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There is a prejudice that the chiral soliton model of baryons is something orthog-
onal to the good old constituent quark models. In fact, it is the opposite: the
spontaneous chiral symmetry breaking in strong interactions explains the appear-
ance of massive constituent quarks of small size thus justifying the constituent
quark models, in the first place. Chiral symmetry ensures that constituent quarks
interact very strongly with the pseudoscalar fields. The “chiral soliton” is another
word for the chiral field binding constituent quarks. We show how the old SU(6)
quark wave functions follow from the “soliton”, however, with computable rela-
tivistic corrections and additional quark-antiquark pairs. We also find the 5-quark
wave function of the exotic baryon Θ+.

1. The necessity of quantum field theory

It has been known since the work of Landau and Peierls (1931) that the
quantum-mechanical wave function description, be it non-relativistic or rel-
ativistic, fails at the distances of the order of the Compton wave length of
the particle. Measuring the electron position with an accuracy better than
10−11 cm produces a new electron-positron pair, by the uncertainty prin-
ciple. One observes it in the Lamb shift and other radiative corrections.
Fortunately, the atom size is 10−8 cm, therefore there is a gap of three or-
ders of magnitude where we can successfully apply the Dirac or even the
Schrödinger equation. In baryons, we do not have this luxury. Measuring
the quark position with an accuracy higher than the pion Compton wave
length of 1.4 fm produces a pion, i.e. a new quark-antiquark (QQ̄) pair,
whereas the baryon size is 0.8 fm. Therefore, there seems to be no room for
the quantum-mechanical wave function description of baryons at all. To
describe baryons, one needs a quantum field theory from the start, with a
varying number of QQ̄ pairs, because of the spontaneous chiral symmetry
breaking which makes pions light.
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Ignoring quantum field theory where it cannot be ignored, causes mul-
tiple problems. Let me mention just two paradoxes of the standard con-
stituent quark models, out of many.

The first is the value of the so-called nucleon sigma term 1. It is ex-
perimentally measured in low-energy πN scattering, and its definition is
the scalar quark density in the nucleon, multiplied by the current (or bare)
quark masses,

σ =
mu + md

2
< N |ūu + d̄d|N >= 67 ± 6 MeV.

The standard values of the current quark masses are mu � 4 MeV, md �
7 MeV (and ms � 150 MeV). In the non-relativistic limit, the scalar density
is the same as the vector density; therefore, in this limit the matrix element
above is just the number of u, d quarks in the nucleon, equal to 3. If u, d

quarks are relativistic, the matrix element is strictly less than three. Hence,
in the naive constituent quark model

σquarks ≤ 4 MeV + 7 MeV
2

∗ 3 = 17.5 MeV,

that is four times less than experimentally! Three quarters of the σ term is
actually residing not in the three constituent quarks but in the additional
quark-antiquark pairs in the nucleon.

The second paradox which is probably less known, arises when one
attempts to extract quark distributions as function of Bjorken x from a
constituent quark model, be it any variant of the bag model or any vari-
ant of the potential models with any kind of correlations between quarks.
If the three quarks are loosely bound, their distribution function is just
δ
(
x − 1

3

)
, each quark carrying 1/3 of the nucleon momentum in the in-

finite momentum frame. As quarks become more bound, this δ-function
is smeared around 1/3. However, higher quark velocities imply that the
“lower” component of the Dirac bispinor wave function increases (it is zero
in the extreme non-relativistic case), at the expense of the decrease of the
“upper” component. It means that if quarks are moving inside a nucleon,
there are less than three quarks in the nucleon. Since the number of quarks
minus the number of antiquarks is the conserved baryon number, it au-
tomatically means that the number of antiquarks is negative 2. It is an
inevitable mathematical consequence of the Dirac equation. The paradox
is cured by adding the Dirac sea to valence quarks; only then the antiquark
distribution becomes positive-definite, and satisfies the general sum rules 2.

Thus, a field-theoretic description of baryons is a must if one does not
wish to violate general theorems, and also for practical reasons.
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I present below a relativistic field-theoretic model of baryons where the
above paradoxes are resolved, together with the well-known “spin crisis”
paradox. Actually, one has to be surprised not by why the constituent
quark approach is a failure but rather why does it work at all in a variety
of cases. The model will answer this question, too.

2. The chiral quark – soliton model

The most important happening in QCD from the point of view of the light
hadron structure is the Spontaneous Chiral Symmetry Breaking (SCSB):
as its result, almost massless u, d, s quarks get the dynamical momentum-
dependent masses Mu,d,s(p), and the pseudoscalar mesons π, K, η become
light (pseudo) Goldstone bosons. At the same time, pseudoscalar mesons
are themselves bound QQ̄ states. How to present this queer situation math-
ematically? There is actually not much freedom here: the interaction of
pseudoscalar mesons with constituent quarks is dictated by chiral symme-
try. It can be written in the following compact form 3:

Leff = q̄
[
i∂/ − M exp(i γ5 πAλA/Fπ)

]
q, πA = π, K, η. (1)

Since Eq.(1) is an effective low-energy theory, one expects formfactors in
the constituent quark – pion interaction; in particular, M(p) is momentum-
dependent 3 and provides an UV cutoff. In fact, Eq.(1) is written in the limit
of zero momenta. A possible wave-function renormalization factor Z(p) can
be also admitted but it can be absorbed into the definition of the quark
field. Notice, that there is no kinetic-energy term for pseudoscalar fields in
Eq.(1). It is in accordance with the fact that pions are not “elementary”
but a composite field, made of constituent quarks. The kinetic energy term
(and all higher derivatives) for pions appears from integrating out quarks,
or, in other words, from quark loops, see Fig. 1.

...

Figure 1. The effective chiral lagrangian is the quark loop in the external chiral field,
or the determinant of the Dirac operator (1). Its real part is the kinetic-energy term for

pions, the Skyrme term and, generally, an infinite series in derivatives of the chiral field.
Its imaginary part is the Wess–Zumino–Witten term (with the correct coefficient), plus
also an infinite series in derivatives 4.
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An interesting question is, how does the effective lagrangian (1) “know”
about the confinement of color? One writes Eq.(1) from the general chiral
symmetry considerations, and only the formfactors e.g. the dynamical mass
M(p) are subject to dynamical details. The difference between a confining
and a non-confining theory is hidden in the subtleties of the analytical be-
havior of M(p) and possible other formfactor functions in the Minkowski
domain of momenta. Specifically, the instanton model of the spontaneous
chiral symmetry breaking 3 leads to such M(p) that there is no real solution
of the mass-shell equation p2 = M2(−p2), meaning that quarks cannot be
observable, only their bound states! However, this is not the only confine-
ment requirement. Unfortunately, the instanton model’s M(p) has a cut
at p2 = 0 corresponding to massless gluons left in the model. In the true
confining theory there should be no such cuts.

In the bound states problems, however, quarks’ momenta are space-like.
Therefore, one can use any reasonable falling function M(p) reproducing
the phenomenological value of Fπ constant and of the chiral condensate 4.
As a matter of fact, instantons do it phenomenologically very satisfactory.

Constituent u, d, s quarks necessarily have to interact with the π, K, η

fields according to Eq.(1), and the dimensionless coupling constant is ac-
tually very large: gπqq(0) = M(0)

Fπ
� 4, where the constituent quark mass

M(0) � 350 MeV and Fπ � 93 MeV are used.
The chiral interactions of constituent quarks in baryons, following from

Eq.(1), are schematically shown in Fig. 2. Antiquarks are necessarily
present in the nucleon as pions propagate through quark loops. The non-
linear effects in the pion field are essential since the coupling is strong. I
would like to stress that this picture is a model-independent consequence of
the spontaneous chiral symmetry breaking. One cannot say that quarks get
a constituent mass but throw away their strong interaction with the pion
field. In principle, one has to add perturbative gluon exchange on top of
Fig. 2. However, αs is never really strong, such that gluon exchange can be
disregarded in the first approximation. The large value of the pion-quark
coupling suggests that Fig. 2 may well represent the most essential forces

Figure 2. Quarks in the nucleon (solid lines), interacting via pion fields (dash lines).
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inside baryons. No “confining strings” are expected in the real world where
it is energetically favorable to break an expanded string by creating light
pions.

Although the low-momenta effective theory (1) is a great simplification
as compared to the microscopic QCD, as it uses the right degrees of free-
dom appropriate at low energies, it is still a strong-coupling relativistic
quantum field theory. Summing up all interactions inside the nucleon of
the kind shown in Fig. 2 is a difficult task. Maybe some day it will be
solved numerically, e.g. by methods presented by John Hiller in these Pro-
ceedings 5. In the meanwhile, it can be solved exactly in the limit of large
number of colors Nc. With Nc colors, the number of constituent quarks
in a baryon is Nc, and all quark loop contributions in Fig. 2 are also pro-
portional to Nc. Therefore at large Nc, quarks inside the nucleon create
a large, nearly classical pion field: quantum fluctuations about the mean
field are suppressed as 1/Nc. The same field binds the quarks; therefore it
is called the self-consistent field. [A similar idea is exploited in the shell
model for nuclei and in the Thomas–Fermi approximation to atoms.] The
problem of summing up all diagrams of the type shown in Fig. 2 is reduced
to finding a classical self-consistent pion field. As long as 1/Nc corrections
to the mean field results are under control, one can use the large-Nc logic
and put Nc to its real-world value 3 at the end of the calculations.

The model of baryons based on these approximations has been named
the Chiral Quark Soliton Model (CQSM) 4. The “soliton” is another word

π− f ield

E = +M

E = −M

discrete level

Dirac sea
E_sea

E_val

Figure 3. If the trial pion field is large enough (shown schematically by the solid curve),
there is a discrete bound-state level for three ‘valence’ quarks, Eval. One has also to fill
in the negative-energy Dirac sea of quarks (in the absence of the trial pion field it
corresponds to the vacuum). The continuous spectrum of the negative-energy levels is
shifted in the trial pion field, its aggregate energy, as compared to the free case, being
Esea. The nucleon mass is the sum of the ‘valence’ and ‘sea’ energies, multiplied by three
colors, MN = 3 (Eval[π(x)] + Esea[π(x)]). The self-consistent pion field binding quarks
is the one minimizing the nucleon mass.
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for the self-consistent pion field in the nucleon. However, the model oper-
ates with explicit quark degrees of freedom, which enables one to compute
any type of observables, e.g. relativistic quark (and antiquark!) distri-
butions inside nucleons 2, and the quark light-cone wave functions 6. In
contrast to the naive quark models, the CQSM is relativistic-invariant.
Being such, it necessarily incorporates quark-antiquark admixtures to the
nucleon. Quark-antiquark pairs appear in the nucleon on top of the three
valence quarks either as particle-hole excitations of the Dirac sea (read:
mesons) or as collective excitations of the mean chiral field.

There are two instructive limiting cases in the CQSM:
1. Weak π(x) field. In this case the Dirac sea is weakly distorted as

compared to the no-field and thus carries small energy, Esea � 0. Few an-
tiquarks. The valence-quark level is shallow and hence the three valence
quarks are non-relativistic. In this limit the CQSM becomes very similar to
the constituent quark model remaining, however, relativistic-invariant and
well defined.

2. Large π(x) field. In this case the bound-state level with valence
quarks is so deep that it joins the Dirac sea. The whole nucleon mass is
given by Esea which in its turn can be expanded in the derivatives of the
mean field, the first terms being close to the Skyrme lagrangian. Therefore,
in the limit of large and broad pion field, the model formally reduces to the
Skyrme model.

The truth is in between these two limiting cases. The self-consistent
pion field in the nucleon turns out to be strong enough to produce a deep
relativistic bound state for valence quarks and a sufficient number of an-
tiquarks, so that the departure from the non-relativistic constituent quark
model is considerable. At the same time the self-consistent pion field is
spatially not broad enough to justify the use of the Skyrme model which
is just a crude approximation to the reality, although shares with reality
some qualitative features. The CQSM demystifies the main paradox of the
Skyrme model: how can one make a fermion out of a boson-field soliton.
Since the “soliton” is nothing but the self-consistent pion field that binds
quarks, the baryon and fermion number of the whole construction is equal
to the number of quarks one puts on the valence level created by that field:
it is three in the real world with three colors.

3. Baryon excitations

There are excitations related to the fluctuations of the chiral field about
its mean value in the baryons. In the context of the Skyrme model many
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resonances were found and identified with the existing ones in Ref. 7,8 and
quite recently in Ref. 9. As I said before, the Skyrme model is too crude,
and one expects only qualitative agreement with the Particle Data. The
same work has to be repeated in the CQSM but it has not been done so
far.

There are also low-lying collective excitations related to slow rotation
of the self-consistent chiral field as a whole both in ordinary and flavor
spaces. The result of the quantization of such rotations was first given by
Witten 10. The following SU(3) multiplets arise as rotational states of a
chiral soliton:

(
8, 1

2

+
)

,
(
10, 3

2

+
)

,
(
10, 1

2

+
)

,
(
27, 3

2

+
)

,
(
27, 1

2

+
)

... They
are ordered by increasing mass, see Fig. 4. The first two (the octet and the
decuplet) are indeed the lowest baryons states in nature. They are also the
only two that can be composed of three quarks. However, the fact that one
can manage to obtain the correct quantum numbers of the octet and the
decuplet combining only three quarks, does not mean that they are made
of three quarks only. The difficulties of such an interpretation have been
mentioned in the beginning.

(8,1/2) (10,3/2)

Ξ−Ξ− Ξ0

Ω−

Ξ

Σ

∆

Σ−
Σ0 Σ+

Λ

n pp

Y Y

T3 T3

Y

Θ+

N

Σ

Ξ− − Ξ− Ξ0 Ξ+

(10,1/2)−−

Figure 4. The lowest baryon multiplets which can be interpreted as rotational states in
ordinary and 3-flavor spaces, shown in the Y − T3 axes.

Therefore, one should not be a priori confused by the fact that higher-
lying multiplets cannot be made of three quarks: even the lowest ones are
not. A more important question is where to stop in this list of multiplets.
Apparently for sufficiently high rotational states the rotations become too
fast: the centrifugal forces will rip the baryon apart. Also the radiation of
pions and kaons by a fast-rotating body is so strong that the widths of the
corresponding resonances blow up 11. Which precisely rotational excitation
is the last to be observed in nature, is a quantitative question: one needs to
compute their widths in order to make a judgement. If the width turns out
to be in the hundreds of MeV, one can say that this is where the rotational
sequence ceases to exist.

An estimate of the width of the lightest member of the antidecuplet,
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shown at the top of the right diagram in Fig. 4, the Θ+, gave a surprisingly
small result: ΓΘ < 15 MeV 12. This result obtained in the CQSM, imme-
diately gave credibility to the existence of the antidecuplet. It should be
stressed that there is no way to obtain a small width in the oversimplified
Skyrme model.

In pentaquarks forming the antidecuplet shown on the right of Fig. 4,
the additional QQ̄ pair is added in the form of the excitation of the (nearly
massless) chiral field. Energy penalty would be zero, had not the chiral
field been restricted to the baryon volume. Important, the antidecuplet-
octet splitting is not twice the constituent mass 2M but less. In the case of
a large-size baryon it costs a vanishing energy to excite the antidecuplet 13.

4. Quark wave functions

The wave function of baryons in the CQSM has been derived recently by
Petrov and Polyakov 6 in the infinite momentum frame. Here I translate
it to the baryon rest frame. We shall see how easily one can get the non-
relativistic SU(6) wave functions for ordinary octet and decuplet baryons
“from the soliton”. Next, I derive the new result for the antidecuplet 5-
quark wave functions.

Let a, a†(p) and b, b†(p) be the annihilation–creation operators of quarks
and antiquarks (respectively) satisfying the usual anticommutator algebra.
The vacuum |Ω0 > is such that a, b|Ω0 >= 0. According to the CQSM,
a baryon is Nc “valence” quarks on a discrete level created by the self-
consistent pion field, plus the negative-energy Dirac sea of quarks, distorted
as compared to the free case by the same self-consistent pion field, see Fig. 2.
At large Nc, the Dirac sea is given by the coherent exponent

coherent exponent = exp
(∫

(dp)(dp′) a†(p)W (p,p′)b†(p′)
)
|Ω0 >, (2)

where (dp) = d3p/(2π)3 and W (p1,p2) is the finite-time quark Green
function at equal times in the static external field of the chiral “soliton”,
to be specified below. The valence quark part of the wave function is given
by a product of Nc quark creation operators that fill in the discrete level:

valence =
Nc∏

color=1

∫
(dp)F (p) a†(p), (3)

F (p)=
∫

(dp′)
[
u∗(p)flev(p)(2π)3δ(p−p′)−W (p,p′)v∗(p′)flev(−p)

]
,(4)
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where flev(p) is the Fourier transform of the wave function of the level.
The second term in Eq.(4) is the contribution of the distorted Dirac sea
to the one-quark wave function; I shall neglect it for simplicity in what
follows. With the same accuracy, the discrete level’s wave function can be
approximated by the upper component (as if it was non-relativistic):

F ij(p) =
∫

(dp)eip·x εij h(r) (5)

where h(r) is the L = 0 solution of the bound-state Dirac equation with
energy E ∈ [−M, M ] for the given profile function of the soliton P (r) 4:

h′ = −M sin P h + (E + M cosP ) j ,

j′ +
2
r
j = (M cosP − E)h + M sin P j .

In the non-relativistic limit the L = 1 function j(r) is neglected in Eq.(5).
In Eq.(5) i = 1, 2 are spin and j = 1, 2 are isospin indices; εij is the
antisymmetric tensor.

The QQ̄ pair wave function W (p1,p2) determines the structure of the
Dirac continuum; it is also a matrix in both spin and isospin indices. I
denote by (i, j) those of the quark and by (i′, j′) those of the antiquark.
We shall need the Fourier transforms of all odd (Π) and all even (Σ) powers
of the self-consistent pion field:

Πj
j′ (q) =

∫
dr e−i(q·r) (n · τ)j

j′ sin P (r) , (6)

Σj
j′ (q) =

∫
dr e−i(q·r) δj

j′ (cos P (r) − 1) . (7)

Correspondingly, W = W (Π) + W (Σ) can be divided into two pieces,

W
ji (Π,Σ)
j′i′ (p,p′) = w

i (Π,Σ)
i′ (p,p′)Π(Σ)j

j′ (p + p′), (8)

where

w
i (Π,Σ)
i′ =

1
2(ε + ε′)

√
MM ′

εε′(M + ε)(M ′ + ε′)
(9)

·
{

[(p·p′) − (M + ε)(M ′ + ε′)] δi
i′ + iεpqrppp

′
q(σr)i

i′ ,

[(M + ε)p′r − (M ′ + ε′)pr] (σr)i
i′ ,

with ε =
√

M2(p) + p2, the primed variables being related to the anti-
quark. In the coordinate space the pair wave function is given by a convo-
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lution of the self-consistent chiral field and the Fourier transforms of w(Π,Σ):

W
ji (Π,Σ)
j′i′ (r, r′)=

∫
d3r′′ wi (Π,Σ)

i′ (r−r′′, r′−r′′) ·
{

(r′′ · τ )j
j′ sin P (r′′)/r′′,

δj
j′ (cos P (r′′) − 1),

w
i (Π,Σ)
i′ (r−r′′, r′−r′′)=

∫
(dp)(dp′) ei(p·r−r′′) ei(p′·r′−r′′) w

i (Π,Σ)
i′ (p,p′).(10)

These functions can be computed numerically once the profile function of
the self-consistent chiral field is known. Eqs.(9,10) give the amplitudes of
various spin, isospin and orbital QQ̄ states inside a baryon. The partial
waves depend on the QQ̄ coordinates (r, r′) with respect to the baryon
center of mass.

To get quark wave functions inside a particular baryon, one has to ro-
tate all the isospin indices j’s, both in the discrete level and in the QQ̄

pairs, by an SU(3) matrix Rf
j , f = 1, 2, 3, j = 1, 2, and to project it to the

specific baryon from the
(
8, 1

2

+
)

,
(
10, 3

2

+
)

or
(
10, 1

2

+
)
. “Project” means

integrating over the SU(3) rotation matrices R with a Haar measure nor-
malized to unity. In full glory, the quark wave function inside a particular
baryon B with spin projection k is given by

ΨB
k =

∫
dRDB ∗

k (R)εα1...αNc

Nc∏
n=1

∫
(dpn)Rfn

jn
F injn(pn) a†

αnfnin
(pn)

· exp
(∫

(dp)(dp′) a†
αfi(p)Rf

j W ji
j′i′(p,p′)R† j′

f ′ b†αf ′i′(p′)
)
|Ω0 > . (11)

Here α stands for color, f for flavor and i for spin indices. Let me give a few
examples of the baryons’ (conjugate) rotational wave functions DB∗(R):

neutron, spin projection k : Dn ∗
k =

√
8 εklR

† l
2 R3

3, (12)

∆++, spin projection +
3
2

: D∆++ ∗
↑↑ =

√
10R† 2

1 R† 2
1 R† 2

1 , (13)

∆0, spin projection +
1
2

: D∆0 ∗
↑ =

√
10R† 2

2 (2R† 2
1 R† 1

2 +R†2
2 R† 1

1 ),(14)

Θ+, spin projection k : DΘ ∗
k =

√
30R3

3R
3
3R

3
k. (15)

If the coherent exponent with QQ̄ pairs is ignored, one gets from the
general Eq.(11) the 3-quark Fock component of the octet and decuplet
baryons. It depends on the quark “coordinates”: the position in space (r),
the color (α), the flavor (f) and the spin (i), and also on the baryon spin
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k. For example, the neutron 3-quark wave function turns out to be

(|n>k)f1f2f3,i1i2i3 (r1, r2, r3) = εf1f2 εi1i2 δf3
2 δi3

k h(r1)h(r2)h(r3)

+ permutations of 1, 2, 3, (16)

antisymmetrized in color. It is better known in the form

|n↑> = 2 d↑(r1)d↑(r2)u↓(r3)−d↑(r1)u↑(r2)d↓(r3)−u↑(r1)d↓(r2)d↑(r3)

+ permutations of r1, r2, r3, (17)

which is the well-known non-relativistic SU(6) wave function of the nucleon!
Petrov and Polyakov 6 have obtained the corresponding SU(6) function in
the infinite-momentum frame.

Performing the group integration with the decuplet rotational functions
(13,14) one also gets the well-known SU(6) wave functions in the non-
relativistic limit. Relativistic corrections to those wave functions are easily
computable from Eq.(4), as are the 5-quark Fock components of the usual
octet and decuplet baryons. To find those, one needs to expand the coherent
exponent in Eq.(11) to the linear order in the additional QQ̄ pair, and
perform the SU(3) projecting. The result will be given in a subsequent
publication. Here I shall go straight to the Θ+.

Projecting the three quarks from the discreet level on the Θ rotational
function (15) gives an identical zero, in accordance with the fact that the
Θ cannot be made of 3 quarks. The non-zero projection is achieved when
one expands the coherent exponent to the linear order. One gets then the
5-quark component of the Θ wave function:

|Θ+
k >f1f2f3f4,i1i2i3i4

f5,i5
(r1 . . . r5) = εf1f2εf3f4δ3

f5
εi1i2

·h(r1)h(r2)h(r3)W i3i4
k i5

(r4, r5) + permutations of 1, 2, 3. (18)

The color structure of the antidecuplet wave function is εα1α2α3δα4
α5

. Indices
1 to 4 refer to quarks and index 5 refers to the antiquark, in this case s̄

thanks to δ3
f5

. The quark flavor indices are f1−4 = 1, 2 = u, d. Naturally,
we have obtained Θ+ = uudds̄.

We see that the first two valence u, d quarks from the discrete level
form a spin- and isospin-singlet diquark (although not correlated in space),
like in the nucleon, see Eq.(16). However, the other pair of quarks do not
form a similar spin-zero diquark. For example, in the “Σ” part of the wave
function the Θ spin k is determined by the spin of the third quark from
the discrete level. Since in the CQSM the functions h(r1,2,3) and W (r4, r5)
are known, Eq.(18) gives the complete color, flavor, spin and space 5-quark
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wave function of the Θ+ in its rest frame. The 5-quark wave functions of
other members of the antidecuplet can be obtained in a similar manner.

For the computation of the Θ width, this wave function is, however,
inadequate as a matter of principle. As explained in Refs. 14,15, the only
consistent way to compute the width is using the infinite momentum frame 6

where there is no pair creation or annihilation, and the Fock decomposition
is well defined. In that frame, the decay of the Θ+ goes into the five-quark
component of the nucleon only. It is first of all suppressed to the extent the
5-quark component of the nucleon is less than its 3-quark component. An
additional suppression comes from the spin-flavor overlap. A preliminary
crude estimate shows that the Θ+ width can be extremely small.

I thank the organizers of the Continuous Advances for hospitality, and
V. Petrov and M. Polyakov for numerous discussions. This work has been
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