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Abstract: Tow ship noise is a major problem plaguing the detection, classification, 
localization and tracking problems. It is a major contributor to towed array measurement 
uncertainties that can lead to large estimation errors in any form of signal processing 
problem aimed at extracting the weak target information. Many sonar-processing 
approaches ignore this problem relying on narrowband techniques to remove these 
undesirable interferences at the cost of precious signal-to-noise ratio (SNR). In this paper we 
address the idea of noise cancellation by formulating it in terms of a joint 
cancellation/detection problem. It is shown that the joint processor can be designed to 
perform in a broadband processing environment. 
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INTRODUCTION 
 

 One of the major signal processing problems plaguing towed array processing is the 
coupling of tow ship noise to each of the array hydrophone sensors. This noise is a major 
contributor to towed array measurement uncertainty and can lead to large estimation errors in 
any form of signal processing aimed at extracting weak target information. Ship noise is 
characterized by propulsion lines from the engines, propellers, gear trains and other transients 
embedded in broadband noise created by cavitation and ambients [1-2]. Most sonar 
processing approaches essentially ignore this problem, since they rely on the inherent 
narrowband processing to remove the ship effects especially when performing such tasks as 
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localization in a shallow ocean environment [3-4]. Other approaches rely on simple filtering 
techniques to pre-process the hydrophone data hopefully removing these interferences. The 
effect of this approach is to decrease the overall signal-to-noise ratio (SNR) available along 
with the noise and therefore potentially degrade the detection performance of the processor 
when searching for weak acoustic targets. 
  In this paper, we formulate the problem as a joint cancellation/detection problem by 
first casting the ship noise canceller into the model-based framework. We then incorporate it 
in a model-based detection scheme that also includes a target model. Here we use weak 
planar acoustic targets embedded in broadband noise. Next an optimal solution to the 
detection problem is developed using the joint processor. It is shown how the joint 
cancellation/detection evolves into a critical part of a sequential log-likelihood detector that 
not only enables a more robust processing scheme due to its inherent flexibility, but also 
improves overall processing performance. We start with the basic problem and then 
investigate the structure of the processor.  

1. OPTIMAL NOISE CANCELLATION 

 In this section we develop the basic signal and noise models that will be used throughout 
this paper. We start with the noisy pressure-field measurement given by 
 ( ; ) ( ; ) ( ; ) ( ; )p r t s r t r t r tη ν= + +A A A A , (1) 

where is the measured pressure-field at the -hydrophone located at spatial location, r , p thA A
and at time t ;  is the target or source signal to be detected; s η  is the ship noise and ν  is the 
broadband ambient noise component. We can simplify this notation by expanding over the 
horizontal array of L -elements, that is, 
 ( ) ( ) ( ) ( )t t t t= + +p s η ν , (2) 

with  and  . We decompose this representation further by 
developing the component signal and noise models. We assume that the signal can be 
characterized by a weak target in the far-field of the array given by 

1, , , L×∈p s η ν C (0, ( )vvN R tv ∼ )

 ( )sin ( )( )( ) o o o oo o i t k r vti ts t e e ω θωα α − +− ⋅= =k r
o o , (3) 

for the source parameters: ,  ,  ,  ,  o o o ok orα ω θ that are the respective amplitude, temporal 
frequency, wavenumber, bearing angle and initial sensor location. Since the array is being 
towed, we include the tow speed,  as well. We can simplify this model by defining the 
following terms, 

v

 ( )sin( ) ( ) oi ts t t e o
o

β θα −= , (4) 

for . Note that we are not restricting the statistics to 
be stationary, so we can accommodate the nonstationarities (transients, etc.) that occur 
naturally in the ocean environment. 

(o( ) :  and ( ) :oi t
o o o ot e t k r vωα α β= = )t+

 Now we are ready to develop the underlying “ship noise” model. Since we know from the 
acoustic propagation physics that the noise is correlated from sensor-to-sensor, we choose to 
model the ship noise in the Gauss-Markov framework [5]. Based on noise cancelling 
principles [6], it is easy to show that the optimal noise cancelling processor can be developed 
as a solution to a system identification problem [7] with the reference noise, , as input ( )r t
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and the ship noise, ( )tη , as output. This relation is given in terms of an optimal coloring or 
shaping filter with impulse response ( )H t . That is, for the stationary case, we have 

 1
opt( ) ( ) ( ) ( ) ( );   for  R

H

rr

N

optt H t r t h k r t k
1k

ηη −= ∗ = − =∑ rh
=

r , (5) 

and the well-known LMS technique for the nonstationary case [6]. 
 Thus, we define the corresponding Gauss-Markov representation of the coloring or the 
Gauss-Markov ship noise model in terms of the following state-space model as (see Fig. 1) 

 , (6) 

( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( )

t A t t B t r t t

t C t t t
ξ ξ

ξ ξ

= − − + − − + −

= +

= + +

ξ ξ w

η ξ v

( ) ( ) ( ) ( )t t t t

ξ

p s η ν

with 1R Nξ ×∈ξ  the inherent colored noise (state vector) and r the scalar reference noise 
(input) where the additive zero-mean, white gaussian noise sources have respective 
covariances, w w v v and R R

ξ ξ ξ ξ

N N N L NA R B R C R. Here 1,  ,  ξ ξ ξ ξ
ξ ξ ξ

× × ×∈ ∈ ∈ are the system, 

input and measurement matrices corresponding to the noise cancelling filter parameters. 
Recall that the impulse response of the state-space model is 

 ( , ) ( ) ( , ) ( )   for   ( , ) ( ),   H t k C t t k B k t k A t k t k= Φ Φ = − >ξ ξ ξ ξ ξ ξ ,                                 (7) 

which reduces to  
  ( , )    for    t kH t k C A B t kξ ξ ξ ξ

−= > ,      (8) 
in the time invariant case. So we see that ship noise can be completely captured by a Gauss-
Markov representation in both stationary and nonstationary cases as in Eq. (5).  
 Using the Gauss-Markov representation of the noise, we can define the underlying 
cancellation problem as 
  GIVEN a set of discrete noisy pressure-field and reference measurements,  
  { }( ),  ( ) ,  1,2, , tt r t t N=p "  and the Gauss-Markov model of Eq. (6), FIND the best  
  (minimum variance) estimate of the ship noise, ˆ ( | 1)t t −η , such that the  
  canceller output,  is optimal. ˆ( ) ( ) ( | ) ( )p t t t t= − ≈ε p η s t

The recursive solution to this problem is given by the MBP (Kalman filter) and shown in 
Table 1 (see [8] for details). This completes the section on modelling and cancellation of ship 
noise, next we formulate the underlying detection problem. 

2. SEQUENTIAL MODEL-BASED DETECTION FOR A TOWED ARRAY 
 
In this section, we develop a generic solution to the model-based detection problem for an  

array of  hydrophones towed in a hostile ocean environment contaminated with ship noise. 
The basic detection problem can be formulated in terms of the Gauss-Markov representations 
developed in the previous section for both signal and noise. We formulate the problem in 
terms of the pressure-field measurements as a binary decision problem [9], that is, 
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 oH :   ( ) ( ) ( )                       [Ship and Broadband Noise]
H :   ( ) ( ) ( ) ( )              [Signal, Ship, Broadband Noise ]

t t t
t t t t1

= +

= + +

p η ν
p s η ν

, (9) 

where the null hypothesis is noise and the alternate is the signal and noise case. Following the 
Neyman-Pearson criterion, the optimal solution to the detection problem is satisfied by the 
likelihood ratio, ( )L t , given by the joint density functions 
 

Table 1. Optimal Noise Cancellation 

η

                                    NOISE ESTIMATOR
ˆ( | 1) ( 1) ( 1) ( 1) ( 1)              [Prediction]

ˆˆ ( | 1) ( ) ( | 1)                                           [Predicted Noise]

t t A t t B t r t

t t C t t t

ξ ξ

ξ

− = − − + − −

− = −

ξ ξ

η ξ

e

η η

η

ˆ( )       ( ) ( | 1) ( ) ( | 1) ( )  [Innovation]

( )   = ( ) ( | 1) ( ) ( )               [Innovation Covariance]

ˆ ˆ( | )     ( | 1) ( ) ( )                         

e e v v

t t t t C t t t t

R t C t P t t C t R t

t t t t K t t

ξ ξ

ξ ξ

ξ ξξ ξ

ξ

= − − = − +

′− +

= − +

η η ξ v

ξ ξ e

�

�

η η
1

       [Correction]

( )      = ( | 1) ( ) ( )                            [Gain]

ˆ( | 1) ( ) ( | 1)
                                    CANCELLER

ˆˆ ( | )    ( ) ( | )              

e eK t P t t C t R t

t t t t

t t C t t t

ξ ξξ ξ

ξ

ξ

−′−

− = − −

=

ξ t ξ

η ξ

�

�

p

                                    [Filtered Noise]
ˆ( )      ( ) ( | ) ( )                                       [Cancelled Output]

where ( | 1),  ( | 1) are the state error and correspon

t t t t t

t t P t t

= − ≈

− −

ε p η s

ξ� � ding covariance.ξξ  
 
  

 ( )
( )

Accept 1

Accept 
1Pr P |

( ) :                
Pr P |

H

Ho

t

t o

H
L t

H

>

<
= Τ , (10) 

where ( )L t  is the sufficient statistic [9], , is the set of vector pressure-field measurements 
across the array (snapshots) defined by 

Pt

{ }P : (1), , ( )t t= p p" and ( )Pr ⋅  are the respective 
conditional probabilities under each hypothesis. Using Bayes’ rule [5] we can expand the 
joint probability as  

 ( ) ( ) ( ) ( )Pr P | Pr ( ),P | Pr ( ) | P ; Pr P |    for   i=0,1H t H t H H= =p p1 1 1t i t i t i t i− − −  (11) 

Substituting these expressions into Eq. (10), the likelihood ratio becomes 

 ( )
( )

( )
( )

( )
( )

1 1 1 1 1 1Pr ( ) | P ; Pr P | Pr ( ) | P ;
( ) : ( 1)

Pr ( ) | P ; Pr P | Pr ( ) | P ;
t t tt H H t H

L t L t
t H H t H

− − −⎡ ⎤
= = −⎢ ⎥

⎢ ⎥

p p
p p1 1 1t o t o t o− − −⎣ ⎦

, (12) 

which is the desired sequential form for this problem. Taking natural logarithms of both sides 
of the equation, defining , we obtain the sequential log-likelihood ratio as ( ) : ln ( )t LΛ = t
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  (13) -1 1 -1t t o( ) ( 1) ln Pr( ( ) | P ; ) ln Pr( ( ) | P ; )t t t H t HΛ = Λ − + −p p
 The general form, therefore, for the binary detection problem is called the sequential 
probability ratio test [9] implemented in logarithmic form as 

 . (14) 
1 1

o 1

              ( ) ln                            [Accept ] 
  ln ( ) ln                            [Continue] 

              ( ) ln                              [Accept ]  

t H
t

t H

Λ ≥ Τ
Τ < Λ < Τ

Λ ≤ Τo o
 For the joint cancellation/detection problem, we use the underlying Gauss-Markov 
canceller representations of the previous section in developing the required density functions 
to implement the detector of Eq. (13). Therefore, under the null hypothesis, we have that  

t-1Pr( ( ) | P ; )ot Hp  is a conditionally gaussian distribution, since  is characterized by the 
Gauss-Markov model of Eq. 

η
(6) and ν  is white, gaussian. Therefore under the null 

hypothesis it can be shown that the conditional density is given by 

( ) ( )p p-1 ˆPr ( ) | P ; N ( | 1), ( )
o ot o o e et H t t R−p p∼ t for ˆ ( | 1)o t t −p  the conditional mean estimate at 

time  based on the data up to time t 1t − . That is, { }1ˆ ˆ( | 1) : ( ) | P ; ( | 1)o t ot t E t H t t−− = =p p η −

ξ ξ

, 
for  the optimal noise estimate of Table 1. The cancelled output sequence (under ) is 
therefore 

η̂ oH

( )p ˆ ˆ( ) ( ) ( | 1) ( ) ( | 1) ( ) ( | 1) ( )

                                        ( ) ( | 1) ( ) ( )
o ot t t t t t t t t t t

C t t t t t

= − − = − − + = − +

= − + +

e p p η η ν η ν

ξ ν ν

�

�  (15) 

which yields the corresponding covariance
 

p pe e νν ν ν νν( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
o o e eR t R t R t C t P t C t R t R t

η η ξ ξξ ξξ ξ′= + = + +� .    (16) 

 Under the alternate hypothesis and gaussian assumptions, we have that 

( ) ( )p p1 1-1 1 1ˆPr ( ) | P ; N ( | 1), ( )tt H t t R t−p p∼ e e . The conditional expectation for this case is 

therefore, { } { }1 -1 1 -1ˆ ˆ( | 1) : ( ) | P ; ( ) ( ) ( ) | P ( ) ( | 1)t tt t E t H E t t t t t t− = = + + = + −p p s η ν s η . The 
cancelled output sequence (under ) is therefore 1H

( ) ( )1p 1ˆ ˆ( ) ( ) ( | 1) ( ) ( ) ( ) ( | 1) ( ) ( | 1) ( )t t t t t t t t t t t t t= − − = − + − − + = − +e p p s s η η ν η ν�  
 The sequential log-likelihood function follows from the conditional densities, that 

 
( ) ( )

( ) (

p po o

p p1 1

-1

-1

1 ˆ ˆ( ) ( 1) ( ) ( | 1) ( ) ( ) ( | 1)
2
1 ˆ ˆ                               ( ) ( | 1) ( ) ( ) ( ) ( | 1) ( )
2

e e

e e

t t K t t t R t t t t

t t t t R t t t t t

′Λ = Λ − + Δ + − − − −

′− − − − − − −

p η p η

p η s p η s )
, (17) 

where ( )1 11 ( ) ( )
1: ln ln
2 o oo e e t e e tK K K R RΔ = − = −

p p p po p po 1 1
( ) ( ) ( )e e e e e e, but R t R t R t= = . 

Therefore Eq. (17) becomes

 
( )

( )

p p

p p p p

-1

-1 -1

1 ˆ( ) ( 1) ( ) ( ) ( ) ( | 1)
2
1 ˆ                                ( ) ( | 1) ( ) ( )+ ( ) ( ) ( )
2

e e

e e e e

t t K t R t t t t

t t t R t t t R t t

′Λ = Λ − + Δ − − −

′ ′− − −

s p η

p η s s s
 (18) 
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where ( )e ep p
R t  is defined in Eq. 16. It is also clear that Eq. (18) can be simplified further by 

placing all known terms in the threshold expression of Eq. (14). So we see that the log-
likelihood detector uses the noise canceller algorithm of Table 1 for its implementation. Thus, 
we have shown (theoretically) how the joint cancellation/detection problem can be solved 
using a model-based approach. This completes the theoretical results.  
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Fig. 1. Gauss-Markov Representation of Ship Noise Cancelling Problem. 
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