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We present a second-order algorithm for reconstructing an interface from
a distribution of volume fractions in a general orthogonal coordinate sys-
tem with derivatives approximated using finite differences. The method
approximates the interface curve by a piecewise-linear profile. An integral
formulation is used that accounts for the orthogonal coordinate system in a
natural way. We present results obtained using this method for tracking a

material interface between two compressible media in spherical coordinates
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1. INTRODUCTION

The volume-of-fluid approach provides an implicit representation of a sharp front
by specifying the volume occupied on each side of the front in each grid cell. This
representation was originally motivated by the specific case of the interface between
two materials, in which the volumes contain parcels of two different fluids, each with
its own mass, energy and equation of state. The volume-of-fluid approach to track-
ing interfaces has been used by many including [5], [3] and [4]. In a more general
front tracking setting, the volume-of-fluid approach gives a convenient representa-
tion, particularly in settings where discrete conservation is important. In that case,
the volumes on either side of the front form the basis for performing a conservative,
finite-volume discretization of conservation laws.
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In this note, we present a method for computing a volume-of-fluid representation
of a front suitable for use in any orthogonal coordinate system. It is based on the
relationship (first noted in [2]) between a volume-of-fluid description of a front and
the local representation of that front as the graph of a function.

In the case of Cartesian coordinates, the method in [2] provides a second-order
accurate reconstruction of the surface geometry from the volume fractions and is
exact for flat surfaces. There are a number of algorithms that meet these require-
ments for Cartesian coordinates in two and three dimensions. See, for example [1]
and [4]. However the extension of these algorithms to other orthogonal coordinate
systems has been unwieldy. The principal contribution of the algorithm described
in this note is that it is second-order accurate and straightforward to implement
for the most commonly used orthogonal coordinate systems.

2. VOLUME OF FLUIDS OVERVIEW

We are given a velocity field § which extends smoothly to the entire domain and
the location of the interface . The motion of the interface is given by
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where 7 is the interface normal. We can describe the interface as a piecewise-

constant function f® which is zero outside fluid a and unity inside. If we do so,
equation 1 is formally equivalent to
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By definition, f® is the volume fraction of fluid @. We use the conservative form of
equation 2:
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We now describe the Cartesian algorithm and the algorithm for general orthogonal
coordinates.

2.1. Cartesian Algorithm Specification
Define our Cartesian coordinates to be (z,y) We discretize the coordinate space
with equally-spaced grid points with separation Az = Ay = h. A cell in real space
is Aj; = [ih, (i + 1)h] x [jh, (j + 1)h]. In two-dimensional Cartesian coordiantes,
equation 3 becomes
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The volume-of-fluid method can be divided into three steps which are repeated for
each dimension in an operator-split fashion:

e We use the volume fractions of each fluid to reconstruct as a local graph the
connectivity and geometric configuration of each fluid.



FIG. 1. Tllustration of advection of interface. The volume fluxed out of the cell during a
time step At is shown by the dashed rectangle. The quadrilateral volume of fluid 1 and fluid 2
with this rectangle are the volume fluxes (Fy ) of fluid 1 and fluid 2 during the time step.

e We use this local graph to geometrically construct the volume flux of each fluid.

e We update the volume fractions with an operator- split discretization of equa-
tion 4.

We locally reconstruct the surface as a graph of a function g of the form (z, g(z))
or (g(y),y). See Miller and Puckett [4] for details of how this choice is made. If
we set 27, = (j — s)Ax' for some integer s which is sufficiently large, then the
column height C® of the fluid is given by

J
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The function g is a linear function whose slope m is computed using finite differences
of the column heights of the fluid
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For each sweep, we geometrically construct the volume flux and then update the
cell. Consider figure 1 and suppose that we are doing a sweep in the z direction.
The distance that a particle travels to get to the face of the cell is d, = sk where
k is the time step. Define F, ; 1 to be the volume of fluid o between the the
& = h(i+ 3) — s"k line and the 2 = h(i + §) line. This is the flux through the face
of fluid a. The discrete divergence of F,, is a consitent discretization of V - (5§f).
The update of the volume fraction for the x sweep takes the form

1 a,n+1 a,n) _ 1 n+ % n+1 a,n Sz+l i—i
% (fm‘ - fz’,j ) - h (Fa,z‘fum’ B Fa7ifl/2,j) +f (% (7)

When the V - §in the right-hand side of equation 3 is the divergence of the veloc-
ity field, often the right-hand side is not directionally operator-split, but included
fractionally in each update.

3. RESULTS AND CONCLUSIONS

The present reconstruction algorithm is used in the context of multi-fluid gas
dynamics as done in Miller and Puckett [4] and Colella, Glaz and Ferguson [1].



These are higher-order Godunov methods in which the fluid velocity is single- valued
in multi-fluid cells. Appropriate single-fluid average states are computed in multi-
fluid cells. The state is extrapolated from cell centers to edges and there a Riemann
problem is solved using a single-fluid algorithm. The interface is then advected using
this edge-centered Godunov velocity. The only substantial way in which the current
algorithm differs from Miller and Puckett is the way in which the construction is
done.

We present results of the reconstruction method for a hydrodynamics problem in
spherical geometry. The problem is that of a dense gas spherical shell embedded in
a light gas background. The outer edge of the dense shell is pressurized (heated)
so that a strong shock is driven into the shell towards the origin thereby forcing
an implosion. The outer edge of the shell is driven outward where it eventually
moves out of the computational domain. We run the calculation using spherical
(r — @) coordinates. Figure (2) shows the evolution of the volume fraction in r — ¢
coordinates. As the solution proceeds, the grid resolution remains adequate and
the interface remains smooth.

We have presented a volume-of-fluid reconstruction algorithm for representing
sharp fronts in orthogonal coordinates in two dimensions. The ideas here can be
routinely extended to three dimensional orthogonal coordinates. An intriguing
possibility is that of extending this approach to general mapped grids.
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FIG. 2. The evolution of the volume fraction in r — ¢ coordinates.



