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Abstract  —   This paper compares various approaches to 

stability analysis of linear (and of linearized) circuits. In 
particular it clarifies the limits of application of a widely used 
but generally erroneous method. It also compares the criteria 
formulated in terms of impedances versus those expressed in 
S-parameters 

Index Terms — Nyquist Criterion, Passivity, Riemann 
Sphere, Smith Chart, Stability. 

                                I. INTRODUCTION 

    The aim of this paper is to discuss the circuit stability 
criteria, in particular, to explain the limits of the criteria 
related to the eq. (1), which are widely, and often wrongly, 
used.  A rigorous discussion of stability criteria for 2-ports 
has been covered in [J,P] and for the 1-ports, related to 
oscillator analysis, in [J,O].  In [O] simple examples were 
given that show how some commonly used criteria 
formulated in terms of S-parameters lead to erroneous 
results even for very simple circuits, such as shown in 
Fig.1.  A short remark in [O] that the results are equally 
applicable to impedance/admittance representation seemed 
to have passed unnoticed, and there are continual claims 
that the simplified criteria are valid when expressed in terms 
of  immittances.  Here we argue that that is not necessarily 
the case. The perceived differences come from the geometry 
of the complex plane and can be best explained via the 
Nyquist loops and via the Riemann sphere.  Thus we 
discuss the effects of passivity and of  the dominant poles 
and provide a unified geometrical interpretation of stability 
criteria applicable to both immittance and to  the S-
parameter circuit  representation. 
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4) Limitations of Nyquist criterion in oscillator analysis 
5) S-parameters interpreted on Riemann Sphere 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 1. A one-port model of a linearized oscillator. 
Immittances determine the (linearized) circuit stability. 

 

II. GENERAL STABILITY CRITERIA    

This section will illustrate the relationship between:   
i. Impulse responses that provide intuitive feeling 

of stability. 
ii. Poles (and zeroes) position that correspond to 

natural resonances (physically) and to system 
eigenvalues (mathematically). 

iii. Nyquist plots that determine the position of the 
poles and zeroes. 

 

III. ROLE OF DOMINANT POLES  

When the system possesses several dominant poles, then 
the Nyquist loop(s) have simple shape so that simplified 
criteria are applicable. In particular the Nyquist loop shown 
in the Fig. 2 for a single resonance can be determined by a 
zero crossing,  the one with the three resonances requires 
more caution (however, for the loop shown, the simplified 
criterion will work). 
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Fig.  2. Nyquist loop for positive frequency:  a) one resonance,  b) three resonances. 
 
 

IV. NYQUIST LOOPS FOR PASSIVE CIRCUITS  

There is a well developed theory of immittances of 
passive 1-ports [ACF, B,G,T].  In this section we interpret 
their properties in terms of Nyquist loops and relate them to 
the simplified stability criteria. 

 

A. Properties of passive 1-ports 

      The immittances of passive 1-ports are expressed by 
positive real  (PR)  functions. They have many nice 
properties, in particular, their Nyquist plots lie in the 
(closed)  right-half plane, see  Fig. 3.  

 

B. Nyquist loops for PR functions 

 
 
 

 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Nyquist loop for basic immittances. For passive 1-

ports they must lie in the closed right half-plane (RHP).  
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V. LIMITATION OF NYQUIST PLOT  

          Let us note that the Nyquist plot is only a stability 
criterion. When applied to oscillator analysis, the loop 
encirclement does not necessarily relate to the resonant 
frequency. The frequency of oscillations can be determined 
from the steady state one-harmonic (describing function) 
analysis. In this case the  resonator characteristics often 
coincide with the Nyquist plot; however, the physical 
meaning of the equation  (1) is very different.  

VI. S-PARAMETERS  

          It is well known [O] that even very simple circuits, 
when expressed in terms of scattering parameters, may have 
a counterintuitive Nyquist loop. The effect is most visible 
for unusual choices of the characteristic impedance Zo.  In 
the past, when we measured devices in 50 ohm systems, the 
results agreed with intuition. However, the ability to 
simulate circuits with arbitrary Zo proved confusing.   The 
effect of Zo is best explained by identifying the complex 
plane with a sphere as shown in the Fig. 4. The concept is 
called Riemann Sphere, and the mapping is the stereo-
graphical projection. It has been fruitfully used in the theory 
of functions of single complex variable for more than 100 
years. It is interesting to note that it has been recently 
rediscovered in relation to Smith Chart analysis [MM]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. 4. The stereographic projection 
 
 
    Among many useful features, this transformation eluci-
dates the duality between the zero and infinity  (which turn 

into South and North poles) and also between the straight 
lines and circles (which all turn into circles on the sphere. 
   
      It is given by a simple formula: 
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where ,Z X jY= +   are the complex  plane coordinates,  
and , ,x y z are the space coordinates. 
 
Clearly for so defined , ,x y z ,  we have 2 2 2 1x y z+ + = ,  
so that the projected points lie on a sphere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 5. The stereographic projection onto a Riemann 
sphere: Images of lines of constant resistance from the 
complex plane (dotted blue) and  from the Smith chart  
(continuous black).   

                                         VII.   CONCLUSION 

We discussed the relationship between the rigorous and 
the simplified stability  criteria which are widely, but often 
incorrectly, used.  It turns out that the immittances of the 
passive resonant circuits (i.e., the circuits with the dominant 
poles) have simple shapes of the Nyquist loop, which makes 
them amenable to the simplified criteria. The relation of 
immittance versus S-parameter representation of the 
stability criteria was explained by interpreting the complex 
numbers as points on the Riemann sphere.  
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