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Abstract

The standard prescription for NLC main linac steering assumes that the RMS offset between
a quad’s magnetic center and the corresponding BPM’s electrical center can be determined at the
level of a micron. This is a fearsome requirement, and will be particularly difficult to achieve
if hybrid iron/permanent magnet quads are used in the main linac. As an alternative, the
Dispersion Free Steering (DFS) [1] algorithm is adapted to the NLC main linac environment; the
DFS algorithm does not require knowledge of the quad-BPM offsets. The results of simulation
studies of this adaptation are presented. In addition, the use of closed orbit bumps to globally
correct dispersive emittance growth is considered. The studies indicate that DFS can be used
successfully in the NLC main linac environment, and that dispersion bumps are a useful addition
to the linac steering “toolbox,” regardless of the main algorithm selected.

1 Introduction

It is well known that the principal sources of single-bunch emittance dilution in the NLC main linac
will be wakefields from misaligned RF structures and dispersion from misaligned quadrupoles. For
the present NLC parameters (γεy = 2.0 × 10−8 m.rad, N = 0.75 × 1010 particles, σz = 110 µm,
σE/E ≈ 0.6%), RMS beam-to-structure misalignments at the level of 10 µm will cause an emittance
increase of 25%, while RMS beam-to-quad misalignments at the level of 2 µm will cause a similar
emittance increase [2]. Such tight tolerances on the beam-to-element offsets cannot be achieved
by conventional survey and alignment techniques, but must rely on beam-based alignment (BBA).
Note that in this context, we define “beam-based alignment” to mean all of the techniques which
use measurements of beam parameters to estimate or infer beam-to-element offsets and determine
the appropriate corrections. It is common to use this phrase to refer to a particular method of
BBA, in which variation of quad strength is used to measure the beam-to-quad offset; in this Note,
we shall explicitly refer to this as the “method of quadrupole variation.”

Beam-based alignment of the NLCmain linac is essential, and therefore the linac is well equipped
with instrumentation and controls for this purpose. Figure 1 shows the main linac hardware which
is intended for use in BBA: quadrupole and RF girder translation stages which allow elements to be
repositioned during beam operation, and quadrupole and RF-structure BPMs which can accurately
measure the beam position.

The procedure for aligning the RF structures to the beam is quite straightforward. Each
structure includes a set of damping manifolds which are required for managing the long-range
(bunch-to-bunch) transverse wakefields. By measuring the amplitude and phase of the RF power in
one vertical and one horizontal manifold, the beam-to-structure offset can be directly determined.
This measurement is unambiguous in that a “zero” reading from the BPM – zero power in the
manifold – means that the beam is going through the structure with zero offset. Furthermore, the
wakefield of a single structure is sufficiently weak that changing the transverse position of a few
structures does not produce a significant change in the centroid trajectory downstream; this is in
contrast to a quadrupole, which steers the beam when it is moved. Consequently, an RF girder can
be aligned to the beam by simply measuring the beam position at the upstream and downstream
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ends of each structure on the girder, fitting a straight line to the resulting measurements, and
setting the girder translation stages to zero the average offset and slope of the BPM readings.

By contrast, the alignment of the quads to the beam is relatively difficult. One complication is
that moving a quadrupole steers the beam, and so if one quad is moved to zero its offset the offsets
in the remaining quads will change. A more difficult problem is that, unlike the RF structures,
there is an ambiguity in the reading of the BPM associated with a quad: when the BPM reads zero,
the beam may be centered in the BPM but probably not in the quad. The offset between the BPM
and the quad is a function of the initial installation procedure, the cabling and electronics of the
BPM, the variation of the quad’s magnetic center position as a function of time, and many other
variables. Thus, while the linac can easily be steered, via the quadrupole movers, to minimize the
RMS BPM readings, this will not ensure that the RMS beam-to-quad offsets will be minimized.

1.1 The Technique of Quadrupole Variation

One method of addressing the ambiguity described above is to first measure the offset between
each quad’s magnetic center and the corresponding BPM’s electrical center. This allows accurate
determination of the BPM reading that corresponds to a beam-to-quad misalignment of zero. In
this model, quad alignment is a two-step process: first the BPM-to-quad offset is determined,
and then this knowledge is incorporated into the steering algorithm and the quads are moved to
minimize the true beam-to-quad RMS offset.

The most popular method for measuring the BPM-to-quad offset is the method of quadrupole
variation, shown schematically in Figure 2. A beam which enters a quad with an offset xq receives a
deflection x′ = Kqxq, where Kq is the inverse focal length of the quad. By varying the quad strength
and measuring the downstream deflection, the value of xq can be deduced; the BPM-to-quad offset
is the difference between the beam-to-quad offset and the quadrupole’s BPM reading.

The use of quadrupole variation followed by quad-mover steering to minimize the RMS beam-
to-quad offset has several advantages. Chief amongst these is that the correction of the orbit
is quite local: the beam-to-quad offset is minimized at every quad, and therefore the resulting
correction is quite stable. The quadrupole variation technique is a nulling technique: because
zero deflection of the beam indicates zero offset in the quad, which is the desired condition, the
measurement is relatively insensitive to small errors in the knowledge of the quad strength, BPM
scale factors, transport matrices, etc. There are, however, several disadvantages as well. For
example, the quadrupole variation technique is quite invasive: it cannot be performed while the
beams are colliding, since the beam orbit is changed and the change in focusing ruins the small
beam sizes required at the IP. This in turn implies that the BPM-to-quad offsets must be stable,
so that a single measurement of the offsets by this technique can be valid over many days, weeks,
or months of operation and linac steering. This implies that the BPM electronics and mechanical
installation must be quite stable, and that the quadrupole center position must be similarly robust.

In addition to these difficulties, there are important systematic effects which can fool the quad-
variation measurement technique. The particulars of the systematics are different for electromagnet
quads and various forms of permanent magnet quads. All of these systematics can cause an error in
the fitted beam-to-quad offset which in turn becomes an error in the quad-to-BPM offset. Because
of these issues, quadrupole variation may not be adequate to achieve micrometer-level accuracy in
the measurement of quad-to-BPM offsets. Appendix A discusses the particulars of these systematic
effects in greater detail.
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2 Dispersion Free Steering

Because of the difficulties inherent in measuring the quad-to-BPM offset accurately, it is logical
to seek a means of minimizing the dispersive emittance growth in the NLC main linac which does
not require knowledge of the quad-to-BPM offsets. Such a technique was proposed in the early
1990’s by Raubenheimer and Ruth [1]. In this technique, the matching of the beam energy to the
quadrupole lattice is varied, and the resulting change in the orbit through the linac is measured.
The change in orbit as a function of beam-lattice energy mismatch is the dispersion; thus, this
technique directly measures the dispersion and permits a steering solution to be formulated which
zeroes the dispersion at all points. Such “Dispersion-Free Steering” (DFS) relies upon the BPM
resolution but not the quad-to-BPM accuracy.

Early tests of the DFS algorithm in the SLAC linac were not successful in reducing the end-
linac transverse emittance. In these tests, the quadrupoles in the linac were scaled to emulate
energy variation; it is now suspected that the quad centers may have moved during scaling, which
would have led to systematic errors in locating the dispersion-free orbit. Subsequently, the DFS
algorithm has been used successfully in many venues, including the SLAC linac; typically, successful
DFS implementations actually vary the beam energy rather than the scaling of the lattice. This
has led to consideration of DFS via energy gain variation as a possible technique for correcting the
NLC main linac trajectory.

2.1 Algorithm Choices

Choices which must be made in the algorithm include the manner and degree of energy variation
used, the longitudinal segmentation of the linac, and the relative balance of the algorithm towards
minimization of dispersion and minimization of RMS quad motion.

2.1.1 Energy Variation

The issues related to quad center motion made clear that the NLC’s DFS algorithm should operate
by varying the linac energy gain, not the quad strength. This also enhances the speed of operation
in the real machine: the energy gain of each RF girder can be varied on a pulse-by-pulse basis by
changing the relative phases of the klystrons in each 8-pack.

Another concern is the possibility that RF deflections in the structures could cause systematic
errors in the DFS algorithm. RF deflections are caused by structures which are pitched relative
to the beam angle, by asymmetric fields in the input and output couplers, and other effects.
These deflections would vary as the energy gains of the structures are altered, and the changing RF
deflections must be properly accounted for in the algorithm. In order to manage the RF deflections,
the beam energy gain is changed in a region of the linac, and dispersion is measured downstream
of that region. In the area in which the dispersion is being measured, the beam energy is reduced
because of the adjustment of energy gain, but the structures in the measurement area maintain
their design energy gains. Thus, the change in RF deflections become a change in the incoming
orbit of the beam, which can be eliminated by steering the beam into the measurement segment or
by fitting the incoming oscillation.

2.1.2 Linac Segmentation

Because the energy gain in each measurement segment is left at its nominal value, the change
in beam energy from the design is maximum at the upstream end of the segment and decreases
along the segment. For example, a change in beam energy by 20% at the 10 GeV point is 2 GeV;
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at the end of the linac, this is less than 1% of the beam energy, and the relative variation is so
small that dispersive errors will be extremely difficult to resolve. Thus, the linac must be divided
into measurement segments longitudinally. For this study, we have divided the linac into 25 such
segments, each of which contains an equal number of quadrupoles. This means that the segments
in the upstream end of the linac are only 33% as long as those in the downstream end, due to the
change in quad spacing down the beamline.

2.1.3 Range of Energy Variation

The optimal results are obtained if the beam energy is varied as much as possible. The practical
limitations on the range of energy variation come from optical stability and the energy acceptance
of the post-linac energy collimation system. In these studies, we have limited the energy variation
at the upstream end of a measurement segment to 20% of the design energy or 35 GeV (7% of the
final energy for the 500 GeV main linac), whichever is less.

The 8 GeV injection energy of the main linac cannot be easily varied due to the dynamics of
the bunch compressors. A variation of 20% of the design energy implies that the first quad which
can be in a measurement segment is at the 10 GeV point in the main linac. The quads upstream
of the 10 GeV point must be aligned by other means. For the purposes of this study it is assumed
that they are perfectly aligned to the beam ab initio.

2.1.4 Fit Constraints

Beam-based alignment techniques are typically very sensitive to short-wavelength misalignments,
but relatively insensitive to long-wavelength misalignments. While long-wavelength misalignments
have little effect on the beam quality, the practical limitations of the vacuum chamber aperture,
magnet mover ranges, etc. dictate that alignment solutions that improve the short-wavelength
alignment but degrade the long-wavelength alignment must be suppressed. This limitation was
encountered in the design of the main linac’s steering algorithms as well as the DFS context [6].

DFS is typical of beam-based alignment schemes in that the long-wavelength misalignments
which are generated by the algorithm must be minimized. The DFS algorithm used for the NLC
main linac suppresses long-wavelength misalignments via a “soft constraint:” the RMS dispersion
measured by the BPMs and the RMS motion of the magnet movers in a measurement region are
simultaneously minimized.

2.1.5 Summation of the Algorithm

The DFS algorithm used for the NLC main linac is as follows:

• Subdivide the 10 GeV – 500 GeV region of the linac into 25 measurement segments with
equal numbers of quads

• For each segment, determine how many upstream RF structures must be switched off to vary
the energy at the upstream end of the segment by 20% of the design or 35 GeV, whichever is
smaller

• Switch off the necessary structures

• Steer the incoming beam orbit to the position/angle which was present at the design energy

• Measure the change in BPM readings throughout the segment and in the first BPM down-
stream of the segment
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• Determine the magnet moves which simultaneously minimize the RMS dispersion and the
RMS magnet motion, with the former weighted 250 times as important as the latter

• Apply the fitted moves and perform RF girder alignment in the segment

• Iterate each segment 4 times before going on to the next segment.

2.2 Simulation of DFS

The algorithm described above was added to LIAR (LInear Accelerator Research code) [5]. Simu-
lation was performed using the NLC 2000 main linac optics. These optics are similar to the 2001
design, but with several distinct differences:

• The 2000 linac was shorter than the 2001 design, and as a consequence of this the 2000 linac
contains approximately 750 quads, rather than NLC2001’s 820.

• Each RF girder contains 3 RF structures of 1.8 m length, rather than NLC2001’s 6 structures
of 0.9 m length.

It is not expected that the differences above will yield dramatically different results.
The beam conditions selected were based on the 2001 design values: a bunch charge of 0.75 ×

1010, RMS bunch length of 110 µm, initial energy and uncorrelated energy spread of 8 GeV and
1.6%, respectively. The initial emittances were the design DR-extraction values (γεx,y = 3.0× 0.02
mm.mrad). The linac phasing was selected to give an RMS correlated (BNS) energy spread of 0.6%
to 0.7%, which was reduced to 0.25% at the end of the linac.

RF structure RMS misalignments with respect to the girder axis were 15 µm and 33 µrad; RMS
girder misalignments with respect to the survey line were 50 µm. Quad misalignments with respect
to the survey line were 50 µm.

The RF structure BPMs were assumed to have a resolution of 5.0 µm. Two sets of quadrupole
BPM resolutions were used: 0.3 µm and 1.0 µm. The former value represents the design pulse-by-
pulse resolution of the Q-BPMs; the latter figure includes expected errors in the beamline model
and other effects which can degrade the “effective” resolution in applications that require fitting
trajectories to a model.

Ten seeds were used in each simulation. In the case of 0.3 µm BPM resolution, the end-linac
emittance dilution after DFS averaged 20%. In the case of 1.0 µm BPM resolution, the emittance
dilution after DFS averaged 80%, with results ranging from 43% to 205%. Since the linac’s total
emittance dilution budget is 40%, the 0.3 µm BPM resolution could be acceptable but 1.0 µm
“effective” resolution would not be acceptable.

3 Dispersion Bumps

An additional tool for emittance control in the NLC main linac is direct use of closed orbit bumps
to generate dispersion; this dispersion can then be used to cancel other sources of dispersion in the
same phase. Such techniques were used widely in the SLC.

The number of bumps required for the linac is a function of the beam energy spread and
the optics. Because of the chromaticity of the linac optics, particles with different energies will
oscillate with slightly different frequencies; at some point, particles in the bunch which initially were
oscillating coherently will be 90 degrees out of phase with one another; at this point, dispersion
bumps cannot eliminate the emittance growth due to the oscillations. The phase advance per cell
in the NLC main linac is typically around 90 degrees, and therefore the chromatic phase advance
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ξ ≡ dν/dδ is around −1/π. The condition for decoherence within a bunch can be approximately
written:

Ncellσδξ ≈ −0.25. (1)

An RMS energy spread of 1% implies that σδξ ≈ 0.003. The decoherence condition then implies
that a pair of bumps every 100 cells, or 2 per 200 quads, should be sufficient. In the interest of
conservatism, we used a total of 14 bumps: one pair at injection and 6 pairs spaced approximately
equally in betatron phase advance down the linac to the end of the line.

Each bump was implemented as a “three-bump,” in which one magnet introduced the bump
and two magnets downstream closed it again. In the interest of flexibility, the bumps were modelled
with quadrupoles on ultra-high-resolution movers; in real life, weak dipole correctors would be used.
In order to limit the impact of wakefields, after the bump quads were set to their new positions the
intervening RF girders were realigned to the beam trajectory.

Each bump was tuned against the beam sizes at the nearest downstream diagnostic region. The
tuning algorithm was designed to accurately mimic the actual tuning experience of the SLC:

• For each orbit bump knob, the downstream beam size monitor with the best response was
empirically determined by tuning the bump to a large value and observing the beam size at
each monitor.

• During tuning, each knob in turn would be scanned through 5 values, and the beam size at
the optimal downstream monitor would be measured at each value.

• The curve of beam-size squared versus knob value was fitted to a parabola; the extremum of
the parabola corresponds to the optimal knob setting.

• The bump would be set to its fitted optimum, and the next bump in the series would be
tuned.

For the purposes of simulation, the beam size measurements were assumed to be perfect – without
resolution limits.

3.1 Results of DFS + Bump Tuning

The total linac tuning package of DFS followed by emittance bumps was simulated for 10 linac
seeds; as with the DFS alone, two BPM resolutions were used, but all other conditions were held
constant as described above. In the simulations with 0.3 µm BPM resolution, the post-bump end-
linac emittance growth averaged 8%, while with 1.0 µm BPM resolution the post-bump end-linac
emittance growth averaged 30%, with values ranging from 16% to 51%. In both cases, the emittance
dilution is reduced by roughly a factor of 3, and in both cases the dilution is acceptably below the
linac emittance budget, although the case with poor effective BPM resolution is marginal.

4 Conclusions

Dispersion Free Steering and global dispersion bumps are techniques to reduce the emittance di-
lution in the NLC main linac which do not require that the quad-to-BPM offsets be known with
high accuracy. Simulations indicate that DFS alone will reduce the emittance dilution in the linac
to acceptable levels if the expected BPM resolution is achieved. If the expected resolution is not
achieved, or if other effects dilute the “effective resolution” of the BPMs, global dispersion bumps
can be used as an “afterburner” to DFS to further reduce the emittance at the end of the linac.
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A Quad Variation and its Discontents

The main linac quadrupole architecture has been the subject of considerable thought. At this
time, there are three candidate designs for the main linac quad: a conventional electromagnet
with a dedicated power supply; an iron-core magnet excited by permanent magnet blocks which
can be adjusted via movable tuners in each pole-piece; an iron-core magnet excited by permanent
magnet blocks which can be adjusted by counter-rotating longitudinal segments of the magnet (thus
changing the normal-quad component while, to first-order, keeping the skew-quad component at
zero). All three of these magnets are subject to systematic errors which can influence the quad-
variation procedure for measuring the beam-to-quad offset.

The most prominent effect which can degrade the accuracy of the quad-variation technique is
movement of the magnetic center during the quad-variation process. This effect has been studied
in some detail [3]. If the quadrupole strength is varied in steps of dKq, and on step j the center
has shifted by an amount xj from its position at nominal strength, then the systematic error in the
fitted center position is given by:

∆x =
∑

j j2xj∑
j j2

+
Kq

dKq

∑
j jxj∑
j j2

. (2)

The second term on the LHS of Equation 2 is quite disturbing, because it indicates that RMS
center motions xj are amplified by a factor Kq/dKq into the fit error: for a quadrupole change of
20%, a tolerance of 1 µm in the fit error translates to a tolerance of about 0.2 µm in the center
motion during shunting. Such a tight tolerance would be quite difficult to demonstrate, much less
achieve. In a conventional electromagnet, there are a number of potential sources of magnetic-
center motion during strength variation: variable ground currents in the different poles, varying
mechanical stresses, fabrication or assembly errors, thermal changes, etc.

A related systematic error can occur in a hybrid iron/PM quad with counter-rotating slices.
Consider a single longitudinal segment of such a magnet, and assume that the axis of rotation is not
the same as the magnetic neutral axis. Let the horizontal distance between the magnetic neutral
axis and the rotation axis be ∆xrot. Let us assume that the magnet is originally at full strength
(zero rotation angle), and is reduced by an amount dKq in a single step to measure the beam-to-
quad offset. Since the normal-quad strength of the segment is given by Kq = Kq(max) cos 2θ, and
the change in the vertical position of the neutral axis is given by ∆y = ∆xrot sin θ, Equation 2 can
be used to estimate the systematic fit error caused by such a defect:

∆yfit ≈ ∆xrot

(
θ +

1
2|θ|

)
. (3)

Note that in Equation 3 we have replaced sine and cosine expressions with their small-angle ap-
proximations. Equation 3 implies that the error in the rotation axis positioning must be at least
several times better than the tolerance on the BBA fit’s systematic error.

A hybrid iron/PM quad with rotating tuners is subject to errors which are similar to those
described above. In addition, such magnets can suffer from construction defects which introduce a
shift in the position of the neutral axis that is undetectible by the quad-variation technique.
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Consider a hybrid quadrupole which is mechanically and magnetically perfect: in such a magnet,
the neutral axis of the magnet is identical to its mechanical symmetry axis, and the rotating tuners
are perfectly balanced such that when they rotate the quad strength is varied without introducing
dipole or other fields. In such a case, a beam on the neutral axis experiences no deflection when the
quad is at its nominal strength and it experiences no deflection when the quad is varied in strength.

Now consider the quad in Figure 3. This is a mechanically- and magnetically-perfect quad,
except that one of the energizing blocks of PM material is removed from between poles 1 and 2.
We can analyze this situation using the formalism of Halbach [4] for magnet errors. Pole 1, which is
“positive,” experiences a fractional change in excitation −εb, while pole 2 experiences a fractional
change εb, where εb > 0. This introduces a dipole field which can be compared to the quadrupole
field at the pole-tip:

H∗
1

H∗
2

=
1
2
∆C1 exp(−iθ) =

∑
poles

0.199iεpole exp(−iθ), (4)

where θ is the pole-angle with respect to the horizontal axis (in this case, π/4, 3π/4, 5π/4, 7π/4).
In this case the sine-like terms in the complex exponentials cancel, and the ratio of H∗

1/H∗
2 is given

by −0.199√2εb. If the tuner elements are now rotated to increase the strength of the quad by a
fraction εq, the ratio of the dipole field to the design quad field becomes:

H∗
1

H∗
2

=
∑
poles

0.199iεpole exp(−iθ) (5)

= 0.199i[(−εb + εq) exp(−iπ/4) + (εb − εq) exp(−3iπ/4)
+ (εq) exp(−5iπ/4) + (−εq) exp(−7iπ/4)].

In the expression above, the terms dependent on εq cancel; the remaining terms are identical to
those for the quad at normal strength. This means that the dipole field at the quad’s mechanical
axis is nonzero but does not vary as the quad strength varies. Thus, the quad variation technique
would not reveal in this case that the beam was not positioned on the magnetic neutral axis of the
magnet.

The discussion above suggests that conventional electromagnets, tuner-type adjustable hybrids,
and rotating-segment adjustable hybrids are all unlikely to meet the tolerances required if we wish
to make the quad-variation technique our sole means of measuring the quad-to-BPM offset to the
required accuracy.
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Figure 1: NLC main linac equipment related to beam-based alignment and steering.
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Figure 2: Principle of quadrupole-variation technique of beam-based alignment.
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Figure 3: Mechanically perfect hybrid quadrupole with one weak block of PM material. The weak
block will cause a shift in the magnetic center, relative to the mechanical center, which cannot be
detected by using the tuners to vary the quad strength.
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