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Frequency Selective SurfacesNolumes (FSSNs), periodic structures with frequency selective 
properties, have widely been used for millimeter and microwave applications [1]. Some 
applications include filters (band pass,-band stop), reflectors, radoms etc. FSSNs typically consist 
of a single or multiple material layers. Multiple layers (with each layer having a different 
frequency selectivity) are used for broadband applications. In recent years there has been an 
interest in using these structures at optical wavelengths. One of the applications is in thenno­
photovoltaic filters used to convert thermal energy into electricity. The filter is designed to 
transmit those wavelengths that can be efficiently converted into electricity, and to reflect other 
spectra, which leads to energy conservation and an increase in overall system efficiency. Th~se 
filters can be used in space missions to help decrease energy consumption and reduce spacecraft 
mass, cost, and fuel loading. 

Numerical simulations of such filters are very limited in the literature [2,3]. Existing modeling 
approaches are based on the assumption of purely metallic (perfectly conducting) structures on 
substrates. However, in practice, metals have finite conductivity that can lead to power absorption 
in the metal. At optical frequencies the usual materia] propenies and perfect eJectric conductor 
(PEC) assumption is not applicable. Moreover, the conventional methods, such as using resistive 
sheets or lossy dielectrics to simulate metallic losses, are not accurate. Our goal is to provide a 
new approach for modeling metallic losses more accurately at the optical frequencies. 

2. Models for simulating metallic struetures 
Several models exist and have been discussed in the literature to model metallic structures in 
nwnerical simulations. These models are PEC, the R.card (Resistive Sheet) and Lossy Dielectric 
models. For non-PEe surfaces the resistive sheet model is the most popular. In the limiting case 
resistive sheet reduces to PEC via . 

1 
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Resistive model1S efficient for material thicknesses that are small compared to the wavelength of 
operation (<lJ20). When the thickness is increased this model fails (especially for the oblique 
incidence). This is the case at the optical ·frequendes. When the lossy dielectric model is used, the 
metallic regions arc modeled using high loss dielectrics and a relative dielectric permittivity 
calculated via the fannula. 

(3) 



Here Eo is the dielectric constant of free space, G is the conductivity and w is the operating . 
frequency, The lossy dielectric model is better than the resistive model since it simulates the finite' -
conductivity in a volumetric manner, Nevertheless, the lossy dielectric model is not valid above 
15THz. Thus at optical frequencies it is necessary to consider alternative models as discussed 
next. 

3. Material Modeling at the optical frequencies 

Consider a homogenous isotropic medium of relative dielectric constant t, penneabiJity 11 and 
conductivity o. From Maxwell's equation in a source free region, 

(4) 

where 
(5) 
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Figure.l Band Pass Filter Geometry 

Note that k 2 is id~ntjcal with the corresponding equations for non-conducting media when E is 
replaced by 

• .0' 
&=e-}­
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COlTespondingly, we can define complex velocity and the refractive index of the mediwn viz,' 
• c • c, (7) v;;;;; r::-F; n;;;; -::- = n - J'I' 

"J.tE v 
Here n and 'II are real and are the standard refraction index and attenuation constant, 
respectively, They can be expressed in tenns of the material constants E, J.l and (1 as 

~~ z '2 ., n - = n - J nljl - If/" -

~2 • ( • a ) n = ~e = J.t e - J - . 
aJ 

(8a) 

(8b) 
For sufficiently Jow frequencies 0" is real. However there is a general consensus [4] that this is 

true only for wavelengths greater than 1> 2xlO-3cm (f< 15 THz), Classical expressions for the 
value of CJ will not work at frequencies greater than ISTHz, To generate mathematical models of 
a thick conductor it is necessary to provide proper expressions of values of 0". Thus to find G we 
begin with the equation 

(9) 
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Figure 2. Metallic structure at the optical frequeudes 

m is the mass, e is the electron charge and J3 is the dumping constant (_1014 for meta)s). The 
solution of (9) can be given as 

e 
r = - - E . 

m«(l}2 + if3(J) (10) 
This refers to a periodic motion and gives rise to a current in the medium. If there are "N" free 
electrons per unit volume, the current density J is given by 

J = Ne~= Ne: E. 
dt m(/J-ieJ) (11) 

Comparing (II) with J=oE, we have 

t7=-~--
m(/J - i(j) 

(12) 

It is clear from (12) that when 6>«13, cr can be approltimated by O"O=Ne2/mJ3 which is real. 

However for m»J3 (which is.the case at optical frequencies) the imaginaIY pan of c becomes 
large compared to its real part. If we use this expression for 0", then & in (8b) takes the form 

R { .. , • 2 41r Ne'! (13 ) e &} = & = n- -11 ... 1- 2 2 a 
m(ev + fJ ) 
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mco(CQ + Ii-) (13b) 

The dielectric constant at the desired frequencies can then be found using (l3a) and (13b) or by 
using available measured data for n and \II [5]. 

4. Resultsl Conclusions 

As an example, we consider the commensurate array of the slot FSVs shown in Fig.4 and employ 
various models for its analysis. The geometry refers to a unit cell size 700x700nml, consisting of 
two metallic regions; the outer ring is SOnm wide, and the inner block is 40Ox400nmz. The 
thickness of the unit cell is 90nm and the analysis done using a finite element boundary integral 
code [3]. Clearly the models mentioned above give different answers and vary in the amount of 
absorption (see fig. S). Specifically the resistive model does not provide much absorption and is 
also showing a shift due to modeling the actual thick structure with a sheet. The LD model is 
better but it over predicts the losses. The new modeJ predicts a - 10% loss and measurements are 
needed to verify it. 10 figure 6 the transmitted, reflected and absorbed power results are presented 
for the proposed model. Note that the power loss observed in transmission is due to the 
absorption in the filter. 
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Figure 4. FSV Ceometry Figure S. Transmitted power for difterent models 

Figure 6. TransmittedIReceivcd and Absorbed pOwer for proposed model 
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