
Work supported in part by US Department of Energy contract DE-AC02-76SF00515

SLAC-PUB-13273

DISTORTION OF CRABBED BUNCH DUE TO ELECTRON CLOUD AND
GLOBAL CRABBING

L. Wang, T. O. Raubenheimer and Y. Cai, SLAC, CA 94025, USA

ABSTRACT

Crab cavities may be used improve the luminosity in colliding beam colliders with crab crossing. In a global crab
crossing correction, only one crab cavity is installed in each ring and the crab cavities generate a horizontally titled
bunch oscillating around the ring. The electron cloud in positively charged rings may distort the crabbed bunch and
cause the luminosity drop. This paper briefly estimates the distortion of positron bunch due to the electron cloud with
global crab and estimates the effect in the KEKB and possible LHC upgrades.

Presented at the 11th European Particle Accelerator Conference, EPAC'08,
Genoa, Italy, from 23 to 27 June 2008.

July 2008



DISTORTION OF CRABBED BUNCH DUE TO ELECTRON CLOUD AND
GLOBAL CRABBING

L. Wang, T. O. Raubenheimer and Y. Cai, SLAC, CA 94025, USA

Abstract
Crab cavities may be used improve the luminosity in

colliding beam colliders with crab crossing. In a global
crab crossing correction, only one crab cavity is installed
in each ring and the crab cavities generate a horizontally
titled bunch oscillating around the ring. The electron
cloud in positively charged rings may distort the crabbed
bunch and cause the luminosity drop. This paper briefly
estimates the distortion of positron bunch due to the
electron cloud with global crab and estimates the effect in
the KEKB and possible LHC upgrades.

INTRODUCTION
A finite crossing angle can be used to ease the IR

design but it can cause beam instability and limit the
luminosity. As an example, KEKB has implemented a
global crab compensation using one crab cavity installed
in each ring in order to make head-on beam-beam
collision [1]. However, the expected luminosity has not
been achieved at high bunch current with crab cavity [2].
This paper briefly investigates one possible cause of
luminosity loss arising from the interaction of the electron
cloud and the tilted bunches around the ring; a detailed
study can be found in [3]. KEKB is used as an example
and Table 1 shows the main parameters used in this paper.

Table I: Main parameters of the KEKB LER beam and
electron cloud used in this paper

Voltage of crab cavity V 1.4MV
Frequency of Crab cavity fRF 509MHz
Beam energy E 3.5GeV
Circumference C 3016m
Transverse tune Qx, Qy 45.506/43.57
Phase advance between Crab
cavity and IP

x, Crab_IP 10.252

Distance between Crab
cavity and IP

SCrab_IP 683.5m

Half crossing angle at IP x,IP 11mrad
Betatron function at crab
cavity

x, crab 45m

Betatron function at IP *
x 1.5m

Horizontal emittance x 17.7nm
Vertical emittance y 0.266nm
Average beam size x, y 0.42/ 0.06mm
beam size at IP x* 0.163mm
Half bunch length ẑ 14 mm

Bunch intensity N 7.51010

Electron cloud density e 1.01012 m-3

Pinch factor fp 10

CRABBED BUNCH
In order to generate a betatron-tune independent tiled

bunch at interaction point (IP), the required phase advance
between the crab cavity and IP satisfies

2/_,   nIPcrabx
(1)

or, equivalently

2/2_,   nQxIPcrabx
(2)

The effect of crab cavity on the beam’s orbit depends on
the working phase of the cavity. When the crab cavity
works at 90o (bunch center receiving maximum kick), it
generates a dipole kick to the bunch center and causes a
closed orbit in the ring
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When the cavity works at zero phase (bunch center
receiving zero kick), which is the normal working phase,
there is crabbed bunch along the whole ring. The half
crossing angle of titled bunch at IP is given by
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The tilted angle of the crabbed bunch along the whole
ring is
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Figure 1 shows the tilted angle in the LER ring. There is a
small tiled angle at crab cavity because Qx is close to half

integer. From Eq. (5), a larger *
x can reduce the tilted

angle of the crabbed bunch. Comparing Eq. (3) and (5),
the closed orbit at 90o and the tilted angle at 0o differs by
a constant number.
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Figure 1: The titled angle of the crabbed bunch with
realistic optics. It starts from the IP, and the crab cavity
location is marked with the red dot.

DISTORION FORCE AND SHAPE
The wake field of electron cloud per unit length is
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Where 22 xee   ,
e is the electron density near

bunch. The exponential decay of the wake is due to the
nonlinear effect of the electron cloud. P(z) is the
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enhancement factor due to beam pinch effect and e is the
electron’s bouncing frequency
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At location s, a bunch has a tilted angle )(sx . The

transverse kick received by a test charge at position z due
to the preceding particles is [4]
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A uniform bunch is considered here
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Three wake models are studied here:
(1)a constant wake function (without considering the

effects of beam pinch and electron oscillation around
the bunch)
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(2)wake with considering the electron’s oscillation
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(3)Due to the beam pinch effect, the density of the
electron cloud near the bunch increases from the bunch
head to tail. To simplify the calculation, we assume
P(z) linearly increase with z and there is a maximum
factor of fp at the bunch tail
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Then the wake function is
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Using equations (8), (10-11) and (13), the kick force can
be expressed as
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Where Fs(s) is the distortion shape factor
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Where )̂2/( zc e  , which is the inverse of the electron

oscillation number within one bunch length. fp=1 for
model I and II. Fz has a maximum 1 at the bunch tail for
the constant wake model. It represents the shape of the
distorted bunch as late shown. Figure 2 shows distortion
factor Fz for different wake models. The constant wake
model causes a larger distortion than the model II. There
is similar distortion shape for Model II and III, but note
that the factor fp, which is about 10 for KEKB, is not

included in the plot. Therefore, there likely is a largest
distortion when the beam pinch effect (Model III) is
included. It is interesting that the distortion monotonously
increases with z and bunch intensity N when beam is

weak, for instance,  >0.5, (there is a smaller  for a
higher intensity bunch) and the distorted bunch has a
banana shape. But when beam becomes strong enough (
<0.2), the distortion starts to oscillate along the bunch and
there is a snake shape of bunch. Therefore, the shape of
the distorted bunch varies with bunch current and beam
emittance. With the realistic optics, the calculated 
ranges from 0.15 to 0.3 in most of the ring. Hence the
distorted bunch may have a shape similar as the pink line
in Figure 2. For LHC beam,  0.6, hence the distorted
bunch will have a banana shape.
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Figure 2: Distortion along the bunch for different wake

models and beam strength factor . The horizontal axis z
is normalized by the bunch length.

BUNCH DISTORTION
In our first model, we assume the electron cloud is

uniformly distributed along the ring. The COD due to the
electron cloud is:
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To simplify the calculations, a constant beta function is

assumed, then the COD becomes

)()()(),( zFsFsAzsx zs (17)

Where A(s) gives the amplitude of the distortion
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The average A=0.57mm. Fs(s) expresses the betatron
phase effect of the electron cloud distribution in the ring
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From the above equation, we can get the betatron phase
factor at the crab cavity as



CQsF xxcrabs /)2sin(1)(  . (20)

Since Cx  for a large ring like KEKB, therefore,

)( crabs sF is close to 1.

If x, Crab_IP different from Eq. (1) by , the phase
factor at IP is
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For a larger ring, the third term is negligible. The 1st term
is zero with a perfect condition Eq.(1). Therefore, the
distortion at IP is proportional to sin(2Qx). |Fs(sIP)| has a
minimum when Qx is close to half integer.

A Qx close to half integer is chosen in KEKB in order
to get a high luminosity

5.0 mQx
. (22)

Substituting Eqs. (1) and (22) into Eqs.(20-21), then

1)( crabs sF and CsF xIPs /2)(  (23)

The calculated |Fs(s)| along the whole ring has a
maximum about 1.0 at the crab cavity and minimum at the

symmetrical position of the crab cavity (S=CSCrab_IP).
Very luckily, there is a small Fs(sIP) of 0.0118 because of
the Eqs. (1) and (22). If Eq.(1) is not satisfied (0), the
1st term in Eq. (21) will be larger than the 3rd one if 4o.
For LHC, Qx=64.28, Fs at IP is large since sin(2Qx)1.

In the above estimation, a uniform electron cloud is
assumed. Now let’s assume the electron cloud locates at
some specific locations, the COD at IP due to the electron
cloud at these specific locations is
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Where Li the length of each section. Using Eqs.(1) and
(22), it can be simplified as
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Since there are many electron cloud sections in the ring,
the average effects on COD at IP should be small due to
the cancellation effect (sinusoidal term in Eq.24).
Therefore, the distortion at IP is likely small due to the
conditions Eqs.(1) and (22). In another words, there is a
small Fs(0) when Qx is close to half integer, even with a
non-uniform distributed electron cloud.

The COD with different electron distributions in the
ring has been calculated. There is a similar overall
distribution of COD along the ring for a uniformly and
random distributed electron-cloud. The COD distribution
does change a lot when the electron cloud is far from
uniform or random distribution. But there is always a
small COD at IP, which indicates that the COD at IP is
always small no matter how the electron cloud is
distributed along the ring. This agrees with Eq. (25).

Figure 3 shows the COD along the ring due to a
uniform distributed electron cloud with the constant
betatron function model and a realistic optics. The overall

shape agrees well except some fluctuations due to the
variation of the betatron function with realistic optics. The
distortion depends on the location in the ring. The COD at
IP is 2.4 m, which is about 1.5% of the bam size at IP
(x*=0.163mm). The change of luminosity due to this
offset is small [1]. Note that the COD with constant
betatron function (red line in Fig. 3) is proportional to
Fs(s) (Eq.17).
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Figure 3: COD due to the electron cloud with a betatron
function model and the realistic optics. The location of
crab cavity is marked with green dot. fp=10 is used.

SUMMARY
The shape of the distorted bunch due to electron cloud

depends on the bunch line density and beam size. It can
be a banana shape with a weak beam (>0.5) or a snake
shape with a strong beam (~0.1).

The half integer betatron tune in KEKB and the specific
phase advance between the crab cavity and IP causes a
small distortion at IP due to the cancellation effect from
many electron cloud sections. There is no clear distortion
observed in the KEKB experiment [5], which probably
can be explained by the negligible distortion according to
the calculation here. However, if the betatron tune is not
close to the half integer, like LHC case, a global crab
correction may be more problematic.
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