicates whether the deck is to be echoed to the error stream and
standard output

• A LOGICAL*4 which indicates whether NLC coding standard warning messages are desired.

XSIF IO SETUP opens the three desired files to the desired unit numbers (the deck with status
“OLD,” the error and the standard output with status “REPLACE”); if successful, it executes sub-
routines RDINIT and CLEAR (see below), and sets the value of INTER (interactive) via function
INTRAC (see below). If all is successful, XSIF IO SETUP will return 0; otherwise it returns error
value XSIF PARSE NOOPEN (defined in module XSIF INOUT), which indicates that one of the
3 files could not be opened.

6.2.2 RDINIT

A subroutine which initializes various I/O variables and writes the XSIF version information to the
error stream, the standard output, and the screen.

6.2.3 CLEAR

A subroutine which initializes variables related to the element and named parameter data structures
in XSIF. In addition, CLEAR calls XSIF ALLOCATE INITIAL, which performs initial allocation
of the arrays used to store beamline, element, parameter, call stack, or wakefield filename informa-
tion.

6.2.4 INTRAC

At one time this function indicated whether the master program was running interactively; the
present version always returns FALSE. This is only used by the parser if a syntax error has occurred;
non-interactive mode permits it to scan the deck for additional syntax errors before aborting (see
section 6.2.5).

17

6.2.5 XSIF CMD LOOP

This is an INTEGER*4 function. It executes the main loop that reads new lines of the XSIF
file, determines what form of input the line represents (command, element, beamline definition, or
named parameter) and responds accordingly. This function takes a single, optional argument: the
name of a LOGICAL*4 function. XSIF CMD LOOP will continue to parse the input deck (and
any other files accessed from that deck via the OPEN/CALL commands) until one of the following
occurs:

• A function or subroutine in XSIF sets the value of global variable XSIF STOP to TRUE, in
which case all functions and subroutines in the call chain will complete execution normally
and XSIF CMD LOOP will pass execution back to the calling routine

• A fatal read error occurs, in which case the global variable FATAL READ ERROR is set
to TRUE and all subroutines and functions in the call chain will abort execution and pass
control back to the routine that called XSIF CMD LOOP as quickly as possible

• All input data in all files accessed by the XSIF parser is exhausted (either by RETURN
statements or by end-of-file), at which time control is returned to the calling routine.

If all parsing was completed without errors, XSIF CMD LOOP will return 0. Otherwise it
will return the error values XSIF PARSE ERROR, indicating a syntax error in the deck, or
XSIF FATALREAD, indicating a fatal read error; both of these signals are defined in XSIF INOUT.
Note that if a parsing error is encountered, XSIF CMD LOOP will enter “scanning mode,” in which
it continues to parse the deck but nonetheless returns a bad status. This permits a single pass
through XSIF to detect most (if not all) of the syntax errors, rather than detecting and aborting
on one error per pass.

The optional function argument, referred to in XSIF CMD LOOP as XSIF EXTRA CMD,
permits the XSIF parser to manage commands or elements which are not part of the library as
described in this Note. If XSIF EXTRA CMD is present, XSIF CMD LOOP will call it before
executing its standard command-handling routines. XSIF EXTRA CMD takes as arguments the
name of the most recent command keyword (CHARACTER*8) and its length (INTEGER*4),
the name of the most recent beamline element (CHARACTER*8) and its length (INTEGER*4),
and an error flag (LOGICAL*4). If XSIF EXTRA CMD returns TRUE, then XSIF CMD LOOP
assumes that the last command was handled by XSIF EXTRA CMD, it will bypass the built-
in command handler and proceed to read the next statement. If XSIF EXTRA CMD sets its
last argument to TRUE, then XSIF CMD LOOP knows that a syntax error has occurred within
XSIF EXTRA CMD, and it will enter “scanning mode.”

6.2.6 XSIF IO CLOSE

This subroutine closes and files that were opened by the XSIF parser subroutines. XSIF IO CLOSE
takes no arguments.

6.2.7 XSIF RELEASE MEM

This subroutine deallocates the XSIF arrays that were dynamically allocated for deck parsing.
XSIF RELEASE MEM takes no arguments.

18

6.2.8 XUSE2

This is an INTEGER*4 function that takes the name of a beamline (CHARACTER*8) as its
argument and attempts to expand it (executing XUSE2 with the name of a beamline is equivalent
to placing that beamline’s name in a USE statement in the XSIF deck). XUSE2 will return 0 if it
succeeded in expanding the named beamline, and it returns XSIF PARSE ERROR if the the name
in question does not correspond to a beamline. If any beamline is successfully expanded by XSIF
at any time (by a USE statement in the deck or an XUSE2 call), then the LOGICAL*4 variable
LINE EXPANDED is set to TRUE. This is a useful way for the calling routine to tell if there is an
expanded beamline ready for simulations or not.

6.3 Extracting the Beamline and Elements

If XSIF is to be added to an existing program, it is unlikely that the existing program will be
capable of using the XSIF data structures directly to store information that it needs to generate
the beamline, matrices, etc. Even if it proves possible, it may not be desirable to do it this way.
Thus, most programs will require a routine that extracts the expanded beamline, its elements, and
their parameters. Consequently, we include helpful tips on how this can be done. All of the data
read by the XSIF parser is in structures in the XSIF ELEMENTS module.

6.3.1 Evaluation of Parameters

In the XSIF data structures, the arithmetic relationships between the various defined parameters are
preserved. Before extracting the beamline and elements, it is necessary to calculate the numerical
values of all parameters. This can be done by calling (in order) INTEGER*4 function PARCHK
and subroutines PARORD and PAREVL.

PARCHK examines the parameters to make sure that all of the named parameters have been
defined; since undefined parameters default to zero value, unexpected and unpleasant things can
happen if an important parameter depends upon one that is accidentally undefined and therefore
zero by default. PARCHK takes one argument, a LOGICAL*4; if this argument is TRUE, then
undefined parameters are treated as errors, otherwise they are treated as warnings. If no undefined
parameters are detected, PARCHK returns 0. If one or more undefined parameters are detected,
appropriate messages are sent to the error file and PARCHK returns either a negative number (if
undefined parameters are considered errors) or a positive number (if they are considered warnings).
In either case the absolute value of the return is XSIF PAR NODEFINE, which is defined in module
XSIF INOUT.

PARORD examines the relationships between the parameters and determines the correct order
for evaluating them; this information is stored in a table. PAREVL goes down the table generated
by PARORD and evaluates the numerical value of all parameters. Both subroutines produce
warnings if obvious problems, such as circular definitions or divide-by-zero, are encountered.

6.3.2 Storage of the Beamline and Element Data

The list of elements in beamlines is stored in INTEGER*4 array ITEM. The index of the first
element of the expanded beamline is in global variable NPOS1, and the index of the last element
is NPOS2-1. The element information is encoded in the following structures:

• The I’th entry in ITEM is the index number of an element in a beamline

19

• IETYP(ITEM(I)) is the type of element (quad, bend, etc), according to the parameters in
XSIF ELEM PARS (ie, if IETYP(ITEM(I)) == 5, then ITEM(I) is a quad since parameter
MAD QUAD in XSIF ELEM PARS == 5)

• IEDAT(ITEM(I),1) is a pointer into the parameter list, PDATA, of the first element parameter
of ITEM(I). Data for a given element is stored sequentially in PDATA, and the order of the
parameters for each type of element is shown in XSIF ELEM PARS. Since for all elements
except MARKERs and various kinds of rotations the length is the first parameter, for example,
PDATA(IEDAT(ITEM(I),1)) is typically the length of element ITEM(I).

• The name, type, and label of an element are KELEM(ITEM(I)), KETYP(ITEM(I)), and
KELABL(ITEM(I)), respectively.

Section 7 contains more information on the storage of information within XSIF’s data structures.

6.4 Examples

We recognize that in many cases a working example is the best form of documentation. At present,
there are two programs available that make use of LIBXSIF: LIAR and DIMAD version 2.8. The
source codes for these programs are available for perusal at the NLC Accelerator Physics web site:
http://www-project.slac.stanford.edu/lc/local/AccelPhysics/codes/
nlc simulation codes.htm.

The LIAR call to LIBXSIF is in the context of a LIAR command, READ XSIF:

read xsif, file = ‘‘linac.xsif’’,
line = ‘‘ELIN1’’,
energy = 10,
echo = .f.

tells LIAR to parse a file named linac.xsif, to then expand for simulation a beamline named
ELIN1 with an initial energy of 10 GeV, and to suppress duplication of the input stream in the
output and error streams. All of the interfacing to LIBXSIF is in the subroutine READ XSIF and
the function XSIF EXPAND, both in the file read xsif.f.

DIMAD is a much older program than LIAR, and has for over a decade had a very different
“look and feel.” In this case, DIMAD was designed to have its commands and its deck inputs in
a single input stream: DIMAD’s standard input parser would handle the command, DIMAT, that
signalled the end of deck parsing and the beginning of simulation activity. This “look and feel” was
preserved by use of an additional function which handles DIMAD’s additions to the standard input;
this function is passed to XSIF CMD LOOP as an argument, as described in section 6.2.5. The
interface to LIBXSIF is in file madin new.f; beamline expansion is handled by subroutine DIMATD,
in dimatd.f. DIMAD eschews use of XSIF IO SETUP and XSIF IO CLOSE, since these routines
are primarily intended for use in programs that keep their XSIF input sequence separate from their
command streams (which DIMAD does not); consequently, DIMAD has calls to RDINIT, CLEAR,
and INTRAC within MADIN NEW.

7 Technical Information

The information in the preceding sections, coupled with examples from the implementation of
XSIF calls in LIAR and DIMAD, should be sufficient (we hope!) to permit users to add LIBXSIF
capabilities at will to their simulation programs. Such an approach relieves the users of LIBXSIF of

20

the responsibility for reading and understanding each of the source code files in the present version
of LIBXSIF. Nonetheless, some additional technical information on the inner workings of LIBXSIF
is potentially desirable to those who wish to expand or modify said workings, or simply to have a
better understanding of the system.

7.1 Global Data Storage – LIBXSIF Module Files

LIBXSIF stores its global variables in Modules, which must be accessed by USE statements in
subroutines that seek access to the values.

7.1.1 Module XSIF SIZE PARS

Contains the present size of several dynamically-allocated and dynamically-expandable data tables,
and a few fixed sizing parameters. All parameters are of type INTEGER*4.

Table 1: Parameters in XSIF SIZE PARS. In the case of dynamic parameters, the values listed are
initial values only.

Name Value Dynamic Purpose
MAXPOS 0 Yes Number of entries in fully-instantiated USEd beamline
MAXELM 32,768 Yes Number of distinct beamline elements definable
MAXPAR 32768 Yes Number of Named and Element parameters definable
MAXLST 32768 Yes Maximum allowed number of entries in all beamline lists
MAXERR 100 No Not used in XSIF at present, to be removed
MXCALL 32 Yes Number of nested CALL statements permitted

MX WAKEFILE 16 Yes Number of distinct wakefield files permitted
MX WAKE Z 100 No Number of entries permitted in a wakefile

MXLINE 1000 No Related to LINE definitions
ETYPE LENGTH 16 No Size of TYPE strings
ELABL LENGTH 24 No Size of LABEL strings

7.1.2 Module XSIF ELEM PARS

This contains parameter definitions required for parsing the various classes of elements. Most of
the information is in the form of “dictionaries:” arrays of CHARACTER*8 strings. The remainder
is in the form of INTEGER*4 parameters.

The first dictionary, DKEYW, is of all element keywords recognized by XSIF (DRIFT, SBEND,
RBEND, etc.). Its dimension is set by NKEYW to 36, indicating that XSIF recognizes 36 distinct
types of elements. Any keyword which is to be recognized by XSIF as a type of element must have
an entry in DKEYW.

The remaining dictionaries are of the names of element parameters which correspond to a
particular element type: for example, DQUAD is a list of the possible parameters that a quadrupole
may have (L, K1, TILT, APERTURE). The dimension of DQUAD is set by parameter NQUAD.
Note that there are not 36 element dictionaries, although there are 36 element types recognized by
XSIF; this is because in many cases multiple element classes can use the same parameter dictionary
(for example, ECOLLs and RCOLLs both use the DCOLL dictionary).

21

XSIF ELEM PARS also contains 36 INTEGER*4 parameters which are the element type
numbers used to store the element type in XSIF ELEMENTS (see section 7.1.3). For example,
MAD DRIFT is set to 1; therefore any drift elements are stored with a 1 in the element-type data
structure.

Finally, XSIF ELEM PARS contains a set of LOGICAL*4 parameters which indicate whether
various element types or element keywords are part of the NLC coding standard. NLC KEYW
contains 36 entries, in the same order as the order of element types in DKEYW; the values of
NLC KEYW are either TRUE if the corresponding element type is part of the NLC standard
or FALSE if it is not; for example, NLC KEYW(2) is FALSE because DKEYW(2) is RBEND,
and RBENDs are not an accepted part of the NLC standard. Similarly, NLC PARAM is a LOGI-
CAL*4 2-dimensional array with dimensions NKEYW by NBEND (ie, number of parameters for an
RBEND or SBEND element), which can indicate whether a particular parameter for a given element
class is accepted in the standard. The array is set entirely to FALSE in XSIF ELEM PARS, but
appropriate initializations are performed in subroutine CLEAR. For example, NLC PARAM(9,3) is
FALSE while NLC PARAM(9,1), NLC PARAM(9,2), NLC PARAM(9,4), and NLC PARAM(9,5)
are TRUE; this is because SOLENOID is an accepted element type (type 9), and solenoid argu-
ments L, KS, TILT, and APERTURE (arguments 1, 2, 4, 5, respectively) are part of the NLC
standard while K1 (argument 3) is not part of the standard (but is accepted by XSIF).

7.1.3 Module XSIF ELEMENTS

Module XSIF ELEMENTS contains the data structures that store element and named parameter
definitions. The way in which LIBXSIF uses these parameters will be discussed in further detail in
the next section. Table 2 summarizes the variables in XSIF ELEMENTS.

In addition to the variables in Table 2, XSIF ELEMENTS contains two lists of wakefield file
names which are read in as part of RFCAV and LCAV elements: LWAKE FILE (for longitudinal
wakes) and TWAKE FILE (for transverse wakes); up to MX WAKEFILE of each can be stored, and
NUM LWAKE and NUM TWAKE keep track of how many of each are present. XSIF ELEMENTS
also contains NLC STANDARD, a logical variable which is set when elements and/or their param-
eters are checked against the standard, and IKEYW GLOBAL, an auxiliary variable used in man-
aging the MAD class construct (ie, defining an element to be an instance of another element rather
than an instance of a base element class such as QUAD). Finally, there is a logical which is set true
when a beamline has been successfully expanded and which is false otherwise, LINE EXPANDED.

7.1.4 Module XSIF INOUT

This module primarily contains information related to input and output for the library. It also con-
tains the status/error flags for the library and (for historical reasons) a set of MAD machine struc-
ture flags that are not used by LIBXSIF. Table 3 summarizes these variables. Finally, XSIF INOUT
contains XSIF OPEN STACK HEAD and XSIF OPEN STACK TAIL. These are pointers to a
linked list of the files which have been opened by XSIF.

7.1.5 Module XSIF CONSTANTS

Contains variables and parameters used to define XSIF’s intrinsic named parameters (PI, TWOPI,
DEGRAD, RADDEG, E, EMASS, PMASS, CLIGHT). These are made into the first eight named
parameters (see next section), and initialized to values in XSIF CONSTANTS.

22

Table 2: Variables in XSIF ELEMENTS.
Name Type Dimensions

KELEM CHARACTER*8 MAXELM
KETYP CHARACTER(ETYPE LENGTH) MAXELM
KELABL CHARACTER(ELABL LENGTH) MAXELM
KTYPE CHARACTER(ETYPE LENGTH) 1
KLABL CHARACTER(ELABL LENGTH) 1
IETYP INTEGER*4 MAXELM
IEDAT INTEGER*4 MAXELM×3
IELIN INTEGER*4 MAXELM

IELEM1, IELEM2 INTEGER*4 1
ELEM LOCKED LOGICAL*4 MAXELM

KPARM CHARACTER*8 MAXPAR
IPTYP INTEGER*4 MAXPAR
IPDAT INTEGER*4 MAXPAR×2
IPLIN INTEGER*4 MAXPAR

IPARM1, IPARM2 INTEGER*4 1
PDATA REAL*8 MAXPAR
IPNEXT INTEGER*4 MAXPAR
IPNEXT INTEGER*4 1
IUSED INTEGER*4 1
ILDAT INTEGER*4 MXLIST×6
ITEM INTEGER*4 MAXPOS

23

Table 3: Variables in XSIF INOUT.

Name Type Description
XSIF VERSION CHARACTER*16 Parser version information

XSIF VERS DATE CHARACTER*11 Parser version date (VMS-format)
KDATE CHARACTER*11 Date (VMS-format) of the XSIF run
KTIME CHARACTER*8 Time (HH:MM:SS) of the XSIF run
IDATA INTEGER*4 logical unit for input stream
IPRNT INTEGER*4 logical unit for output stream
IECHO INTEGER*4 logical unit for error stream
ISCRN INTEGER*4 logical unit for CRT (set to 6)
ILINE INTEGER*4 number of lines parsed

ILCOM INTEGER*4 used as pointer into IELIN and IPLIN
ICOL INTEGER*4 column position of parser in present line

IMARK INTEGER*4 used for writing blank spaces in warning messages
NWARN INTEGER*4 number of warnings so far
NFAIL INTEGER*4 number of fatal errors so far
SCAN LOGICAL*4 indicates “scan mode”

ERROR LOGICAL*4 indicates error has occurred
ENDFIL LOGICAL*4 indicates unexpected EOF encountered
INTER LOGICAL*4 indicates interactive mode (always FALSE)
KTEXT CHARACTER*80 contains most recent line read from input
KLINE CHARACTER*1(81) EQUIVALENCEd to above, col 81 is semicolon

KTEXT ORIG CHARACTER*80 same as KTEXT but original case preserved
KLINE ORIG CHARACTER*1(81) same as KLINE but original case preserved

NOECHO INTEGER*4 used to indicate whether to echo input stream
LEV INTEGER*4 used in evaluating parameter expressions
IOP INTEGER*4(50) used in evaluating parameter expressions
IVAL INTEGER*4(50) used in evaluating parameter expressions

IO UNIT INTEGER*4(MXCALL) contains stack of CALL’ed IO units
NUM CALL INTEGER*4 depth of CALL stack
PATH PTR CHARACTER pointer to present PATH expression
PATH LCL CHARACTER*1 local path (“.”)
LOTOUP CHARACTER*26 used in conversion to upper case
UPTOLO CHARACTER*1(26) used in conversion to upper case

FATAL READ ERROR LOGICAL*4 indicates fatal read error has occurred
XSIF STOP LOGICAL*4 indicates that parsing should terminate ASAP
NLC STD LOGICAL*4 indicates that NLC standard warnings are desired

XUSE FROM FILE LOGICAL*4 indicates USE statement in input stream

24

7.1.6 Module XSIF INTERFACES

Contains explicit Fortran-90 style interfaces to functions and subroutines in LIBXSIF which require
them: ARRCMP (compares two arrays of CHARACTER*1), ARR TO STR (converts a charac-
ter array into a string), XPATH EXPAND (returns a pointer to the present value of the PATH
expression), XSIF CMD LOOP (master command manger for LIBXSIF),XSIF STACK SEARCH
(searches the stack of files opened by XSIF to see whether a given logical unit number is in use).
Any subroutine or function that makes use of these routines must access XSIF INTERFACES via
USE association.

7.2 How LIBXSIF Works

Most of the inner workings of the XSIF parser are fairly straightforward, but a few of its operations
are quite complicated internally. Here we briefly describe a few of its more interesting pieces of
internal logic.

7.2.1 File Handling

Whenever XSIF opens a file (by the XSIF OPEN statement, the XSIF CALL statement with
filename argument, or by a fortran-90 OPEN statement), the file information (name and logical
unit number) are added to a linked list of all such files. The head and tail of the list are pointed
to by XSIF OPEN STACK HEAD and XSIF OPEN STACK TAIL, respectively, and the list ele-
ments are of type XSIF FILETYPE (defined in XSIF INOUT). XOPEN STACK MANAGE and
XCLOSE STACK MANAGE handle management of the list for the XSIF OPEN and CLOSE com-
mands, while XSIF STACK SEARCH searches the list to determine whether a given logical unit
number is presently in use. XSIF IO CLOSE closes all of the files in the list at the end of XSIF
execution.

7.2.2 Dynamic Allocation

XSIF dynamically allocates and expands its element, parameter, beamline, call stack, and wakefile
tables. Each of these tables is initially allocated to a reasonable starting value by the function
XSIF ALLOCATE INITIAL, and when a table begins to run out of room it is expanded to a
larger value by XSIF MEM MANAGE. The beamline position table (fully-instantiated beamline
list) is dynamically allocated when the XSIF USE command is received. XSIF RELEASE MEM
deallocates all of the arrays which are maintained in this manner by XSIF.

7.2.3 Named Parameters and Element Parameters

All named parameters and element parameters are stored in a single set of arrays, all with dimension
MAXPAR: named parameters are stored from the bottom of the array in the order parsed, while
element parameters are stored in the top of the array in the inverse of parsing order. The pointer for
the named parameters is IPARM1, that for the element parameters is IPARM2 (ie, when IPARM1
== IPARM2, the parameter table is full).

All parameters are stored in a fully-symbolic manner: the actual numerical values of parameters
are never evaluated in LIBXSIF operations. This is accomplished by use of the IPTYP and IPDAT
arrays. When a parameter is first defined its type in IPTYP is set to -1. If the parameter is an
element TILT parameter with no argument (ie taking the default value), its IPTYP is set to -2.
If the parameter is set equal to a number (ie, GAMMA := 100), then IPTYP is set to 0 and the
number is stored in PDATA. If the parameter is set equal to an expression (ie, GAMMA := G1

25

- G2), IPTYP is set to an integer from 1 to 21, where each integer corresponds to the operation
(binary or unary) in the expression: 1 through 4 correspond to +,-,*,/, respectively; 11 and 12
correspond to unary + and -, respectively; 13 through 21 correspond to SQRT, LOG, EXP, SIN,
COS, ATAN, ASIN, ABS, TAN, respectively. The operands of the expression are pointed to by
IPDAT(*,1) and (*,2): for the expression GAMMA := G1 - G2, for example, IPTYP would be 2
(binary -), while IPDAT for GAMMA would point to the entries for G1 and G2 in the parameter
table; for unary operations, only IPDAT(*,2) is used. In the case of more complicated expressions
(ie GAMMA := G1 - SIN(G2/G3)), the expression is broken into a series of unary and binary
operations, and temporary parameters are assigned: in the case above there would be a temporary
parameter with IPTYP = 14 and IPDAT pointing to G2 and G3; the entry for GAMMA would be
IPTYP = 2 and IPDAT pointing at G1 and the temporary parameter.

For all parameters, IPLIN records the input line in which the parameter was defined.

7.2.4 Elements and Beamlines

Elements and beamlines are stored in a set of arrays quite analogous to the arrays that store named
parameters and element parameters. Array IELIN records the input line in which a beamline or
element is defined (or redefined); array KELEM records the name; arrays IETYP and IEDAT record
necessary parameters for the element or beamline. In addition, there is an array, ELEM LOCKED,
which is of type LOGICAL and indicates that the corresponding element may not be redefined;
this is the case if the element is used as a template for a class of other, similar elements. Also, the
Type and Label character strings are stored in the KETYP and KELABL arrays.

When an element is stored in the arrays, IETYP is the element-type parameter from module
XSIF ELEM PARS which corresponds to the element’s type (i.e., 1 for drift, 2 for RBEND, etc.).
IEDAT(*,1) and IEDAT(*,2) point into the parameter data arrays, at the first and last parameters
of the element; the element’s parameters are stored sequentially, so all the parameters between
these belong to the element in question. IEDAT(*,3) is not used by elements. Elements are stored
from the bottom of the arrays, and IELEM1 is the pointer to the last-filled slot in these arrays.

Like elements, beamlines are stored in the bottom of the IE* arrays. For a beamline, IETYP is
set to zero. IEDAT(*,1) and IEDAT(*,2) point to any formal parameters for the beamline, which
are stored antisequentially in the top of the IE* arrays, and pointed to by IELEM2 (ie, when
IELEM1 == IELEM2, the element table is full). For example, an XSIF statement BL1(SF,SD):
LINE = (...) would result in BL1 being stored in the bottom of the IE* arrays, SF and SD being
stored at the top of the IE* arrays, and IEDAT(*,1) and IEDAT(*,2) for BL1 would point to the
entries for SD and SF, respectively, at the top of the IE* arrays. For formal parameters, IETYP,
IEDAT(*,1), and IEDAT(*,2) are all zero. For beamlines and formal arguments, IEDAT(*,3) points
into the beamline’s first entry in the master beamline list table, ILDAT, which we describe below.

All beamline lists are stored in ILDAT, which has dimensions MAXLST by 6; IUSED points
to the last-allocated entry in ILDAT. Like elements and parameters, XSIF stores beamline lists
symbolically. The functions of the entries in ILDAT change depending on whether the list entry in
question is a “head cell” (entry that denotes the beginning of a line or sub-line), a named element
or beamline, a sub-list element, or an actual argument of a beamline that was defined with formal
arguments. The machinery is complex, and will not be further discussed here.

When a beamline is selected by the USE command, it is expanded into the ITEM array, which
has dimension MAXPOS. This is the fully-instantiated list of actual elements that make up the
expanded beamline. The pointers to the first and last entry of the expanded beamline in ITEM
are NPOS1 and NPOS2. Most of the entries in ITEM are pointers into the IE* list of elements; if
the expanded beamline contains sub-lines, these are also expanded and their beginnings and end

26

marked by special marker cells in ITEM. This is why algorithms which strip the information out
of ITEM for use in other programs’ native beamline storage system test each entry in ITEM to see
whether it is, in fact, a beamline element.

7.3 Useful Subroutines and Functions in XSIF

LIBXSIF contains many routines which are useful both in the preparation of an XSIF interface to
an existing program and in more general terms. We briefly describe some of these below.

7.3.1 Subroutine ELMDEF

ELMDEF is the subroutine which controls the parsing and storage of beamline elements. As such
it is an excellent example of how to write a parsing routine for non-standard elements which the
user might want to add to the XSIF standard.

7.3.2 Subroutine PARAM

PARAM is the subroutine which manages the parsing and storage of named parameters.

7.3.3 Subroutines LINE and DECLST

These subroutines manage the parsing and storage of beamline element lists, including LINE defi-
nitions.

7.3.4 Subroutines XUSE and EXPAND, Function XUSE2

Subroutine XUSE manages the expansion of a beamline specified in a USE command; most of the
actual work of expansion is performed by EXPAND. XUSE2 is an INTEGER*4 function which
takes as argument the name of a beamline to be expanded. If expansion is successful, XUSE2 re-
turns zero, otherwise XSIF PARSE ERROR is returned. Upon successful expansion of a beamline,
LINE EXPANDED is set to TRUE.

7.3.5 Function PARCHK

Examines all named parameters to determine whether any undefined parameters exist. Takes
one argument, a LOGICAL*4. PARCHK is INTEGER*4 and returns zero if all parameters are
defined; if undefined parameters are detected, warning messages are printed to the screen and the
error stream, and a value of either +1 or -1 is returned; the former value is returned if PARCHK’s
argument is FALSE, while the latter is returned if PARCHK’s argument is TRUE. This allows the
user to decide whether an undefined parameter is an ERROR or a WARNING.

7.3.6 Subroutine PARORD

PARORD examines the functional relationships between parameters in XSIF and determines the
order in which they must be numerically evaluated; the order is stored in array IPNEXT in
XSIF ELEMENTS. This prevents subroutine PAREVL (see section 7.3.7) from attempting to de-
termine the numerical value of a parameter which depends on another parameter which has not
yet been computed.

27

7.3.7 Subroutines DECEXP and PAREVL

Subroutine PAREVL goes down the list stored in IPNEXT and evaluates the numeric values of
all parameters; these are stored in PDATA in XSIF ELEMENTS. DECEXP translates parameter
expressions into the numerical codes stored in the IP* tables; these codes permit the algebraic
expressions to be stored for evaluation by PAREVL. Consequently, if a new mathematical function
is to be added to XSIF, both DECEXP and PAREVL must be modified.

7.3.8 Subroutine RDLOOK

RDLOOK performs lookup of a CHARACTER*8 string in a dictionary of CHARACTER*8 strings.
RDLOOK takes as arguments: the CHARACTER*8 string which is to be looked up, its length (as
INTEGER*4), the dictionary (an array of CHARACTER*8 strings), the minimum and maximum
indices of interest in the dictionary (as INTEGER*4), and the position of the string of interest in
the dictionary (as INTEGER*4); this is set to zero if the string is not found.

7.3.9 Subroutines RDINIT and CLEAR

RDINIT initializes various values related to logical I/O units used by XSIF, and CLEAR clears
and initializes parameters related to element parsing.

7.3.10 Function XSIF IO SETUP and Subroutine XSIF IO CLOSE

XSIF IO SETUP performs all necessary configuration of input and output (including calling RDINIT
and CLEAR), and returns zero if successful or an error message otherwise; XSIF IO CLOSE, con-
versely, attempts to gracefully close all files opened by XSIF.

7.3.11 Function XSIF CMD LOOP

This executes the master loop which examines XSIF input for commands, parameters, elements,
etc. It returns zero if no errors occurred, otherwise it returns an error signal.

8 Where to Get LIBXSIF

All of LIBXSIF (library files, source files, module files, etc.) can be downloaded over the Internet
from:
http://www.slac.stanford.edu/accel/nlc/local/AccelPhysics/codes/xsif

This web page will allow access to several subfolders including doc (this Note plus the NLC
Coding Standards document), src (source files), bin (Solaris binary libxsif sun.a and mod-
ule files), binnt (Windows NT binary xsif.lib and module files), binlinux (linux i86 binary
libxsif linux.a and module files) and binaix (legacy AIX binaries, since SLAC no longer sup-
ports AIX).

9 Acknowledgements

The authors would like to thank the authors of MAD and DIMAD, Linda Hendrickson, Francois
Ostiguy, and Mark Woodley for their kind assistance.

28

References

[1] D.C. Carey and F.C. Iselin, “A Standard Input Language for Particle Beam and Accelerator
Computer Programs,” Proceedings of the 1984 Summer Study on the Design and Utilization
of the Superconducting Super Collider, Snowmass, Colorado (1984).

[2] K.L. Brown et al, “TRANSPORT: A Computer Program for Designing Charged Particle Beam
Transport Systems,” SLAC-Report-91 Rev. 2 (1977).

[3] H. Grote, “The MAD Program User’s Reference Manual,” CERN/SL/90-13 (AP) Rev. 5
(1996). See also CERN-LEP-TH notes 83-30, 85-15, 85-38, and 87-33.

[4] R.V. Servranckx et al, “User’s Guide to the Program DIMAD,” SLAC-Report-285 (1990).

[5] D.C. Carey et al, “Third-Order TRANSPORT with MAD Input,” SLAC-Report-530 (1998).

[6] D.C. Carey et al, “TURTLE with MAD Input,” SLAC-Report-544 (1999).

[7] C. Hawkes and M.J. Lee, “Recent Upgrading of the Modeling Program COMFORT,” SLAC-
CN-342 (1986).

[8] R. Assmann et al, “LIAR: A Computer Program for the Modeling and Simulation of High
Performance Linacs,” SLAC-AP-103 (1997).

[9] P. Tenenbaum and M. Woodley, “Next Linear Collider Beamline Decks Coding Standards,
Rev. 5,” at:
http://www.slac.stanford.edu/accel/nlc/local/lattice/documentation/
deckstandards.ps (1999).

29

