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Abstract. I review recent developments in the study of quark-hadron duality in inclusive electron
scattering in the resonance-scaling transition region. Results on matrix elements of twist-4 operators
extracted from moments of the spin-dependent g1 structure function suggest that duality violating
higher twists are small above Q2 � 1 GeV2. The systematics of the x dependence of local duality are
analyzed within a quark model framework, and mechanisms are identified for spin-flavor symmetry
breaking which underpin the behavior of structure functions at large x.

INTRODUCTION

The nature of the transition between quark and hadron degrees of freedom in QCD
is one of the most fundamental problems in strong interaction physics. Assuming that
QCD can ultimately describe the physics of hadrons, the transition from quarks and
gluons to hadrons can be considered in principle trivial from the point of view of quark–
hadron duality: as long as one has access to a complete set of states, it is immaterial
whether physical quantities are calculated in terms of elementary quark or effective
hadron degrees of freedom. In practice, truncations are of course unavoidable, and it
is the consequences of working with incomplete sets of basis states that allows one to
expose the dynamics underlying the quark–hadron transition.

The duality between quarks and hadrons reveals itself in most dramatic fashion in
inclusive electron–nucleon scattering, eN � eX . Here the inclusive nucleon structure
function measured in the region dominated by low-lying nucleon resonances is ob-
served to follow a global scaling curve describing the high energy data, to which the
resonance structure function averages – a phenomenon known as Bloom-Gilman duality
[1]. Recent high-precision data on the F2 structure function from Jefferson Lab [2] have
provided spectacular confirmation of this duality for each of the low-lying resonance
regions, down to Q2 values of � 1 GeV2 or below.

More recent studies have explored the spin and flavor dependence of duality, as well
as its workings in other reactions. Concurrently there has been considerable progress
in the theoretical understanding of duality, with a number of model studies elucidating
both the dynamical origins of duality and its phenomenological consequences.

In this talk I first review the basic elements of duality in inclusive electron scattering,
and its formulation in terms of the operator product expansion (OPE) in QCD. Using
the OPE, I describe how duality violations can be used to extract matrix elements of
higher twist operators from recent data on the spin dependent g1 structure function at



intermediate Q2. The study of local duality (the equivalence of restricted resonance sums
with the scaling function over a limited range of x) is illustrated within the quark model,
and the conditions for the appearance of duality are explicitly identified.

DUALITY AND QCD

The standard method of analyzing structure functions in QCD is the operator product
expansion. For large Q2 the OPE allows the moments of a structure function F

�
x � Q2 � to

be expanded in inverse powers of the hard momentum scale, Q2,

M � n � � Q2 ��� � 1

0
dx xn � 2 F

�
x � Q2 � (1)

	 ∑
i 
 2 � 4 �
���

A � n �
i

Qi � 2 � (2)

where the expansion coefficients A � n �
i

are matrix elements of operators with a specific

twist (dimension – spin). The leading twist (twist-2) term, A � n �
2

, corresponds to scattering
from free partons, and is responsible for the scaling (modulo QCD logarithmic correc-
tions) of the structure functions. The higher twist terms A � n �

i � 2
involve multi-quark and

mixed quark-gluon operators, and contain information on long-range, nonperturbative
correlations between partons.

As pointed out by De Rújula et al. [3], in the OPE language the approximate indepen-
dence on Q2 of the moments is naturally attributed to the dominance of the twist-2 term,
and suppression (or cancellation) of the higher twist contributions. This observation re-
veals two important practical applications of duality: if one finds empirically that higher
twists are small down to some scale Q2

min, then one can extend leading twist analyses of
structure function data to Q2

min. For the unpolarized F2 structure function of the nucleon,
Q2

min has been found to be around 1 GeV2 [2], which is lower than that used in standard
parton distribution analyses. If, on the other hand, duality is found to be violated, and
if the violations are not overwhelming, then the data can be used to extract matrix ele-
ments of higher twist operators. This provides unique information about the strength of
nonperturbative, multi-parton interaction effects in the nucleon.

HIGHER TWISTS

In the context of global analyses of parton distributions, higher twist effects are often
seen as unwelcome complications. However, higher twists contain valuable information
on nucleon structure – no less fundamental than that contained in leading twists – and
are therefore of tremendous interest in their own right.

Recently several analyses of moments of the spin dependent g1 structure function of
the nucleon have been performed with the aim of extracting so-called color polarizabil-
ities of the nucleon, which are related to twist-4 matrix elements involving quark and
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FIGURE 1. Lowest moment of the neutron gn
1 structure function [4]. The shaded band represents

the uncertainty on the leading twist contribution due to αs, and the dashed curve indicates the elastic
contribution.

gluon fields. Defining the lowest (n 	 0) moment of g1 as

Γ1

�
Q2 � 	 � 1

0
dx g1

�
x � Q2 � � (3)

the OPE allows one to expand Γ1 in a series in 1 � Q2,

Γ1

�
Q2 � 	 µ2 � µ4

Q2 � µ6

Q4 ������� (4)

The leading, twist-2 term µ2 is related to the spin carried by quarks in the nucleon, and
can be expressed in terms of axial vector charges of the nucleon. The coefficient of the
1 � Q2 correction is given by

µ4
	 1

9
M2 � a2 � 4d2 � 4 f2 � � (5)

where a2 is a (twist-2) target mass correction, d2 is a twist-3 term related to the transverse
g2 structure function, and f2 is a twist-4 term involving both quark and gluon fields

f2 M2Sµ 	 1
2 ∑

q
e2

q � P� S � g ψq 	Gµνγν ψq �P� S 
�� (6)

Here ψq is a quark field, 	Gµν 	 1
2 εµναβ Gαβ is the dual gluon field strength tensor, g

is the strong coupling constant, and P and S the momentum and spin vectors of the
nucleon.

The 1 � Q2 correction can be determined from Γ1 data in the intermediate Q2 region,
where Q2 is neither so large as to completely suppress the higher twists, nor so small as
to render the twist expansion unreliable. The result of a recent reanalysis [4] of the world



1 10
0

0.05

0.1

0.15

0.2

2 (GeV  )2Q

Γ 
  (

   
  )

1
Q

2

total

µ2

elastic

(1)

p

FIGURE 2. Lowest moment of the proton gp
1

structure function [5]. The error bars give statistical
uncertainties only, while the systematic and low-x extrapolation errors are given by the shaded band.
The shaded band represents the uncertainty on the leading twist contribution due to αs, and the dashed
curve indicates the elastic contribution.

data on the moment of the neutron g1 structure functions is illustrated in Fig. 1, and for
the proton in Fig. 2. Combining the moment data from various experiments is nontrivial
since different analyses typically make use of different assumptions about extrapolations
into unmeasured regions of kinematics. The structure function moments in Figs. 1 and
2 are therefore extracted using a single set of inputs and assumptions for all the data.

Fitting the neutron and proton data in Figs. 1 and 2, the extracted values for the f2
matrix elements are

f n
2

	 0 � 034 � 0 � 043 � (7)

f p
2

	 0 � 039 � 0 � 038
0 � 043 � (8)

where the error includes statistical and (the more dominant) systematic uncertainties, as
well as from the x � 0 extrapolation and uncertainty in αs at low Q2. For the neutron,
combining the 1 � Q2 correction with the extracted 1 � Q4 term, one finds that in fact the
total higher twist contribution to Γn

1 is almost exactly zero at Q2 	 1 GeV2 [4].
The twist-3 (d2) and 4 ( f2) operators describe the response of the collective color

electric and magnetic fields to the spin of the nucleon. Expressing these matrix elements
in terms of the components of 	Gµν in the nucleon rest frame, one can relate d2 and f2 to
color electric and magnetic polarizabilities. These are defined as [6, 7]

χE 2M2 �S 	 � N � �ja � �Ea �N 
 � (9)

χB 2M2 �S 	 � N � j0
a
�Ba �N 
 � (10)

respectively, where jµ
a
	�� gψ̄γµtaψ is the quark current, ta are color SU(3) matrices,

and �Ea and �Ba are the color electric and magnetic fields, respectively. In terms of d2 and



f2 the color polarizabilities can be expressed as

χE
	 2

3
� 2d2 � f2 � � χB

	 1
3
� 4d2

� f2 � � (11)

With the above values for f2, and the results for d p
2

from the global analysis in Ref. [5]
and dn

2 from the SLAC E155 measurement [8], one finds

χn
E
	 0 � 033 � 0 � 029 � χn

B
	 � 0 � 001 � 0 � 016 � (12)

χ p
E
	 0 � 026 � 0 � 028 � χ p

B
	 � 0 � 013 � 0 � 014 � (13)

These results indicate that both the color electric and magnetic polarizabilities in the
proton and neutron are relatively small, with the central values of the color electric
polarizabilities being positive, and the color magnetic zero or slightly negative.

The small values of the higher twist corrections in polarized as well as unpolarized
structure functions suggest that the long-range, nonperturbative interactions between
quarks and gluons in the nucleon are not as dominant at Q2 � 1 GeV2 as one may have
expected. This means that there are strong cancellations between nucleon resonances
resulting in the dominance of the leading twist contribution to the moments. In order
to see how such cancellations can take place, in the following we examine a model in
which the resonance transitions can be evaluated exactly and the degree to which duality
holds quantified.

LOCAL DUALITY

While duality for structure function moments can be analyzed in terms of the OPE, no
such simple interpretation exists for the x dependence of the functions themselves. For
this one must resort to theoretical & phenomenological models, which can be used to
study how a scaling function can arise from a sum over resonances.

To understand the generation of a scaling function entirely out of resonances, each of
which is described by form factors that fall rapidly with increasing Q2, one must address
the question of how coherent contributions (“square of sums of quark charges”) can yield
results consistent with incoherent scattering (“sum of squares of quark charges”). Close
and Isgur [9] elucidated this problem by deriving the necessary conditions for duality
to occur within the spin-flavor symmetric quark model (although the argument can be
generalized to more complex systems). They found that for duality to hold at least one
complete set of even and odd parity resonances must be summed over.

Table 1 gives the relative strengths of the contributions to the proton and neutron spin
averaged and spin dependent structure functions from the N � N � transition matrix ele-
ments, for the lowest even parity 56 � and odd parity 70 � representations of SU(6). The
coefficients λ and ρ denote the relative strengths of the symmetric and antisymmetric
contributions of the SU(6) ground state wave function, and the SU(6) limit corresponds
to λ 	 ρ .

Summing over all of the states in the 56 � and 70 � multiplets gives rise to a neutron
to proton ratio Rnp � Fn

1 � F p
1
	 2 � 3, and polarization asymmetries Ap

1
� gp

1
� F p

1
	 5 � 9



TABLE 1. Relative strengths of electromagnetic N � N
�

transitions in the SU(6) quark model [9, 10].
The coefficients λ and ρ denote the relative strengths of the symmetric and antisymmetric contributions
of the SU(6) ground state wave function. The SU(6) limit corresponds to λ � ρ .

SU(6) repn. 28[56
�

] 410[56
�

] 28[70 � ] 48[70 � ] 210[70 � ] total

F p
1

9ρ2 8λ 2 9ρ2 0 λ 2 18ρ2 � 9λ 2

Fn
1

�
3ρ � λ � 2 � 4 8λ 2 �

3ρ 	 λ � 2 � 4 4λ 2 λ 2 �
9ρ2 � 27λ 2 � � 2

gp
1

9ρ2 	 4λ 2 9ρ2 0 λ 2 18ρ2 	 3λ 2

gn
1

�
3ρ � λ � 2 � 4 	 4λ 2 �

3ρ 	 λ � 2 � 4 	 2λ 2 λ 2 �
9ρ2 	 9λ 2 � � 2

and gn
1 � Fn

1
	 0, just as in the quark-parton model in which the structure functions are

calculated in terms of partonic (rather than N � ) degrees of freedom.
While the SU(6) predictions for the structure functions hold approximately at x � 1 � 3,

significant deviations are observed at larger x. It is important therefore to examine the
conditions under which combinations of resonances can reproduce, via quark-hadron
duality, the behavior of structure functions in the large-x region where SU(6) breaking
effects are most prominent.

The most immediate breaking of the SU(6) duality could be achieved by varying the
overall strengths of the coefficients for the 56 � and 70 � multiplets as a whole. However,
since the cancellations of the N � N � transitions for the case of gn

1 occur within each
multiplet, a non-zero value of An

1 can only be achieved if SU(6) is broken within each
multiplet rather than between the multiplets. Some intuition is needed therefore on
sensible breaking patterns within the supermultiplets.

If the mass difference between the nucleon and ∆ is attributed to spin dependent
forces, the energy associated with the symmetric part of the wave function will be
larger than that of the antisymmetric component. A suppression of the symmetric (λ )
configuration at large x will then give rise to a suppressed d quark distribution relative
to u, which in turn leads to the famous neutron to proton ratio Rnp � 1 � 4 [11, 12].

On the other hand, duality implies that structure functions at large x are determined
by transition form factors at high Q2. At large enough Q2 one expects these to be
constrained by perturbative QCD, which predicts that photons predominantly couple
to quarks with the same helicity as the nucleon. Since for massless quarks helicity is
conserved, the helicity-3/2 cross section is expected to be suppressed relative to the
helicity-1/2 cross section. The helicity-3/2 suppression scenario predicts that A1

� 1
for both protons and neutrons, and that the neutron to proton ratio Rnp � 3 � 7. This
latter result is identical to that obtained in the classic quark level calculation of Farrar
& Jackson [13] on the basis of perturbative QCD counting rules! Whether the x � 1
behavior of structure functions follows the λ -suppression scenario or is governed by
helicity conservation is being addressed experimentally at Jefferson Lab, where the
12 GeV energy upgrade will allow definitive tests of the properties of structure functions
at large-x.



OUTLOOK

The discussion of duality in the simple quark model provides a clear illustration of how
parton model results for structure functions can be replicated by explicit sums over
nucleon resonances. More sophisticated models can of course be considered, and an
important challenge will be to consistently include the effects of both resonances and
the nonresonant background in the same framework.

Future experimental exploration of duality will focus on determining its flavor, spin
and target dependence, as well as its workings when probed by the weak interaction,
in neutrino–nucleon scattering. Another important avenue will be to explore duality
in semi-inclusive reactions. Confirmation of duality here would open the way to an
enormously rich semi-inclusive program in the preasymptotic regime, allowing unprece-
dented access to the spin and flavor distributions of the nucleon, especially at large x.
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