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In order to remove a little of the mysticism surrounding the issue of strangeness in
the nucleon, we present simple, physically transparent estimates of both the strange
magnetic moment and charge radius of the proton. Although simple, the estimates
are in quite good agreement with sophisticated calculations using the latest input
from lattice QCD. We further explore the possible size of systematic uncertainties
associated with charge symmetry violation (CSV) in the recent precise determi-
nation of the strange magnetic moment of the proton. We find that CSV acts to
increase the error estimate by 0.003 µN such that GsM = −0.046 ± 0.022 µN .

1. Introduction

The tremendous amount of experience that has been gained over the last

6 years, by studying the chiral extrapolation of lattice QCD data as a

function of quark (or pion) mass, has led to very important insights into

hadron structure. The two major lessons learned are that:

• The contribution of pion loops to hadron properties decreases very

fast as the pion mass increases, becoming small and slowly varying

for pion masses above about 500 MeV 1,2,3. As a corollary, it follows

that the effect of kaon loops is always relatively small4 – an issue

we shall return to soon in the context of strangeness form factors.

• Once the pion mass is of the order of 500 MeV or higher, all hadron

properties are smooth, slowly varying and essentially behave like

1
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the constituent quark model. The corollary to this is that if one

wishes to build a constituent quark model of hadron structure, this

is the mass region where it has a chance to work5 – far from the

region of rapidly varying non-analytic behaviour associated with

pions near the chiral limit.

The second lesson is of particular relevance to the understanding of duality,

because in this mass region (mπ > 500 MeV) the reconstruction of the

valence parton distribution functions (PDFs) shows that each valence quark

does indeed have a most likely momentum fraction around 1/3 6, precisely

as one would expect in a naive constituent quark picture.

One of the remarkable things that became obvious from the beginning of

these studies is the fact that the relatively naive cloudy bag model8,9 (CBM)

did an astonishingly good job of describing the mass dependence of nucleon

properties, whether it be the mass7, magnetic moments3 or moments of

the PDFs6. This does not mean that the CBM is ideal, we see from the

comparison against GEn
10,11, in particular, that the sharp surface of the

MIT bag, upon which the CBM was built, is not such a good description

of the valence quark structure, especially in the surface region12. However,

what does seem to really describe the way hadron structure works is that

there is a perturbative pion cloud around a core of confined valence quarks,

confined in a region whose vacuum structure (the bag itself) differs from

that of the QCD ground state.

The recent discovery that the chiral quark soliton model also yields

the correct dependence of mN on mπ
13 (apart from the incorrect chiral

coefficient associated with the hedgehog approximation) is consistent with

this interpretation, since even though one has to work extremely hard to

construct the change in the vacuum structure inside the nucleon at the

microscopic level, in the end it looks like a system of bound valence quarks

surrounded by a perturbative pion cloud. The consequences of the change

in vacuum structure inside the hadron, in terms of a contribution to d̄ 6= ū

and ∆ū 6= ∆d̄ are in fact similar in both models14,15.

Further support for this idea comes from a remarkable discovery con-

cerning the lattice QCD data for the nucleon and the ∆ in both quenched

(QQCD) and full QCD (QCD). In fact, one can describe the data with

a simple fitting function, α + β m2
π plus the pion self-energy loops which

give rise to the leading (LNA) and next-to-leading non-analytic (NLNA)

behaviour, evaluated using a finite range regulator of dipole form (with

common mass parameter Λ = 0.8 GeV). The important discovery is that
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α and β (for a given baryon) are the same within the fitting errors (a few

percent) in QQCD and QCD2. This is the case even though for the ∆ the

self-energies differ by a factor of two, with the N-∆ splitting being of order

500 MeV in QQCD and only 300 MeV in full QCD. It seems that the “core”

or valence structure of these key baryons, defined by the particular value of

Λ = 0.8 GeV, is essentially the same in QQCD and QCD. The implications

of this for modeling hadron structure are yet to be fully investigated but

once again a simple, perturbative treatment of the pion cloud contributions

works exceptionally well.

One of the most impressive recent achievements of the chiral extrapo-

lation program has been the determination of an extremely precise value

for the strangeness magnetic moment, GsM
16. This calculation used a

combination of experimental data for the octet magnetic moments, the

constraints of charge symmetry and chiral extrapolation of state of the

art lattice data to obtain the ratios of the magnetic moments of either

a valence u quark in the proton and Σ+ or the valence u quark in the

neutron and the Ξ0. By reducing the demands on lattice QCD to mere ra-

tios, it is possible to dramatically reduce the systematic errors. The result,

namely GsM = −0.046±0.019µN is an order of magnitude more precise than

any current experiment 17,18,19,20,21 – a unique example in modern hadron

physics. A similar analysis for the strangeness electric form factor, GsE , has

not yet been possible, essentially because the experimental knowledge of

octet baryon charge radii is nowhere near as precise as the knowledge of

magnetic moments. However, our main purpose, to which we turn in the

next section, is to use what we have learnt so far about hadron structure

to make a “back of the envelope” estimate of both the strangeness electric

and magnetic form factors. Then in the following section, we provide an

estimate of the systematic uncertainty associated with charge symmetry

violation in the recent precise determination of the strangeness magnetic

moment of the nucleon16.

2. Simple Model of the Strangeness Form Factors of the

Proton

We note first that there is no known example where the current quark

masses show up in hadron physics undressed by non-perturbative glue.

Thus the cost to make an s− s̄ pair in the proton is of order 1.0 to 1.1 GeV

(twice the strange constituent quark mass). On the other hand, creating

the s̄ in a kaon and the s in a Λ costs only 0.65 GeV. (Note that the N to
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KΣ coupling is considerably smaller than that for N to KΛ and hence in

this simple discussion we ignore it.) On these grounds alone we expect the

virtual transition N to KΛ to dominate the production of strangeness in

the proton.

Next we estimate the probability for finding the KΛ configuration. This

probability is inversely proportional to the excitation energy squared. We

work by comparison with the N π component of the nucleon wave function,

for which there is a vast body of evidence that it is about 20% 22. Naively

the transition N to N π costs 140 MeV, but with additional kinetic energy

this is around 600 MeV in total. Including similar kinetic energy for the

KΛ component as well, it costs roughly twice as much as N π. Thus the

KΛ probability is of order 5%.

2.1. Strangeness radius

We consider first the strangeness radius of the proton based on this 5% KΛ

probability. In the CBM the radius of a Λ bag is about 1 fm, which yields a

mean square radius for the strange quark around 0.5 fm2. As an estimate of

the range of variation possible, we also take the bag radius R = 0.8 fm with

a corresponding mean square radius close to 0.36 fm2. In order to estimate

the contribution from the kaon cloud, we need to realize that in almost

any chiral quark model the peak in the Goldstone boson wave function is

at the confinement (bag) radius12,24. As long ago as 1980 this generated

enormous interest in the precise measurement of GnE
23. The meson field

then decreases with a range between one over the energy cost of the Fock

state and 1/(mK +mΛ −mN ). Thus for R = 0.8 fm we get a mean square

radius for the s̄ distribution of order 1 fm2, while for R = 1 fm we get

about 1.4 fm2. Weighting the s by −1/3 and s̄ by +1/3, we find that the

mean square charge radius of strange quarks is between (−0.36+1.0)/3 and

(−0.5 + 1.4)/3, that is in the range (0.21,0.30) fm2, times the probability

for finding the KΛ configuration.

To calculate GsE at Q2 = 0.1 GeV2 = 2.5 fm−2, we assume that the term

−Q2 < r2 > /6 dominates and finally multiply by −3 to agree with the

usual convention of removing the strange quark charge. This yields GsE ∈
(+0.01,+0.02). It is definitely small and definitely positive for the very

clear physical reasons that the KΛ probability is small and that the kaon

cloud extends outside the Λ. A comparison with the currently preferred fit

to the existing world data20 reveals that this estimate is in agreement at

the 1 σ level, although it is nominally of opposite sign.
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2.2. Strangeness magnetic moment

Because orbital angular momentum is quantized, the contribution to the

magnetic moment from the s̄ in the kaon cloud is much less model depen-

dent. The Clebsch-Gordon coefficients show that in a spin-up proton the

probability of a spin down (up) Λ, accompanied by a kaon with orbital

angular momentum +1 (0), is 2/3 (1/3). We also know the magnetic mo-

ment of the Λ and that it is dominated by the magnetic moment of the

s quark. Hence the total strangeness magnetic moment of the proton is

−3× PKΛ × 2/3× (+0.6 + 1/3)− 3× PKΛ × 1/3× (−0.6 + 0), where the

terms in brackets are, respectively, the magnetic moment of the spin down

(up) Λ and the magnetic moment of the charge +1/3 s̄ quark with one

unit (or zero units) of orbital angular momentum. The nett result, namely

GsM = −0.063 µN , is reasonably close to the best lattice QCD estimate

noted above, that is GsM = −0.046± 0.019µN . From the point of view of

this “back of the envelope” estimate, the lattice result clearly has both a

natural magnitude and sign. It is very hard to see how the result could

change much in either magnitude or sign unless the physical picture pre-

sented here is totally incorrect. Given the remarks concerning our present

understanding of hadron structure based on experience with the study of

chiral extrapolation and lattice QCD data, this seems unlikely.

3. Impact of Charge Symmetry Violation on G
��

In the spirit of Refs. 25,26, we use p, n, up etc., to denote the magnetic

moment of that baryon or, in the case of a quark, to denote the valence

quark sector contribution of that flavor to that baryon if that quark had

unit charge. A valence quark sector contribution is depicted in the left-

hand diagram of Fig. 1. We also denote the total contribution of u, d and

s quarks in a “disconnected loop” in baryon B, depicted in the right-hand

diagram of Fig. 1, as OB . By determining Op, the strangeness magnetic

moment of the proton can be obtained by calculating the ratio of strange

to non-strange loop contributions.

The magnetic moments of the octet baryons satisfy:

p = eu u
p + ed d

p +Op ; n = ed d
n + eu u

n +On ,

Σ+ = eu u
Σ+

+ es s
Σ+

+OΣ+ ; Σ− = ed d
Σ− + es s

Σ− +OΣ− ,

Ξ0 = es s
Ξ0

+ eu u
Ξ0

+OΞ0 ; Ξ− = es s
Ξ− + ed u

Ξ− +OΞ− .

(1)

Having removed the charge factors from the valence quark contributions to
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Figure 1. Diagrams illustrating the two topologically different insertions of the current
within the framework of lattice QCD. In full QCD these diagrams are dressed with an
arbitrary number of gluons and additional quark loops.

baryon magnetic moments, it is usually at this point that charge symmetry

is invoked to provide equivalence between the doubly-represented u-quark

sector of the proton up and the doubly-represented d-quark sector of the

neutron, dn. Similarly, uΣ+

is taken to be equal to dΣ− , and uΞ0

is taken to

be equal to dΞ− . However, current quark mass differences of a few MeV and

electromagnetic effects will act to violate these equalities. In these cases,

charge symmetry violation (CSV) in the quark flavor being probed by the

electromagnetic current is directly related to the differences observed in

baryon properties.

However, indirect environmental effects are also induced through CSV.

For example, even though it is the same strange quark that appears in Σ+

and Σ−, its contributions to the baryon moment will differ due to subtle

differences in the environment of the strange quark. Similar environmental

effects will provide subtle violations of sΞ0

= sΞ− , Op = On, OΣ+ = OΣ−

and OΞ0 = OΞ− .

Introducing ∆B to denote the contribution to the magnetic moment of

baryon B having its origin in CSV, Eqs. (1) take the exact forms

p = eu u
p + ed d

p +Op ; n = ed u
p + eu d

p +Op −∆n ,

Σ+ = eu u
Σ+

+ es s
Σ+

+OΣ+ ; Σ− = ed u
Σ+

+ es s
Σ+

+OΣ+ −∆Σ− ,

Ξ0 = es s
Ξ0

+ eu u
Ξ0

+OΞ0 ; Ξ− = es s
Ξ0

+ ed u
Ξ0

+OΞ0 −∆Ξ− .

(2)

While we have elected to write the right-hand expressions of Eqs. (2) in

terms of quantities in the left-hand expressions and ∆B , we note that one

could have done the opposite and this will be important in quantifying ∆B .

The total sea-quark loop contribution to the proton magnetic moment,

Op, includes sea-quark-loop contributions from u, d and s quarks (right-
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hand side of Fig. 1). By definition

Op =
2

3
`GuM −

1

3
`GdM −

1

3
`GsM , (3)

=
1

3
`GdM −

1

3
`GsM −

2

3
∆loop , (4)

where we have introduced

`GuM = `GdM −∆loop , (5)

with ∆loop accounting for differences in the u and d sea-quark loop contri-

butions to the proton due to direct CSV.

Introducing, in the usual fashion, the ratio of s- to d-quark loop contri-

butions, `Rsd ≡ `GsM/
`GdM , Eq. (4) provides

Op =
`GsM

3

(
1− `Rsd
`Rsd

)
− 2

3
∆loop , (6)

The established approach16 centres around two equations for the
strangeness magnetic moment of the nucleon, GsM , obtained from linear
combinations of the above. Including the ∆B terms to account for CSV,
one has the exact relations

GsM =

�
`Rsd

1 − `Rsd ��� 2p+ 2∆loop + n + ∆n − up

uΣ � Σ+ − Σ− −∆Σ− �	� , (7)

GsM =

�
`Rsd

1− `Rsd � � p+ 2∆loop + 2n + 2∆n − un

uΞ � Ξ0 − Ξ− −∆Ξ− � � . (8)

The ratios up/uΣ and un/uΞ are ratios of valence-quark contributions to

baryon magnetic moments in full QCD as depicted in the left-hand diagram

of Fig. 1. The latter are determined by lattice QCD calculations and finite

range regularization effective field theory techniques16 with the results

up

uΣ
= 1.092± 0.030 and

un

uΞ
= 1.254± 0.124 . (9)

The ratio of s- and d-quark sea-quark loop contributions, `Rsd ≡ GsM/`GdM ,

has been estimated conservatively16,28 as 0.139± 0.042.

Tests of CSV suggest that it is typically smaller than a 1% effect in

baryon properties. The structure of Eqs. (7) and (8) suggests that a good

estimate of the systematic uncertainty in GsM would be provided by taking

the CSV terms ∆B to represent uncertainties with a magnitude of 1% of

the associated baryon moment.

As discussed following Eqs. (2), the CSV corrections ∆Σ− , and ∆Ξ−

could equally well have been represented on the left-hand expressions of
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Eqs. (2) as ∆Σ+ , and ∆Ξ0 . Hence we will replace ∆Σ− , and ∆Ξ− in Eqs. (7)

and (8) with ∆Σ, and ∆Ξ representing the average 1% uncertainties of the

hyperon charge states. Our focus on Op for strangeness in the proton, does

not allow a similar symmetry for the nucleon.

Since the underlying mechanisms giving rise to CSV, as represented by

∆B , are different for each baryon, the uncertainties are accumulated in

quadrature. Focusing on Eq. (8) where the error is largest, this provides

a CSV uncertainty of 0.011 µN to GsM . Given the already large error on

GsM = −0.046± 0.019 µN associated with statistical, scale determination,

chiral correction and `Rsd uncertainties28, this additional CSV uncertainty

has only a small effect on the final error estimate. Adding the CSV uncer-

tainty in quadrature provides a total uncertainty of 0.022 µN .

4. Concluding Remarks

In the light of recent insights into hadron structure based on lattice QCD

and the associated work on chiral extrapolation using a finite range regula-

tor, we have explained how to quickly and easily estimate the strangeness

electric and magnetic form factors of the proton. The resulting ranges,

GsE(0.1GeV2) ∈ (+0.01,+0.02) and GsM = −0.063µN are relatively small,

certainly challenging for our experimental colleagues, but consistent within

95% CL with current world data. The latter is also in remarkable agreement

with the recent determination based on lattice QCD.

We also explored the size of systematic uncertainties associated with

charge symmetry violation in the recent precise determination of the strange

magnetic moment of the proton16. We find CSV acts to increase the error

estimate by 0.003 µN such that GsM = −0.046 ± 0.022 µN . Hence even

accounting for CSV in the approach, one still has a two-sigma signal for

the sign of the strange magnetic moment of the proton.

In conclusion, this is a crucial point in the history of the study of hadron

structure. For the first time we have useful guidance from non-perturbative

QCD using the methods of lattice QCD and chiral extrapolation. These

rigorous calculations can be given life through the sort of simple physical

model described here, which nevertheless permits semi-quantitative calcula-

tion. At the same time we have new experimental capabilities to accurately

measure the role of non-valence quarks in static properties which can be

used to test our new found theoretical advances.
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