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Motion of Charged Particles near Magnetic Field Discontinuities

I.Y. Dodin and N.J. Fisch

Princeton Plasma Physics Laboratory, Princeton, NJ 08543

The motion of charged particles in slowly changing magnetic fields exhibits adiabatic

invariance even in the presence of abrupt magnetic discontinuities.  Particles near

discontinuities in magnetic fields, what we call “boundary particles”, are constrained to

remain near an arbitrarily fractured boundary even as the particle drifts along the

discontinuity. A new adiabatic invariant applies to the motion of these particles.

PACS number: 52.20.Dq

The classical description of particle behavior in non-uniform magnetic field

consists of approximating the particle trajectory by a circular orbit that slowly drifts in

space (see e.g. [1-2]). The adiabatic invariance of the magnetic flux through particle’s

Larmor orbit follows from the assumption that the fields seen by the particle change little

during the Larmor orbit.  The particle guiding center acquires a drift in slowly changing

fields.  Thus, both the conventional guiding-center formalism [3-8] and its high-order

corrections [9-11] describe the dynamics of guiding centers when the particle gyroradius

rg  is much smaller than the characteristic spatial scale L of the magnetic field, which

makes the theory inapplicable to discontinuous fields.
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In discontinuous fields, we identify and calculate the motion of what we call

“boundary particles”.  For these particles, the guiding centers are located no further than a

distance of one gyroradius from the magnetic field discontinuities, i. e., magnetic

boundaries where r Lg >>1. The present work identifies and describes new and unusual

properties of the motion of boundary particle along plane, broken and branching

boundaries.

Consider then motion in a magnetic field ( )
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The plane x = 0  represents a magnetic boundary - an infinitesimally narrow region where

the magnetic field magnitude spatial derivative is infinite, such that a finite jump of B

across the boundary exists. In practice, such a model is appropriate if the characteristic

width of ( )′B x  profile is much less than the particle gyroradius.

The motion of a “boundary particle” in the magnetic field given by (1) is shown in

Fig.1. The particle crosses the magnetic field discontinuity with different gyroradii on

different sides of the magnetic boundary, Thus, after one period of transverse oscillations

(i.e. after two crossings of the boundary), it is displaced along the boundary, in complete

analogy to the classical ∇ B -drift in smooth non-uniform fields. The 1D particle

oscillation transverse to the boundary can be described by the Hamiltonian
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where x is the direction perpendicular to the boundary.  If the parameters of the system are

changing slowly in time or in space, the particle motion has an adiabatic invariant

proportional to the area confined inside the phase-space particle trajectory (see Fig. 2).

This new invariant can be written as

µ =
mV2

2
ψ α( )= const , (2)
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which reduces to the well-known particle magnetic moment (mV 2 2ω = const ) for uniform

magnetic fields ( 21 BBB == , mcqB=ω ).  Here ( )α = arccos p mVy  is the angle that

determines the guiding center transverse displacement relative to the boundary (see Fig.1),

and ω k kqB mc=  are gyrofrequencies in the corresponding regions.

The adiabatic invariance of  µ  conservation enters in considering, for example, a

static magnetic field smoothly changing  in space along the boundary ( 1ln <<dyBdrg ).

For simplicity, assume B1 = const  and for definition consider the region where B B2 1> .

Then Eq. (2) can be rewritten as

( )( ) ( ) 0const11 21 >=Θ⋅− αyBB ,

where ( )Θ α α α= −2 2sin  is a monotonically increasing function of the angle α . The

latter equation defines the relation between α  and the magnitude of magnetic field, and

determines the transverse drift of the particle. Since α  increases with the decrease of B2 ,

a positively charged particle will drift in the positive x direction, withα π<  (Fig.3). The
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direction of this drift coincides with the direction given by the classic ∇ B -drift, which is

applicable, however, for smooth magnetic fields only. Similarly, for a magnetic field that

is homogeneous along the boundary but slowly changing in time, the adiabaticity of µ

relates the particle energy to the magnetic field magnitude.

The adiabatic invariance theorem can also be generalized to include boundary

particle motion in crossed static magnetic and electric fields. To do so, consider an

external uniform electrostatic field directed along the boundary 
r

r

E y E= 0  with an abrupt

magnetic field configuration of the form of Eq. (1).   For simplicity, say B B B1 2 0= − = .

The 
r r

E B× -drift velocity is then always directed towards the boundary, so we can expect

the magnetic boundary to attract particles not allowing them to leave the magnetic field

discontinuity surface.

In the presence of friction, the particle motion is described by

( ) REmqxzrr
rrr&r&&r +⋅+×= sgn0

0ω , mcqB00 =ω ,

with a friction force term rR &r
r

ν−= .  In both the collisionless (ν = 0) and collisional (ν ≠ 0)

cases, the only possible equilibrium trajectory is the trajectory x t( )≡ 0 .  Particles with

non-zero initial x will eventually be attracted to the boundary, with transverse oscillations

decaying in both the collisional and collisionless case.  After sufficient time has passed

( W >> τ , where τ  is the period of transversal oscillations, and ( )t mV qEy>> 0  in case

ν = 0 , or after the amplitude of oscillation becomes much less than 3
0 νω mqE  in case

ν ≠ 0 , ( ) 1<<tτν ), the rate of decay can be obtained from the generalized adiabatic

invariant’s conservation law and given by
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31~ −txM , 31~ txM& , 32~ −tτ ,  (ν = 0)

( )32exp~ txM ν− , &x M ( )3exp~ tν− , τ ( )3exp~ tν− ,   (ν ≠ 0)

where x M  and &x M  are the amplitudes of transversal coordinate and velocity oscillations

correspondingly.

Although charged particle motion along plane magnetic boundaries is relatively

simple and can be described analytically, more complex 2D magnetic field profiles give

rise to complicated motion.  Yet, boundary particles retain an important property: if a

particle crosses the boundary once, it will never be able to go away from it on a distance

of a gyroradius or more within a finite amount of time. This can be seen as follows.

Consider that after a particle has left the magnetic boundary, it must undergo purely

rotational motion in the absence of an electric field applied and for uniform magnetic

fields away from the boundary.  However, the adiabatic invariant associated with this

motion is clearly different than that for particles at the magnetic boundary.  Hence, these

particles could never intersect the magnetic boundary.

Formulating the theorem in different words, we can say that boundary particle

always stays trapped by magnetic field discontinuity, no matter how complicated the

discontinuity is. In Fig. 4, we show how boundary particles turn corners if the magnetic

discontinuity has corners. Essentially, boundary particles “wet” the surfaces of field

discontinuities, following them like liquid follows wetting surfaces due to surface tension.

Should the parameters of plane boundary change smoothly in the tangential

direction, which means that the boundary has curvature small compared to the particle
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gyroradius, the conservation of µ , as given by Eq. (2), remains valid.  However, if

particle faces a sharp change of boundary direction (a “corner”), the validity conditions

for the adiabatic invariance of µ  are violated.  As a result of “scattering on the corner”,

the particle undergoes changes of both µ  and phase of oscillation phase.  Nonetheless, as

depicted in Fig. 4, the boundary nature of these particles is retained; i.e., they still wet the

surface.

Only very simple two-dimensional magnetic field configurations, like the one given

in Fig. 4, allow purely analytical quantitative description. However, other systems can still

be explored qualitatively due to the wetting effect.  For example, consider the situation

when the boundary particle comes to a point where the boundary branches into two or

more new boundaries.  In the case when the drift velocities corresponding to all boundary

branches are directed outward from the branching point, the particle will choose one of

new boundaries to drift along. Each path depends in very fine detail on initial conditions.

Since the probability to start drifting along a certain branch strongly depends on particle’s

initial phase, stochasticity of guiding centers motion can be found in relatively simple

magnetic field configurations.

To see this, consider for example the four-field configuration given in Fig. 5. The

magnitudes of magnetic field on different sides of the boundaries can be chosen to let a

particle approach the scattering region from B B1 3÷  boundary only and leave it through

channels B B1 2÷  and B B2 3÷ . Due to the special choice of parameters

( B B B B1 2 3 4> > > ), particles can drift only counter clockwise along the central boundary
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loop. (The magnetic field here is directed out of the page and the particle charge is

positive.)

After a particle has come to the central loop, it has a probability to “leak out” along

the boundary B B1 2÷ , but it can also scatter on the triple point B B B1 2 4  and remain on the

loop. The same applies to the next triple point B B B1 3 4 . Therefore, although a particle may

leak out from the central part of the system at the first or second scattering events, it also

may stay on the loop for more than one period of drift rotation, depending on the initial

parameters of the particle motion. Since the probability of leaking out strongly depends on

the particle’s initial phase, which abruptly changes in each scattering event, the particle

motion becomes quite complicated (Fig. 5). It is practically impossible to say along which

of two boundaries the particle will eventually leave.  According to numerical simulations

performed, the characteristic initial phase step needed to distinguish alternative paths is

less than 0.01 rad for B B B B1 2 3 4~ ~ ~  and loop radius close to rg 4 . The latter property

provides two output streams along B B1 2÷  and B B2 3÷ , with uniform distribution over the

particle phases.

Certian practical devices might be envisioned from these unsusual  properties of

boundary particles. The four-field configuration can be considered as a boundary-particle

beam separator. However, the same, but field-reversed, system can be used for merging of

streams coming from channels B B1 2÷  and B B2 3÷  into the single output stream B B1 3÷ .

Effective mixing caused by stochastic rotational drift along the central loop could provide

the output beam of particles with uniform phase distribution as well.
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In summary, we have identified a new class of charged particles undergoing

adiabatic motion near abrupt magnetic boundaries. Magnetic discontinuities abrupt

compared to a particle gyroradius are easily produced in the laboratory, and may occur

naturally, for example, in fields undergoing  magnetic reconnection.  The classical

adiabatic invariant for motion in slowly varying fields is generalized to account for the

abrupt discontinuities.  The complexity of the motion of boundary particles is constrained

by an unusual “wetting effect”, which is a profound property of the boundary particles.

Apart from academic interest in the wetting effect, there may be practical consequences in

the manipulation of particles with such constrained motion, including the directed

transportation of boundary particles, as well as the merging or separation of magnetic

boundary plasma flows.

This work was performed under DOE contract DE-AC02-76-CH03073.
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Figure captions

FIG. 1. Boundary particle motion along a plane magnetic boundary.

FIG. 2. Phase-space trajectory of boundary particle’s transverse oscillations.

FIG. 3. Transverse adiabatic drift of a boundary particle (scales of the x and y axes

are not equal).

FIG. 4. Boundary particle scattering on a straight corner of a magnetic boundary: the

“wetting effect” on a broken boundary .

FIG. 5. Boundary particle trajectories along branching  magnetic boundaries.
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