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Abstract. Raman forward scattering of a high-intensity, short-duration, frequency-chirped laser
pulse propagating in an underdense plasma is examined. The growth of the direct forward scattered
light is calculated for a laser pulse with a linear frequency chirp in various spatiotemporal regimes.
This includes a previously undescribed regime of strongly-coupled four-wave nonresonant interac-
tion, which is important for relativistic laser intensities. In all regimes of forward scattering, it is
shown that the growth rate increases (decreases) for positive (negative) frequency chirp. The effect
of chirp on the growth rate is relatively minor, i.e., a few percent chirp yields few percent changes
in the growth rates. Relation of these results to recent experiments is discussed.

1. INTRODUCTION

High-intensity short-pulse laser-plasma interactions are of much current interest because
of their application to laser-plasma accelerators [1], laser-plasma-based harmonic gen-
eration [2], x-ray lasers [3], and laser-driven inertial confinement fusion schemes [4]. A
basic phenomenon in laser-plasma interactions is Raman scattering. The Raman scatter-
ing instability [5] is the resonant decay in a plasma of incident light, with frequency and
wave number(ω0,k0), into a plasma wave(ω,k) and scattered light(ω0±ω,k0± k).
Physically, the Raman instability occurs due to the beating of the incident and scattered
light, producing a ponderomotive force which generates a plasma density modulation at
or near the plasma frequencyωp, whereωp = (4πe2n0/m)1/2 with n0 the equilibrium
electron plasma density. The plasma density (index of refraction) modulation causes
modulation of the incident laser pulse, resulting in additional scattering, thereby pro-
ducing an instability. The transmission of laser light through a plasma, and the coupling
of the laser energy to a plasma, can be greatly affected by Raman scattering, which
consequently can have a large impact on various applications.

For example, Raman scattering in the forward direction (i.e., the scattered light is
co-propagating with the incident light) can be used to drive the self-modulated laser
wakefield accelerator (for a review see Ref. [1]), in which a long (compared to the plasma
wavelength) laser pulse becomes modulated and produces a large amplitude plasma
wave with phase velocity near the speed of lightvϕ = ω/k ' c. This plasma wave,
with 10-100 GeV/m accelerating gradients having been demonstrated using present
laser technology, can be used to accelerate charged particles to high energies [6, 7, 8,
9]. In laser fusion applications, such as the fast-ignitor [4], the excitation of Raman
instabilities can yield poor coupling of the laser to the energetic electrons. The use of



finite-bandwidth laser pulses has been considered for enhancement or suppression of
Ramaninstabilities [10, 11], and therefore as a means to control Raman scattering in
these applications.

Several ultra-intense laser facilities around the world have been investigating the ef-
fect of frequency-chirped (i.e., frequency correlated to longitudinal position within the
pulse) laser pulses propagating in an underdense plasma [12, 13, 14]. Experimental ev-
idence by Faureet al. [12] has shown that the growth of the Raman instabilities is in-
dependent of the frequency chirp. Other experiments by Yauet al. [13] have reported
enhanced efficiency of the Raman forward scattering instability for positively-chirped
laser pulses, and recent experiments by Leemanset al. [14] reported frequency chirp in-
duced asymmetries in the self-modulated laser wakefield electron yield. In addition, two-
dimensional particle-in-cell (PIC) computer simulations presented in Ref. [15] claim en-
hancement of Raman forward scattering instabilities for positively-chirped laser pulses,
however, these simulations assumed a large bandwidth (20%), an order of magnitude
beyond that used in present-day experiments [12, 13, 14].

In this paper, we analyze the Raman forward scattering (RFS) of a short frequency-
chirped laser pulse of relativistic-intensity propagating in an underdense plasma, and
calculate the effect of a correlated frequency chirp on the growth of the Raman instability
using the coupled relativistic Maxwell-fluid equations. In Sec. 2, we review the basic
Maxwell-fluid equations for the study of laser propagation in an underdense plasma
used in the instability analysis. In Sec. 3, the spatiotemporal growth of the plasma wave
generated by RFS is calculated for a laser pulse with a linear frequency chirp in various
spatiotemporal regimes. This includes a previously undescribed strongly-coupled four-
wave nonresonant regime, which is important for relativistic laser intensities. It is shown
that the growth rate increases (decreases) for positive (negative) chirp in all regimes
of the RFS instability. The RFS growth rates are summarized in Sec. 3.6. In Sec. 3.7
we examine the asymmetry between plasma wave generation using a laser pulse with
positive and negative frequency chirp. It is shown that the effect of chirp on the growth
rate is relatively minor, i.e., a few percent chirp yields few percent changes in the growth
rates. Section 4 presents a summary of the results, and discusses their relation to recent
experiments.

2. BASIC FORMULATION AND ASSUMPTIONS

A one-dimensional (1D) model of the laser-plasma interaction is considered. The 1D
model will be valid providedrs� λp, wherers is the laser spot size andλp is the plasma
wavelength. The plasma wavelength is defined asλ 2

p = π/(n0re), wherere = e2/(mc2)
is the classical electron radius. The 1D fields associated with the pump laser, scattered
light, and plasma response can be described by the transverse vector and the scalar
potentials. In the Coulomb gauge, the Maxwell equations for the fields can be expressed



in 1D as [
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wherekp = 2π/λp, anda andφ are the transverse vector and scalar potentials respec-
tively normalized tomc2/e. Note that in the 1D approximation, conservation of trans-
verse canonical momentum yieldsγβ⊥ = a for an initially quiescent plasma, where
γ = (1− β 2

z − β 2
⊥)−1/2 is the relativistic Lorentz factor, andβz and β⊥ are the elec-

tron longitudinal and transverse fluid velocities respectively normalized to the speed of
light.

A cold-fluid model of the neutral plasma is assumed. Thermal effects may be ignored
when the quiver velocity is much greater than the electron thermal velocity and the
thermal energy spread is sufficiently small such that electron trapping in the plasma
does not take place. The ions are also assumed to be stationary, which is typically the
case for short-pulse (<1 ps) laser interactions in underdense plasmas. The cold fluid
equations can be expressed in 1D as
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wheren is the plasma number density.
It is convenient to work in the comoving variableζ = z− ct and transform from the

variables(z,t) to (ζ = z− ct,τ = ct). We will assume that the head of the right-going
laser pulse is initially atζ = 0 and the body of the laser pulse extends into the region
ζ ≤ 0, while the plasma is unperturbed in the regionζ > 0. To study the growth of
Raman instabilities, consider a density perturbationδn = n/n0−1, which results from
the scattering of a large-amplitude pump laser pulseapump into daughter wavesascat,
such that|apump| � |ascat|. Linearizing about the perturbationsδn andascat, Eqs. (1) -
(4) can be combined to yield, in comoving variables(ζ ,τ),[(
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whereγ2
⊥0 = 1+a2

pump.
We model the pump and scattered laser pulse normalized transverse vector potentials

(linear polarization is assumed) as

a = apump+ascat=
a0

2
eiϕ0 +∑

±

a±
2

eiϕ± +c.c., (7)



where a0 is the pump amplitude, anda± are the slowly-varying envelopes of the
Stokes (down-shifted) and anti-Stokes (up-shifted) scattered light waves. We will as-
sume|a0| � |a±| and a0 is a nonevolving envelope (i.e., pump depletion effects are
neglected). To lowest-order,a2 ' a2

pump = a2
0/2. The temporal and spatial deriva-

tives of the phase determine the local values of the pulse frequency and wave num-
ber: ωi = −∂ϕi/∂ t and ki = ∂ϕi/∂z. The plasma density perturbation is modeled as
δn = (n̂/2)exp(iϕp)+ c.c., where ˆn is the slowly-varying envelope of the plasma den-
sity perturbation andϕp = kz−ωt. The resonance condition for 1D Raman scattering
requiresϕ± = ϕ0±ϕp.

The effect of a finite-bandwidth on parametric instabilities, such as the Raman insta-
bility, has been extensively studied [10, 11] for the case of an uncorrelated, or random,
frequency bandwidth. In this work, we examine the effect of a correlated frequency chirp
on the Raman instability growth rates. Note that, if we consider a linear frequency chirp
ϕ0 = k0ζ + εζ 2 on a pump laser pulse with constant root-mean square (rms) frequency
bandwidthσk and a Gaussian intensity distributiona0 = â0exp[−ζ 2/(4σ2

z )], whereσz
is the rms pulse length of the laser intensity, then the linear chirp will be given byε =
{[σk/(2σz)]2− (2σz)−4}1/2. Therefore the full-width-half-maximum (FWHM) relative
chirp over the Gaussian pulse is∆ke/k0 = 2εL/k0 =

√
2ln2[(k0σ0)

−2− (k0σz)−2]1/2,
whereσ0 is the Fourier transform-limited pulse length. To isolate the effect of a corre-
lated frequency chirp we will consider laser pulses such thatkpσz� 1, whereσz is the
root-mean square (rms) pulse length of the laser intensity, and the laser pulse intensity
is approximately uniform within the pulse. We will also focus our analysis on analytic
solutions describing the Raman instability with the conditionk2

p/(k2
0γ⊥0)� 1, i.e., laser

propagation in an underdense plasma with group velocity of the laser approximately the
speed of light.

3. RAMAN FORWARD SCATTERING

In RFS, the scattered waves, which are referred to as the Stokes (down-shifted,k0−
k) and anti-Stokes (up-shifted,k0 + k) waves, propagate in the same direction as the
pump laser pulsek± ∼ k0 � k ∼ kp. To solve Eqs. (5) and (6) for the growth of
the RFS instability, it is convenient to defineχ = (a∗0a+ + a0a∗−)/(2γ⊥0)− γ⊥0n̂. In
the quasi-static approximation [16],χ is simply the amplitude of the plasma wave
potential perturbationδφ = φ − φ0 = (χ/2)exp(kz−ωt) + c.c., whereφ0 = γ⊥0− 1
is the quasi-static equilibrium potential. Using the eikonal (slowly-varying amplitude)
approximation|∂τ χ| � |kχ| and|∂τa±| � |ka±|, Eq. (5) reduces to(

∂ 2

∂ζ 2 +2ik
∂

∂ζ

)
χ =

k2

2γ⊥0

[
a∗0a+ +a0a∗−

]
, (8)

wherek2 = k2
p/γ⊥0 is the relativistic plasma wave number. With the eikonal approxima-

tion |∂
ζ
a±| � |k±a±|, the evolution equations for the daughter waves Eq. (6) reduces



to [
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whereD± = ω2
±/c2−k2

±−k2
p/γ⊥0 is the dispersion relation for each daughter wave. If

the Stokes wave is assumed to be resonantD− = 0, then|D+/k2
0| ' 2k4

p/(γ2
⊥0k4

0)� 1.
For definiteness, in this work we will consider a pump laser pulse with a flat-top

distribution such thata0(ζ ) = a0 for ζ ∈ [−L,0] (i.e., the head of the pulse is located at
ζ = 0 and the tail of the pulse atζ =−L), and a linear chirp on the pump laser pulseϕ0 =
k0ζ +(∆ke/2)ζ (1+ζ/L). The local wave number isk0l = ∂

ζ
ϕ0 = k0+∆ke(ζ/L+1/2),

such thatk0 is the central wave number and∆e≡ ∆ke/k0 is the relative chirp over the
FWHM pump laser pulse length. By assuming this form of the pump laser pulse, we
are neglecting pump dispersion effects. This is justified since the growth length of the
Raman instabilities is typically much shorter than the characteristic length for dispersive
broadeningZD = k3

0L2/(2k2
p) [17], i.e.,kpZD = (kpL)2(k0/kp)3/2�

√
8γ2
⊥0(k0/kp)/|a0|

for a0 ∼ 1, k0/kp � 1, andkpL ∼ 1 (considering the rate at which a single modulation
of length∼ λp disperses).

Several regimes of RFS can be identified [18, 19, 20], and, as the instability grows, it
passes through these various regimes depending on the value of|ζ |/τ and the intensity
of the incident laser pulsea0. Past analytical analysis on Raman instabilities [18, 19, 20]
has primarily focused on nonrelativistic laser-plasma interactions wherea0� 1. In this
work we perform a relativistic analysis of the linear RFS spatiotemporal growth rates
including a correlated frequency chirp. We also show that, for relativistic intensities
a0 & 1, the RFS instability can enter a strongly-coupled regime where the growth rate of
the instability becomes larger than the plasma frequency.

3.1. Four-wave resonant regime

Consider the four-wave resonant interaction where both the Stokes and anti-Stokes
modesk0± kp are approximately resonant, and we will assumeD+ ' 0 andD− = 0.
We will also assume that we are in the weakly-coupled regime such that|∂

ζ
χ| � |kχ|.

Combining the envelope equations for plasma wave and scattered electromagnetic waves
Eqs. (8) - (10) yields

∂ 2χ

∂ζ ∂τ
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k4
pa∗0a0

16γ4
⊥0k
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)−1
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where
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p|a0|√
8γ2
⊥0kloc
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is the relativistic growth rate for the four-wave resonant RFS instability [21] at the local
wave number of the pump laserkloc(ζ ) = ∂

ζ
ϕ0. We will assume the initial condition

∂
ζ

χ(τ = 0,ζ ) = 0, i.e., the amplitude of the initial seed plasma wave perturbation is
constant throughout the pump laser pulse. Consider a source of noise at the head of
the pulseχ(τ,ζ = 0) = χ0H(τ), whereH is the Heaviside step function, i.e., the noise
source at the front of the pulse is constant since the laser pulse is moving into fresh
unperturbed plasma. The solution to Eq. (12) for the amplitude of the plasma wave
potential inside the laser pulse (for−L≤ ζ ≤ 0) is

χ(τ,ζ ) = χ0H(τ)I0
[
2Γ4eff

√
τ|ζ |

]
, (14)

whereI0 is the modified Bessel function of zeroth-order. Asymptoticallyk2
p|ζ |τ � 1,

the amplitude of the plasma wave grows exponentially. The effective growth rate of the
plasma wave due to the four-wave resonant RFS instability is a function of position
within the pump laser pulse:

Γ4eff(ζ ) = Γ4loc

[
1−∆e

|ζ |
L

(
1+

∆e

2

)−1
]1/2

. (15)

For a positivechirp (i.e.,∆e < 0, with red wavelengths at the head and blue wave-
lengths at the tail of the laser pulse), the RFS growth rate Eq. (15) isgreater than the
local growth rate throughout the laser pulse. Note that for the unchirped case,∆e = 0,
the effective growth rate reduces toΓ4eff = Γ4 = k2

p|a0|/(
√

8γ2
⊥0k0), the usual nonlinear

growth rate for the four-wave resonant RFS instability [21]. For example, at the cen-
ter of the pulse,Γ4eff(ζ = −L/2) = Γ4(1+ ∆e/2)−1/2, and the growth rate is changed
by only 2.4% due to a 10% chirp over the pump laser pulse (∆e = 0.1). For |∆e| � 1,
Γ4eff' Γ4[1− (∆e/2)(1−|ζ |/L)].

In deriving the four-wave resonant RFS growth rate it was assumed thatD− = 0
(i.e., the Stokes wave is resonant) andD+ ' 0. NeglectingD+ in Eq. (9) requires
|2k+a−1

+ ∂τa+| � |D+|. Therefore, the RFS instability will be in the four-wave resonant
regime provided|a0|2|ζ |/τ � 8(kp/k0)

4. For sufficiently long times, this condition
will no longer be satisfied, and the RFS instability will transition into the four-wave
nonresonant regime.

3.2. Four-wave nonresonant regime

In the weakly-coupled (|∂
ζ

χ| � |kχ|) four-wave nonresonant regime, Eqs. (8) - (10)
can be combined to yield(

∂ 3

∂ζ ∂τ2 +Γ2
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∂
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)
χ '−iΓ3

N

[
1+∆e

(
1
2

+
ζ

L

)]−4

χ , (16)

wherewe have kept the lowest-order term assuming|D+a+/(2k+∂τa+)| < 1. The rel-
ativistic temporal growth rate of the RFS in the four-wave nonresonant regime without



chirp is

ΓN =

(
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p|a0|2

16γ
11/2
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k4
0

)1/3

. (17)

We will assume that|Γ2
4∂τ χ| � |Γ3

Nχ| such that the RFS interaction has moved from
the four-wave resonant to the four-wave nonresonant regime and we may neglect the
second term on the left-hand side of Eq. (16). Assuming the additional initial condition
∂τ χ(τ = 0,ξ ) = 0, Eq. (16) can be solved asymptotically and has the solution

χ(τ,ζ )∼ χ0exp

[
3
4
(
√

3+ i)ΓNeff

(
2|ζ |τ2)1/3

]
, (18)

where the effective growth rate is
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For |∆e| � 1, the lowest-order correction to the growth rate due to chirp isΓNeff '
ΓN[1− (2∆e/3)(1−|ζ |/L)].

In deriving Eq. (18) it was assumed that|Γ2
4∂τ χ| � |Γ3

Nχ|. Using Eq. (18), this
condition reduces to|ζ |/τ � 2(γ⊥0/a2

0)(kp/k0)
2. Therefore, for sufficiently long times,

the RFS will transition from the four-wave resonant regime (|Γ2
4∂τ χ| � |Γ3

Nχ|) to the
four-wave nonresonant regime (|Γ2

4∂τ χ| � |Γ3
Nχ|). For longer times, the RFS instability

can transition, fora0 � 1, into the three-wave regime where the anti-Stokes wave can
be neglected, or, fora0 & 1, into the strongly-coupled four-wave nonresonant regime.

3.3. Three-wave regime

In the three wave regime, we assume that the anti-Stokes wave is sufficiently out of
resonance such that|D+a+| � |2k+∂τa+|. In this regime the anti-Stokes term may be
neglected, and Eqs. (8) and (10) can be combined to yield

∂ 2χ

∂ζ ∂τ
'−Γ2

3

[
1+∆e

(
1
2

+
ζ

L

)]−1

χ , (20)

where

Γ3 =
k3/2

p |a0|
4γ

7/4
⊥0

k1/2
0

(21)

is the relativistic temporal growth rate of the RFS instability in the three-wave regime
without chirp. The solution to Eq. (20) (for−L≤ ζ ≤ 0) is

χ(τ,ζ ) = χ0H(τ)I0
[
2Γ3eff

√
τ|ζ |

]
, (22)



where the effective growth rate of RFS in the three-wave regime is

Γ3eff = Γ3

{
L

ζ ∆e
ln

[
1+∆e

ζ

L

(
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2

)−1
]}1/2

. (23)

For |∆e| � 1, the lowest-order correction to the growth rate due to chirp isΓ3eff '
Γ3[1− (∆e/4)(1−|ζ |/L)].

In deriving Eq. (20), the anti-Stokes wave was neglected|D+a+| � |2k+∂τa+|.
Using Eq. (22) this condition for the three-wave RFS regime yields|ζ |/τ �
16/(a2

0γ
1/2
⊥0

)(kp/k0)
5. In addition, the weakly-coupled approximation|∂

ζ
χ| � |kχ|,

assumed in Secs. 3.1 - 3.3, will no longer be valid at long times for sufficiently intense
laser pulesa0 & 1. Assuming the perturbation grows in the resonant four-wave regime,
the weakly-coupled approximation implies|ζ |/τ � (kp/k0)

2a2
0/(γ3

⊥0). For intense
laser pulses at long times the RFS will violate this condition and transition into the
strongly-coupled regime.

3.4. Strongly-coupled four-wave nonresonant regime

In the strongly-coupled|∂
ζ

χ| � |kχ| four-wave nonresonant|Γ2
4∂τ χ| � |Γ3

Nχ|
regime, Eqs. (8) - (10) can be combined to yield

∂ 4χ
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N

[
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(
1
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+
ζ

L

)]−4

χ , (24)

for an flat-top pump laser pulse with a linear frequency chirp. The eikonal approximation
|∂τ χ| � |kχ| is still assumed since the RFS instability enters the strongly-coupled four-
wave nonresonant regime in the asymptotic limitkpτ � 1. The solution to Eq. (24) in
the asymptotic limit can be approximated as

χ ∼ χ0exp

[
25/4(kΓ3

N)1/4
τ

1/2
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L
∆e

)1/2
{[
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2

)−1
}1/2]

.

(25)
For small chirp|∆e| � 1, the RFS instability in the strongly-coupled four-wave nonres-
onant regime has the exponentiation|χ| ∼ |χ0|exp(N4sc), with

N4sc' 25/4(kΓ3
N

)1/4
(|ζ |τ)1/2

[
1− ∆e

2

(
1− |ζ |

L

)]
. (26)

The RFS instability will be in the strongly-coupled four-wave nonresonant regime
provided 16(kp/k0)

5/(a2
0γ

1/2
⊥0

) � |ζ |/τ � (kp/k0)
2a2

0/(8γ3
⊥0). This condition will be

violated for sufficiently large pump laser intensities and propagation times, and the RFS
instability will transition into the strongly-coupled three-wave regime.



3.5. Strongly-coupled three-wave regime

In the asymptotic limitkpτ � 1, the RFS instability will enter the strongly-coupled
three-wave regime. In the asymptotic strongly-coupled three-wave regime,|∂

ζ
χ| �

|kχ|, |∂τ χ|� |kχ|, and the anti-Stokes wave is no longer in resonance; therefore Eqs. (8)
- (10) can be combined to yield

∂ 3χ

∂ζ 2∂τ
'−2ikΓ2

3

[
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(
1
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+
ζ

L

)]−1

χ , (27)

for an flat-top pump laser pulse with a linear frequency chirp. The asymptotic solution
to Eq. (27) can be approximated as

χ ∼ χ0exp

[
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3− i)
(
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×
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−
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)]1/2
}2/3]

. (28)

For small chirp|∆e| � 1, the RFS instability in the strongly-coupled three-wave regime
has the exponentiation|χ| ∼ |χ0|exp(N3sc), with

N3sc'
33/2

22/3

(
kΓ2

3

)1/3(|ζ |2τ
)1/3

[
1− ∆e

6

(
1− |ζ |

L

)]
. (29)

3.6. Summary of RFS instability regimes

Table 1 summarizes the exponentiation [number of e-folds,χ ∝ exp(N)] of the RFS
instability for a laser pulse with linear frequency chirp (∂2

ζ
ϕ0 = ∆e/L), for |∆e| � 1,

in the regimes: four-wave resonant (N4), four-wave nonresonant (N4nr), three-wave (N3),
strongly-coupled four-wave nonresonant (N4sc), and strongly-coupled three-wave (N3sc).
In each regime the exponentiation is increased for positive chirp (red wavelengths at the
head of the pulse, blue wavelengths at the tail, such that∆e < 0).

Figure 1 shows schematically the regimes of the FRS instability in (a0,|ζ |/τ) pa-
rameter space fork0/kp = 10. Initially the instability is dominated by the four-wave
resonant mode (region 1 of Fig. 1). As the propagation time increases, the instabil-
ity transitions into the four-wave nonresonant regime (region 2 of Fig. 1). Note that
the instability always enters the four-wave nonresonant regime before moving into the
strongly-coupled regime. At later propagation times, the instability will transition into
the three-wave regime (region 3 of Fig. 1) for nonrelativistic interactionsa0� 1, or the
strongly-coupled four-wave nonresonant regime (region 4 of Fig. 1) for relativistic inter-
actions [a40/γ

5/2
⊥0

> 27(kp/k0)
3]. For sufficiently long times, provided the interaction has

not become nonlinear, the RFS instability will transition into the strongly-coupled three-
wave regime (region 5 of Fig. 1). We also note that, in the limit of no chirp∆e = 0 and



TABLE 1. Ramanforward scattering growth rates [number ofe-folds,χ ∝ exp(N)] in the four-
wave resonant (N4), four-wave nonresonant (N4nr), three-wave (N3), strongly-coupled four-wave
nonresonant (N4sc), and strongly-coupled three-wave (N3sc) regimes, including frequency chirp for
|∆e| � 1.
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for weakly relativistic laser intensitiesa0 < 1, the four-wave resonant, four-wave nonres-
onant, three-wave, and strongly-coupled three-wave regime growth rates reduce to es-
sentially those described previously [19, 20]. However, the strongly-coupled four-wave
nonresonant regime is a new regime of RFS, which has not been previously analyzed.
This new regime is only important for relativistic laser intensities.

In this work a 1D model was assumed. The 1D approximation will be valid if the
transverse Laplacian∇2

⊥ in the wave equation operator can be neglected compared to
the evolution operator for the scattered daughter waves 2k±∂τ [cf, the left-hand side
of Eq. (9)]. If we assume that the transverse gradient scales as the laser spot size
∇⊥ ∼ 1/rs, then the 1D limit|∇2

⊥a±| � |2k±∂τa±| is valid provided 1/(kprs)4 �
[a2

0/(2γ4
⊥0)]|ζ |/τ in the four-wave resonant regime. This condition can be rewritten as

1� (4/γ2
⊥0)[2(P/Pc)(kp/k0)(kp|ζ |)(ZR/τ)]1/2, whereZR = k0r2

s/2 is the laser Rayleigh
length andPc = k2

pa2
0r2

s/32 is the critical power for relativistic self-guiding. As may be
expected, for typical laser-plasma parameters (e.g.,P/Pc ∼ 1, k0/kp ∼ 10, andkpL ∼
10−100), the 1D model will no longer be valid for propagation distances longer than a
Rayleigh lengthτ > ZR.



0 0.5 1 1.5 2 2.5

0.0001

0.01

1 (1)

(2)

 (3)

(4)

(5)

FIGURE 1. Regimes of RFS instability [in parameter space (a0,|ζ |/τ) for k0/kp = 10]: (1) four-wave
resonant, (2) four-wave nonresonant, (3) three-wave, (4) strongly-coupled four-wave nonresonant, and (5)
strongly-coupled three-wave.

3.7. RFS chirp asymmetry

As Table 1 indicates, the spatiotemporal growth rate in all regimes of RFS is larger
for a positively-chirped (∆e < 0) than for a negatively-chirped (∆e > 0) laser pulse. We
may examine the asymmetry between laser pulses with positive and negative chirp by
considering the ratio of the energy in the RFS generated plasma wave for the chirped to
unchirped pump laser pulse

E (τ;∆e)
E (τ;0)

=
∫

L |χ(∆e)|2dζ∫
L |χ(0)|2dζ

. (30)

Figure2(a) shows the plasma wave energy excited in the four-wave resonant regime by
a laser pulse with a linear frequency chirp normalized to the unchirped excitation energy
Eq. (30) versus propagation timekpτ, for a0 = 1, k0/kp = 10 andkpL = 40. Figure
2(b) shows the ratio of the plasma wave energy excited by positive and negative chirped
pulsesE (−|∆e|)/E (|∆e|) versus chirp|∆e| after propagatingkpτ = 100, 200, and 300,
for a0 = 1, k0/kp = 10 andkpL = 40. Figure 2 illustrates the relatively small influence
of the frequency chirp on plasma wave generation. These results are also consistent with
recent experimental observations, as discussed in Sec. 4.

4. DISCUSSION AND SUMMARY

In this paper, we have presented a calculation of the spatiotemporal growth of the Raman
forward scattering instability produced by a frequency-chirped laser pulse propagating
in an underdense plasma using the relativistic Maxwell-fluid equations. It was shown
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FIGURE 2. (a) The plasma wave energy excited by a frequency chirped laser pulse normalized to the
unchirped excitation energy versus propagation timekpτ for several chirps∆e = -0.1, -0.05, 0, 0.05, and
0.1, witha0 = 1,k0/kp = 10 andkpL = 40. (b) The ratio of the plasma wave energy excited by positive and
negative chirped pulsesE (−|∆e|)/E (|∆e|) versus chirp|∆e| afterkpτ = 100, 200, and 300, witha0 = 1,
k0/kp = 10, andkpL = 40.

that a frequency chirp correlated to the longitudinal position within the laser pulse alters
the exponentiation of the RFS instability. Table 1 summarizes the RFS growth rates in
various regimes of the RFS instability. In particular, it was shown that positive chirped
pulses (red wavelengths at the head of the pulse and blue wavelengths at the tail of the
pulse) have a larger growth rate than negative chirped pulses (blue wavelengths at the
head and red wavelengths at the tail).

The RFS instability is initially seeded by plasma density fluctuations or pump laser
intensity fluctuations which contain Fourier components at the relativistic plasma fre-
quencyk = kp/γ

1/2
⊥0

. For example the seeding of the RFS may be generated by thermal
fluctuations in the plasma, ionization-induced plasma waves (owing to a time-varying



dielectric) [22, 23, 24], or ponderomotively-excited plasma waves (owing to the laser in-
tensitygradient) [25, 26]. Experiments often will use the same pump laser pulse which
undergoes self-modulation to create the plasma through ionization of a gas. Typically
photoionization will occur very early in the head of the laser pulse, where the laser
electric field becomes sufficiently intense such that the rate of ionization is maximum
[27]. This will create a plasma density front moving with the laser. The amplitude of
the ionization-induced plasma waves created by this ionization front will be approxi-
matelyχ0 ∼ a2

0(ζionz)/4, whereζionz is the location in the pump laser pulse where the
laser electric field is sufficiently intense to ionize the background gas. Note that the ion-
ization locationζionz is weakly dependent on the chirp. For typical laser experimental
parameters, the shift in the ionization location is less than a laser wavelengthζionz < λ0.
The amplitude of the ponderomotively-excited plasma waves scales asχ0∼ a2

0/(kpL)2,
where the gradient in the laser pulse intensity is∼ 1/L. For short laser pulses, the pon-
deromotively excited plasma wave will typically dominate other sources for seeding the
RFS instability.

Previous theoretical work by Dodd and Umstadter [15] on Raman scattering of a
chirped laser pulse used a heuristic calculation of the group velocity dispersion to
estimate the effect of a linear frequency chirp. Dodd and Umstadter claimed that, in the
nonrelativistic regime (a0 � 1), the amount of chirp necessary to completely eliminate
the Raman scattering instability is∆ω0 = (ω0/ωp)γR/2 whereγR = (ωp/

√
8)(ωp/ω0)a0

is the usual unchirped temporal growth rate. This predicts a complete elimination of
plasma wave generation through RFS by using a bandwidth of∆ω0/ω0 ' 1.8% for
the parametersa0 = 1 andω0/ωp = 10. Furthermore PIC simulations of Dodd and
Umstadter imply stabilization of RFS using a 20% bandwidth for the parametersa0 = 1
and ω0/ωp = 10. In contrast, the analytic solutions to the Maxwell-fluid equations
presented in Sec. 3 show only a modest change in the RFS growth rate. We find, for
a 20% negative chirp (∆e = 0.2), the growth rate in the four-wave resonant regime at the
center of the pulse is reduced by only 4.7% compared to the unchirped growth rate.

Recent experiments [12, 13] using long laser pulses (kpL� 1) with a frequency chirp
|∆e| ≈ 3% operating in the self-modulated laser wakefield regime have measured RFS
growth independent of the chirp. These experiments are consistent with the calcula-
tions presented in Sec. 3 where a 3% chirp produces little asymmetry [cf, Sec. 3.7].
Experiments operating in the regimekpL ∼ 1, i.e., the standard laser wakefield acceler-
ator regime, have reported asymmetry in the measured Stokes wave [13] and electron
yield [14]. We believe this asymmetry in the standard laser wakefield regime is due to
preferential seeding of the RFS instability by asymmetric pulse envelopes generated by
nonlinear contributions to the chirp in the laser compression system [14].

In conclusion, the spatiotemporal growth of the plasma wave generated by RFS
was calculated using the relativistic Maxwell-fluid equations for a laser pulse with a
linear frequency chirp in various regimes. It was shown that the growth rate of RFS
increases (decreases) for positive (negative) chirp. In addition, we have shown that a
linear frequency chirp with|∆e| � 1 produces only a small effect on the growth of the
RFS instabilities, and therefore will have only a minor effect on the enhancement or
suppression of Raman instabilities for laser-plasma applications.
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