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ENVELOPE MODES OF BEAMS WITH ANGULAR MOMENTUM*

John J. Barnard   and Bojan Losic, Virtual National Laboratory for Heavy Ion
Fusion, LLNL Livermore,  CA, and  LBNL, Berkeley, CA

Abstract

For a particle beam propagating in an alternating gradient focusing system, envelope
equations are often employed to describe the evolution of the beam radii in the two directions
transverse to the direction of propagation, and aligned with the principle axes of the
alternating gradient system. When the beams have zero net angular momentum and when the
alternating gradient focusing is approximated by a continuous focusing system, there are two
normal modes to the envelope equations: the 'breathing' mode and a 'quadrupole' mode.  In
the former, the two radii oscillate in phase, and in the latter the radii oscillate 180 degrees out
of phase. In this paper, we extend the analysis to include beams that have a finite angular
momentum. We perturb the moment equations of ref. [1], wherein it was assumed that space
charge is a distributed in a uniform density ellipse. Two additional modes are obtained. The
breathing mode remains, but the quadrupole mode is split into two modes, and a new low
frequency mode appears. We calculate the frequencies and eigenmodes of these four modes as
a function of tune depression and a dimensionless net angular momentum. These modes can
be excited by rotational errors of the quadrupoles in an alternating gradient focusing channel.

1 INTRODUCTION
When a beam has angular momentum about the axis parallel to the propagation axis, or when
the principle axes of a beam with elliptical cross-section do not align with the principle axes of
a quadrupole, the x and y momentum equations are coupled and hence, the x and y
normalized emittances are not conserved, even for a beam with an initial Kapchinskij-
Vladimirskij (K-V) distribution with a linear space charge force profile propagating under
linear external forces.  However,  if the equations of motion result from linear forces and are
derivable from a Hamiltonian system, constants of the motion may be obtained analogous to
the normalized x and y emittances [2].  Further, the K-V distribution has been generalized [3]
to distributions in which the principal axes do not align with the x and y axes, and moment
equations have been derived [1, 5] that assume the space-charge profile remains linear,
consistent with the assumption of the KV-like distribution of ref. [3].  In ref. [1], a drifting, non-
relativistic beam was assumed, and a conserved emittance was derived that is equivalent to
the first of the conservation constraints in ref. [2]. The second invariant was independently
derived in ref. [5]. In ref. [4], the equations were generalized to include acceleration, and the
two normalized generalized emittances were evaluated using the methodology of ref. [2]. In
ref. [5], moment equations were derived for the case of quadrupoles in which the principle
axes continuously rotate along the longitudinal (z) direction, and the stability of the system
was examined.



2 MOMENT EQUATIONS
In this section, we use the moment equations of ref. [1], to describe the evolution of an

elliptical beam with arbitrary rotation angle. As in ref. [1], for simplicity we consider non-
relativistic beams. We assume the space charge force can be calculated from that of a beam
with elliptical symmetry but that is rotated with respect to the z axis. The transverse (x and y)
equations of motion of a single particle are then:
d x dz K x K y K x x K y yqxx qxy sxx sxy

2 2/ ( ) ( )= + + − + −
d y dz K y K x K y y K x xqyy qxy syy sxy

2 2/ ( ) ( )= + + − + −   (1)

Here Kqxx = Kq0cos2θ, Kqxy= Kq0sin2θ, (where θ is the rotation angle of the quadrupole about the
z-axis), and Kq0= ( ′B B/[ ]ρ  for magnetic quadrupole focusing, ′E V/( )2  for electric quadrupole
focusing, and −kβ 0

2 for uniform focusing). Here ′B  (or ′E ) is the magnetic (or electric) field

gradient, [Bρ] is the ion rigidity, and qV is ion kinetic energy, where q is the ion charge.
Also, Kqyy = -Kqxx for electric or magnetic quadrupole focusing, and Kqyy=Kqxx for uniform

focusing. Ksxx=Ksxbcos2α  + Ksybsin2α , and Ksyy=Ksybcos2α  + Ksxbsin2α, where Ksxb=Q/(2[∆xb
2 +

[∆xb
2∆yb

2]1/2]), Ksyb=Q/(2[∆yb
2 + [∆xb

2∆yb
2]1/2]). Here the beam widths along the principle axes

are given by ∆xb
2=∆x2cos2α  + ∆y2sin2α  + 2∆xy sinα cosα  and ∆yb

2=∆y2cos2α  + ∆x2sin2α  - 2∆xy
sinα cosα.  The quantity α is the rotation angle of the beam given by tan 2α = 2∆xy/(∆x2-∆y2);

and Q = λ/(4πε0V) is the generalized perveance for a non-relativistic beam, with line charge

density λ and where ε0 is the permittivity of free space.  We have used the notation
∆ab ab a b= − , where  denotes average over the distribution function.

The set of ten first order equations for the quadratic moments of the distribution, obtained by
averaging eq. (1) over the distribution function, was found in ref. [1] to be:
d x dz xx∆ ∆2 2/ = ′
d xx dz x K x K xyxx xy∆ ∆ ∆ ∆′ = ′ + +/ 2 2

d x dz K xx K x yxx xy∆ ∆ ∆′ = ′ + ′2 2 2/

d y dz yy∆ ∆2 2/ = ′
d yy dz y K y K xyxx xy∆ ∆ ∆ ∆' / '= + +2 2

d y dz K yy K xyyy xy∆ ∆ ∆' / ' '2 2 2= +
d xy dz xy x y∆ ∆ ∆/ ' '= +
d x y dz x y K xy K yxx xy∆ ∆ ∆ ∆' / ' '= + + 2 d xy dz x y K xy K xyy xy∆ ∆ ∆ ∆' / ' '= + + 2

d x y dz K xy K yy K x y K xxxx xy yy xy∆ ∆ ∆ ∆ ∆' ' / ' ' ' '= + + +      (2)

Here, K K Kxx qxx sxx= +  ; K K Kxy qxy sxy =   +   ; and K K Kyy qyy syy =   +   .

3 EQUILIBRIUM
We first examine the case of uniform focusing, which represents the focusing force averaged
over a lattice period, (or the force arising from a background of uniform density space charge

with sign opposite to the beam charge.)  In this case, Kqxx = Kqyy ≡ -kβ0
2; Ksxx0=Ksyy0 ≡ ksc0

2=Q/(4∆x0
2);

and  Kqxy = 0.  Each of the 10 moments in eq. 2, have the equilibrium values (subscript 0) given
by: ∆ ∆x y0

2
0
2= , ∆ ∆ ∆′ = ′ = −x y k k xsc0

2
0

2
0

2
0

2
0
2( )β ,    ∆ ∆xy x y l′ = − ′ ≡0 0 0 2/ ; ∆ ∆xx yy′ = ′0 0 = ∆xy0 = ′ ′∆x y0 = Kxy0 0= , where

l0 is proportional to the angular momentum of the beam.  With these values, the right hand
sides of eq. 2 are zero, and the beam moments are stationary.

4 LINEARIZED EQUATIONS



We now examine perturbations about this equilibrium of the form, ∆ ∆ ∆x x x ikz2
0
2

1
2= + exp( ) , and

∆ ∆ ∆y y y ikz2
0
2

1
2= + exp( ) , etc. for each of the 10 moments. Here subscript 1, indicates the amplitude

of the perturbation. As in ref. [5], we linearize equation 2, obtaining a set of equations for the
eigenfrequency k:

ik x xx∆ ∆1
2

12= ′
ik xx x k x k x ysc∆ ∆ ∆ ∆ ∆′ = ′ − + −1 1

2
0

2
1
2

0
2

1
2

1
2 4β ( ) /

ik x k k xx k xy x xysc sc∆ ∆ ∆ ∆ ∆′ = − − ′ + ′1
2

0
2

0
2

1 0
2

0 0
2

12( ) ( / )β

ik y yy∆ ∆1
2

12= ′
ik yy y k y k y xsc∆ ∆ ∆ ∆ ∆′ = ′ − + −1 1

2
0

2
1
2

0
2

1
2

1
2 4β ( ) /

ik y k k yy k xy x xysc sc∆ ∆ ∆ ∆ ∆′ = − − ′ − ′1
2

0
2

0
2

1 0
2

0 0
2

12( ) ( / )β

ik xy xy x y∆ ∆ ∆1 1 1= ′ + ′
ik x y x y k k xysc∆ ∆ ∆′ = ′ ′ − −1 1 0

2
0

2
12( / )β (3)

ik xy x y k k xysc∆ ∆ ∆′ = ′ ′ − −1 1 0
2

0
2

12( / )β

ik x y k k xy x y k xy x x ysc sc∆ ∆ ∆ ∆ ∆ ∆ ∆′ ′ = − − ′ + ′ − ′ −1 0
2

0
2

1 1 0
2

0 0
2

1
2

1
22( )( ) ( / )( )β

Here k Q xsc0
2

0
24≡ / ∆ , and we have found and used the relations:

K k x y xsxx sc1 0
2

1
2

1
2

0
23 4= − +( ) /( )∆ ∆ ∆ , K k y x xsyy sc1 0

2
1
2

1
2

0
23 4= − +( ) /( )∆ ∆ ∆ , and

K k xy xsxy sc1 0
2

1 0
22= − ∆ ∆/( ) .

5 EIGENVALUES AND EIGENMODES
Equation (3) can be expressed as matrix equation of the form M.x=0, where x is the column
vector of the 10 quadratic moments and M is a 10 by 10 matrix. The determinant of M yields an
eigenvalue equation with 4 distinct non-zero frequencies given by:

k kB / ( )β µ0
22 1= +

k kQ±
±

±

= − + +
−

/
( )

( )

( )

( )

/

/

/

/β
µ δ µ

µ δ0

2 1 3

1 3

1 3 2

2 1 3

1

3 2

2 1 3

1

k kL /
( ) ( )

( )

( )( )

( )

/

/ / /β
µ δ µ

µ δ0

2 1 3

1 3

2

2 3 2 1 3

1 1 3

6 2

1 3 1 3

2 1
= − − − − + −

−
±

±

i i

(4)

Here, δ
α± ≡ ± + −











3 2 1
1

27
11 3

1 2 1 3

( ) /
/ /

Γ i

Γ ∆ ∆≡ ′xy k x0 0 0
2/( )β ; α=Γ2(1-µ2)2/(1+3µ2)3; and µ β

2 21≡ − k ksc0
2

0/ .
Here kB is the frequency of the breathing mode, unaltered in form by the beam; kQ+ and kQ-  are
the quadrupole modes, now split into two modes as a result of the rotation; and kL  is the
frequency of the low frequency mode, a new mode present only with rotation.  Eq. (4) lists
positive roots; the negatives of these roots are also solutions (see fig. 1).



Figure 1. Mode frequency vs. tune depression for Γ=0.1. For α < ≅1 27 0 037/ .  all modes are real.

One can express eq. (4) such that the real parts of the quadrupole  and low frequency modes
are explicit, and are expressed relative to the quadrupole frequency in the absence of rotation

k kQ0 0
21 3≡ +β µ :

k kL Q/ ( / )( cos )0 2 3 1= − θ  and

k kQ Q± = + ±/ ( / )( ( / ) cos ( / )sin )0 2 3 1 1 2 3 2θ θ

where θ α α
α

=
−

−








−1

3

6 3 1 27

1 54
1tan

( )
.

Thus k kL Q/ 0  and k kQ Q± / 0 are functions of the single parameter  α which we plot in figure 2.

The breathing eigenmode is unaltered by rotation with the perturbation in ∆x2 in phase with

the motion in ∆y2, and with the four perturbations to the cross moments zero.  Remarkably, all
of the other modes, maintain a constant ellipticity during a complete cycle of the perturbation.

(It was found by numerically integrating eqs. (2) that the values of ∆xb
2 and ∆yb

2 were constant
over z for an initial condition which initiated the beam in a pure kQ+, kQ-, or kL mode.) The
ellipse rotates at the frequency of the mode.  This would seem to contradict the behavior of the
known quadrupolar  mode with zero rotation in which the ellipticity changes over the cycle of
the perturbation.  However, the contradiction is resolved when it is noted that at zero angular
momentum the kQ+ mode and kQ- mode have the same frequency kQ0, with the result that a
normal quadrupole mode can be formed by the summation of a clockwise and
counterclockwise propagating perturbation.

µ

k
/k

β0



Figure 2.  Frequency (in units of kQ0) of quadrupole and low frequency modes vs. parameter α
(see text). (Solid is real, dashed is imaginary).  Note for α > 1/27 the low frequency quadrupole
and low frequency merge, and an unstable mode appears.

Figure 2 indicates that for large Γ the modes become unstable. In the model in this paper, ∆xy′0
is an independent quantity. However, when the distribution function which underlies the
model is considered, limits can be placed on ∆xy′0  relative to ∆x0

2 .  In particular, for a rigidly
rotating equilibrium, a particle transverse velocity (angle) satisfies ′ = − + ′x v y xz( / )ω δ , and

′ = + ′y v x yz( / )ω δ , where ω is the angular frequency  of the beam, vz is the longitudinal velocity,
and δ ′x  and δ ′y are the particular transverse angles of the particle.  With this ansatz, the

quantity Γ = ω/(kβ0 vz)- x yδ ′ =ω/(kβ0 vz), if x yδ ′ =0, i.e. Γ is the ratio of the rigid body rotation

frequency to the betatron frequency. The equilibrium value of ∆ ′x0
2 =µ2kβ0

2 ∆x0
2 , but for rigid

rotation ∆ ′x0
2 =Γ2kβ0

2 ∆x0
2 + δ ′x 2 , (again assuming that the correlations y xδ ′ = x yδ ′ =0), and hence

Γ ≤ µ , for a self-consistent equilibrium undergoing rigid rotation.  For Γ ≤ µ , we find that all
modes are stable.  The model equation (eq. 2) may be integrated for arbitrary values of

Γ, however, including those with unstable modes.  The question of whether equilibria exist

with Γ > µ (for example with non-uniform rotation) is still open.

6 ALTERNATING GRADIENT MODES
When a beam that is matched to an alternating gradient focusing system is given an arbitrary
perturbation including a finite l0 it will oscillate under the normal modes of that system. We
have given a general perturabation to such a system by numerically integrating eq. 2, and
examined the Fourier components of the resulting perturbation. We plot the Fourier spectrum
if figure 3.

α



Figure 3. Fourier decomposition of modes for an initially mismatched beam in an alternating

gradient lattice (with µ=0.030, and Γ=0.032) Frequencies shown relative to kβ0.

As can be seen, spectral lines exist at the mode frequencies for a uniform beam and also

approximately at the fundamental lattice frequency kLat= π/L (where L is the half-lattice period
of the alternating gradient lattice) and integer multiples of this frequency, plus and minus the
frequency of the four modes discussed in the uniform focusing case. Here ∆xy′0  and ∆x0

2  are

averaged over a lattice period to calculate Γ. We thus expect that the rotational modes will
appear in an “average” sense  in less idealized systems.

7  CONCLUSIONS
This work has shown the existence of additional low order “envelope” modes in beams that
acquire finite angular momentum through, for example, the presence of skew quadrupole
errors or longitudinal magnetic fields.  The presence of these beam modes provide additional
possibilities for particle/envelope resonances and possible halo formation, and should be
considered  in the context of general beam mismatches.
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