Spontaneous and Amplified Radiation at the Initial Stage of a SASE FEL
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At the initial stage of a self-amplified spontaneous emission (SASE) free-electron laser (FEL), spontaneous
undulator radiation in certain experimental configurations can dominate the amplified signal over an extended
undulator distance. In this paper we study both the spontaneous and the amplified radiation in the frame-
work of the paraxial wave equation and determine the transition from the dominance of spontaneous emission
to exponential amplification. We compare theoretical expectations with SASE simulation codes GINGER, and

GENESIS.

1. Introduction

In many self-amplified spontaneous emission
(SASE) free-electron laser (FEL) experiments ra-
diation near the fundamental wavelength is col-
lected through a large opening angle and without
a monochromator [1-3]. This results in a large
background of spontaneous undulator radiation
in the detected signal, together with the amplified
signal. Correctly describing the detected radia-
tion can help characterize the FEL performance
and the electron beam properties. In this paper,
we investigate the validity of the paraxial wave
equation used in FEL theory and simulations
in describing spontaneous undulator radiation at
the initial stage of a SASE FEL. Comparing the
spontaneous radiation power with the amplified
one under these experimental conditions, we find
the transition from the dominance of spontaneous
emission to exponential amplification can occur
at an undulator distance much longer than the
first two power gain lengths that produce the ef-
fective start-up noise. These results are compared
with SASE simulation codes GINGER and GEN-
ESIS.
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2. Analysis at the initial stage of a SASE
FEL

The Maxwell equation for the transverse elec-
tric field E, is
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where & = (z,y) represents the transverse coor-
dinates, €g is the permittivity of free space, J,
is the transverse current density, and p. is the
charge density. The Fourier representation of the
electric field in both ¢ and x is
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where w = vw; = 2me/A = ke, the fundamen-
tal undulator frequency is w; = 4mwey?/[A. (1 +
K?/2)]), Ay = 27k, is the undulator period, and
K is the undulator parameter. Assuming that A,
varies slowly with z, Eq. (1) becomes the paraxial
wave equation for A4,
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Solving this equation for a single electron source
would lead to the angular-spectral distribution of



the o-polarization for undulator radiation (e.g.,
Eq.(4.23) of Ref. [4]). In general, we cannot
drop the charge density term of Eq. (3) because
Iy ~ B cos(kyz)pe and ¢, ~ 1/ for sponta-
neous undulator radiation. However, since the
FEL interaction is driven resonantly by the cur-
rent density term and occurs in a radiation angle
much smaller than 1/v for w ~ wy or v ~ 1,
the charge density term of Eq. (3) is normally
dropped in FEL theory and simulations. In the
absence of the FEL interaction this approxima-
tion leads to [5]
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Here 6;,n;,x;, p; represent the initial phase, the
relative energy, the transverse position and the
angular divergence of the 5% electron.
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#[jj]vc, [JJ] is the Bessel function
factor, and kg is the betatron wavenumber. For

parallel electrons (p = 0) without any focusing
(kg = 0), we have
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From Eq. (4), the angular distribution of the
spectral power near the fundamental frequency is
approximately given by
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where T is the pulse duration, and N, is the total
number of electrons. We integrate Eq. (7) over
all solid angle ([ d*¢ = 7 [ d(¢?)) by using
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for N, > 1 to obtain the spectral power
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where I = eN, /T is the peak current and I4 =
ec/re is the Alfven current.

Including the charge density term in Eq. (3),
one can obtain an exact expression for the o-
polarization of the fundamental undulator radi-
ation [6,4]
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Figure 1 shows the frequency dependence of
the fundamental undulator radiation given by
Egs. (8) and (9) for K <« 1. We see the paraxial
wave equation used in FEL theory and simula-
tions overestimates the spontaneous power every-
where except at the fundamental frequency due to
the ignorance of the charge density term. Never-
theless, as frequency approaches the fundamen-
tal one or the emission angle is much less than
1/v, Eq. (8) is a good approximation of Eq. (9).
For a detector that accepts the full angular dis-
tribution and a small bandwidth Av, just below
the fundamental frequency, the spontaneous radi-
ation power expected from both Egs. (8) and (9)
is
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to the leading order in Av,.

Among many transverse modes excited by
the spontaneous radiation, a single fundamental
mode with the largest exponential growth rate
will eventually dominate the FEL signal. Taking
into account the energy spread and the emittance
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Figure 1. Fundamental undulator radiation spec-
trum (o-polarization, K < 1) as calculated from
Eq. (8) (solid line) and Eq. (9) (dashed line).

effects, the power spectrum of the fundamental
mode before saturation is
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where g4 is the input coupling coefficient, gg is
the start-up noise coefficient [7], p is the FEL scal-
ing parameter [9], Lg is the power gain length,
and wy0,(z) is the FEL bandwidth and is a func-
tion of z. Integration over the SASE spectrum
yields
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In Ref. [8,7], the effective start-up power for the
fundamental mode is identified as the coherent
fraction of the spontaneous radiation in the first
two power gain lengths, which is a small fraction
of the total spontaneous radiation emitted. As-
suming that higher-order transverse modes have
negligible growth rates, the exponentially growing
fundamental mode will dominate over the sponta-
neous radiation emitted over all solid angles when
z > z;, where z; is determined by
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3. Comparison with simulation studies

Two SASE FEL codes GINGER [10] and GEN-
ESIS [11] are used for this study. Since GIN-
GER solves for the radiation field that is azy-
muthally symmetric in transverse coordinates, it
excludes most higher-order modes of the sponta-
neous emission. As a result, GINGER models the
central cone of the undulator radiation that pos-
sesses the azymuthal symmetry [6,4] and is found
to agree with the expected central-cone radiation
power at the start-up regime [13]. The three-
dimensional code GENESIS is used to examine
the SASE power emitted in all solid angles. For
a limited simulation bandwidth, the GENESIS
spectrum at start-up cannot reproduce Eq. (8)
due to the effect of aliasing [12]. Nevertheless,
we expect the initial GENESIS power within a
small bandwidth is comparable to that given by
Eq. (10). The output power of GINGER and
GENESIS should be comparable when the fun-
damental mode is dominant (i.e., when z > z;).
We compare z; determined from these codes with
that predicted from Eq. (13).

Figure 2 shows such a comparison using the low
energy undulator test line (LEUTL) FEL at the
Advanced Photon Source operated at 530 nm [1].
The electron beam energy is 217 MeV with a
0.1 % energy spread. The normalized emittance
is 9.3 ym in z and 7.6 pm in y. The bunch
profile is assumed to be Gaussian with the rms
bunch length 300 fs and the peak current 266 A.
The spontaneous undulator radiation, calculated
from Eq. (10) by taking Av, ~ 0.12 to be one
half of the simulated bandwidth (the other half
is above the fundamental wavelength), is found
to be somewhat higher than the initial power of
the GENESIS simulation. The results of GIN-
GER and GENESIS converge after 7 m (including
the drift spaces between undulators) as the fun-
damental mode dominates. Eq. (13) yields z; = 5
m using the above beam parameters.

Figure 3 shows another comparison using the
Linac Coherent Light Source proposed at the
Stanford Linear Accelerator Center for an x-ray
FEL at 1.5 A [14]. The electron beam energy is
14.3 GeV with a 6 x 10~ energy spread. The
normalized emittance is 1.5 um in both trans-
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Figure 2. Radiated Energy as a function of the
distance for the LEUTL FEL.

verse dimensions. The electron bunch is assumed
to be a flat-top profile with 3.4 kA peak cur-
rent. Since the emittance of the electrons is 4
to 5 times larger than the radiation emittance
A1/(4m), many higher-order transverse modes are
excited at the initial stage. As a result, the spon-
taneous undulator radiation contained in all these
modes dominates over the fundamental mode
over the first half of the entire undulator distance.
Equation (13) gives z; ~ 50 m, while the cross-
over between GINGER and GENESIS is around
55 m. Higher-order transverse modes in GEN-
ESIS are excited by increasing transverse grid
points covered by the electron beam [15]. With
sufficient transverse grid points, we see that the
inital power of GENESIS simulation approaches
that given by Eq. (10) for a half of the simulation
bandwidth Av, = 0.03.
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