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1 Introduction

This paper describes the derivation of analytic expressions for the angular resolution of reconstructing
gamma rays detected via Compton interactions. We consider two types of gamma-ray detectors:
Compton-ring and electron-tracking devices.

In Compton-ring devices, the direction of the scattered electron is not resolved, only the total
energy (electron and scattered photon) and the scattered photon direction are measured. The measured
quantities define a cone about the axis of the scattered photon direction (see Figure 1). The initial
photon direction lies along this cone. Thus for single events there is a ring-like ambiguity in the photon
direction. By combining multiple events, the intersection of the reconstructed rings will resolve the
initial direction of the photon source. In this paper, we derive the resolution of the cone angle for
individual rings.

Electron-tracking type devices resolve the electron path. Although the scattered electron subse-
quently undergoes multiple-Coulomb scattering, it is possible to measure the initial electron direction
with sufficiently high tracking resolution. By measuring the direction and energy of the electron and
the direction of the scattered photon, the initial photon direction can be uniquely determined. The
challenge for this type of detector is achieving the high tracking resolution.

In Section 2 we derive the well-known Compton formula for Compton-ring devices, an analytic
expression for the angular resolution of the cone angle, and discuss the limits for applying the er-
ror formula. In Section 3 we repeat the derivation of the error function for the algebraically more
complicated electron-tracking device. In the final section (Section 4) we derive the effect of position
measurement error on the angular resolution, which applies to both detector types. All of the analytic
results are cross-checked against empirical fits to a simple Monte Carlo simulation (Sections 2.5, 3.3,
and 4.2).

Doppler broadening, the effect due to the initial (and intrinsically unknown) momentum of the
atomic electron, can be ignored for gamma rays with initial energy greater than a few hundredkeV.
For all kinematic calculations in this paper, the electron is taken to be initially at rest.
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Figure 1: Compton interaction in which an incoming photon (γ) scatters off of an
atomic electron. Unless the electron direction is resolved, there is aφ-like ambi-
guity (represented by the ring in the drawing) for the reconstructed initial photon
direction.

2 Compton-ring devices

2.1 Derivation of the Compton formula

Assume that the initial electron is at rest, then from conservation of momentum, the electron recoils
from the scattered photon (see Figure 1):

~pe = ~pγ − ~pγ′ .

Taking the square of the momentum and usingEγ= pγ andEγ′= pγ′ (since photons are massless and
we are using units where c=1), results in

pe
2 = Eγ

2 + Eγ′
2 − 2EγEγ′ cos θ.

Using the invariant mass relationpe
2 = Ee

2−me
2 and conservation of energy(Eγ + me = Ee + Eγ′)

to eliminate the electron variablespe andEe results in

Eγ′ + 2meEγ + me
2 − 2EγEγ′ − 2mEγ′ + Eγ′

2 − me
2

= Eγ
2 + Eγ′

2 − 2EγEγ′ cos θ,

which reduces to

me(Eγ − Eγ′) = EγEγ′(1 − cos θ).

This is often rewritten as

cos θ = 1 +
me

Eγ

−
me

Eγ′

. (1)

2.2 Compton formula implications

As the electron kinetic energy,Ke = Ee − me, approaches zero the scattering angleθ also goes to
zero. Obviously at zero angle there is no scattering and the outgoing photon has the same energy as
the incoming photon(Eγ = Eγ′).
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At the other extreme, the maximum electron energy (and minimum outgoing photon energy) oc-
curs atθ = π, i.e., when the photon scatters back in the direction opposite to that of the incoming
photon. The maximum electron kinetic energy is

Ke(max) =
Eγ

2

Eγ + me/2
,

while the minimum outgoing photon energy is not zero, but is instead

Eγ′(min) =
me

2 + me/Eγ

=
1

2
Ke(max)

(

√

2me/Ke(max) + 1 − 1
)

.

2.3 Derivation of Compton angle error

The Compton angleθ in Equation 1 depends only on the energy of the incoming(Eγ = Eγ′+Ee−me)
and outgoing (Eγ′) gamma rays. If one considers only small Gaussian errors for the observablesEe

andEγ′ , then one can derive an analytic expression for the error onθ as follows.

Taking the differential of Equation 1 yields

d(cos θ) = − sin θdθ = −
me

Eγ
2
dEγ +

me

Eγ′
2
dEγ′ ,

which can be rewritten as

dθ =
me

sin θEγ
2

[

dEγ −
Eγ

2

Eγ′
2
dEγ′

]

.

SinceEγ = Ee + Eγ′ −me, we havedEγ = dEe + dEγ′ . Applying this to the previous equation for
dθ results in

dθ =
me

sin θEγ
2

[

dEe +

(

1 −
Eγ

2

Eγ′
2

)

dEγ′

]

. (2)

This equation defines the partial derivatives∂θ/∂Ee and∂θ/∂Eγ′ . So for Gaussian errorsδEe and
δEγ′ , the error estimate forθ is

δθ =
me

sin θEγ
2

√

δEe
2 +

(

1 −
Eγ

2

Eγ′
2

)2

δEγ′
2. (3)

This equation is valid as long as the fractional errors(δEe/Ee and δEγ′/Eγ′) are not too large.
Furthermore, one must be careful when applying this equation in situations nearθ = 0 or π.

2.4 Caveats in error function nearθ = 0 or π

The case whereθ is exactly zero is not a problem since this only occurs when the electron kinetic
energy(Ke = Ee − me) is zero. Thus there is no detected first interaction and one would not apply
the Compton formula. Arbitrarily small values ofKe also do not cause a problem for Equation 3 until
they approach the magnitude of the energy resolution itself.
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For arbitrarily small values of the kinetic energy, i.e.,Ke/Eγ � 1, the Compton formula (Equa-
tion 1) and energy conservation (Eγ′ = Eγ − Ke) imply

sin2 θ '
2meKe

Eγ
2

to lowest order inKe/Eγ . Thus to lowest order, the square of Equation 3 can be approximated as

δθ2 '
me

2Eγ
2

[

δK2
e

Ke

+
4Ke

Eγ
2
δEγ′

2

]

.

From this one can see thatδθ2 begins to blow up when the the kinetic energy becomes smaller than the
square of the energy resolutionδKe, but is well behaved otherwise. Note that the second term (δEγ′

2)
is suppressed for smallKe. WhenKe is smaller than about twice the energy resolution, the Gaussian
approximation itself breaks down and Equation 3 will begin to overestimate the error inθ. To apply
this formula, one should impose a lower cutoff on the electron energy based on the energy resolution.

For the case whereθ is nearπ, the scattered photon energy is near its minimum (but can not be
zero – see Section 2.2). Because of finite detector resolution, the observed photon energy can fluctuate
downward and even be lower than the minimally allowed energy. These kinematically unallowed
events will be explicitly rejected since the Compton formula itself fails. However, the case where the
photon energy reaches its minimum is kinematically allowed. For these events at or very near the
minimum, the error formula approaches infinity. To highlight the behavior near the minimum energy,
we can rewrite the equation usingEγ′ = Eγ′(min)(1 + ε), whereε � 1. In this limit, the Compton
formula (Equation 1) implies

sin2 θ '
2εme

Eγ

.

Thus to lowest order, the square of Equation 3 can be approximated as

δθ2 '
me

2εEγ
3

[

δEe
2 +

(

1 −
(1 − 2ε)Eγ

2

Eγ′
2(min)

)2

δEγ′
2

]

.

Neither term (δEe or δEγ′ ) is suppressed, so in order to avoid this infinity (whenε → 0), one should
eliminate events that are less than at least one standard deviation (in terms of the energy resolution)
away from the minimum photon energy.

2.5 Numerical cross-check of Compton-ring error function

To check the validity of Equation 3 we performed a simple Monte Carlo analysis by generating Gaus-
sian distributions for the input variablesEe andEγ′ and compared the resulting distribution ofθ with
the analytic expression. We generated 100,000 events where the Compton electron kinetic energy
(Ee −me) was sampled from a Gaussian distribution with a mean of 100keV and RMS of 1keV, and
the scattered gamma ray energy distribution had a mean of 400keV with an RMS of 2keV.

Using Equation 1 we reconstruct the Compton angleθ from the simulated observables. Figure 2
shows the reconstructedθ distribution. We fit a simple Gaussian function to this distribution. The
parameters from the fit along with the results from the analytic expressions (Equations 1 and 3) are
given in Table 1 The agreement between the fit and the analytic expression is excellent.
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Figure 2: Compton-ring detector. Reconstructed Compton angle θ from a simula-
tion of a single physical event sampled 100,000 times with Gaussian errors for the
observed energies. The fit result is superimposed on the distribution.

Table 1: Compton-ring detector. Compton angle and error comparison between a fit to the simulation
and an analytic calculation. Sample of 100,000 events where the electron kinetic energy is 100keV
with an RMS error of 1keV, and scattered gamma-ray energy of 400keV with an RMS error of 2keV.

Variable Fit Result Analytic Result
θ (mrad) 731.03 ± 0.02 731.01

δθ (mrad) 4.61 ± 0.01 4.61
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Figure 3: Compton interaction. Same as Figure 1 with the scattered photon and
electron opening angle labeled asα.

3 Electron-tracking devices

3.1 Derivation of kinematic relations (̀a la Compton formula)

The kinematic relations derived in Section 2 also apply to the electron-tracking type detector. Since
the electron-tracking devices resolve the direction of both the electron and photon, it is useful to
derive some additional relations in terms of the opening angleα (defined in Figure 3) of the observed
particles. From conservation of momentum~pγ = ~pγ′ + ~pe and usingEγ = pγ andEγ′ = pγ′ (since
photons are massless), the square of the initial photon momentum is

Eγ
2 = Eγ′

2 + pe
2 + 2Eγ′pe cos α.

Using the invariant mass relationpe
2 = Ee

2−me
2 and conservation of energy(Eγ = Eγ′ + Ee − me)

to eliminate the incoming photon energyEγ from the previous equations gives

Eγ′
2 + 2Eγ′(Ee − me) + (Ee − me)

2 = Eγ′
2 + pe

2 + 2Eγ′pe cos α.

Solving forEγ′ results in

Eγ′ =
me(Ee − me)

Ee − me − pe cos α
. (4)

Applying conservation of energy(Eγ = Eγ′ + Ee − me) to the above equation gives

Eγ =
(Ee − me)(Ee − pe cos α)

Ee − me − pe cos α
. (5)

Note that the ratio of Equation 4 and 5 is

Eγ

Eγ′

=
Ee − pe cos α

me

.

Combing the Compton formula (Equation 1) with Equations 4 and 5 yields a relation between the
Compton angleθ and the angle between the electron and scattered photonα:

cos θ = 1 −
(Ee − me − pe cos α)2

(Ee − me)(Ee − pe cos α)
. (6)
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3.2 Derivation of electron-tracking angular error function

The error function derived in Section 2 also applies for electron tracking devices with one important
distinction: since the electron trajectory is measured, there is no ambiguity in determining the direction
of the initial photon. One component of the photon direction is completely determined by the plane
formed by the scattered electron and scattered photon. The error on the angular component within that
plane is calculated below.

We start with the analytic expression for the angular error dθ given by Equation 2. For electron
tracking devices we measure the electron energy (Ee) but not the scattered photon energy (Eγ′). Using
Equation 4 we can find the relationship between the error onEγ′ with the error on the measured
quantitiesEe andα. We can then combine this relation with the previously derived error function to
find an equation in terms of measured quantities only.

Taking the differential of Equation 4 gives

dEγ′ =
medEe

Ee − me − pe cos α
−

me(Ee − me)

(Ee − me − pe cos α)2
[dEe − cos α dpe + pe sin αdα]

UsingEedEe = pedpe (which follows fromEe
2 = pe

2 − me
2) and Equations 4 and 5 to simplify the

expression, we get

dEγ′ =

(

Eγ′

Ee − me

−
Eγ′

2(pe − Ee cos α)

mepe(Ee − me)

)

dEe −
Eγ′

2pe sin α

me(Ee − me)
dα.

Substituting this into Equation 2 and regrouping in terms of dEeand dα gives

dθ =
(Eγ

2 − Eγ′
2)

Eγ
2(Ee − me) sin θ

[(

1 −
me

Eγ′

−
Ee

pe

cos α +
me(Ee − me)

Eγ
2 − Eγ′

2

)

dEe + pe sin αdα

]

.

This equation defines the partial derivatives∂θ/∂Ee and∂θ/∂α. So for Gaussian errorsδEe andδα,
the error estimate forθ is

δθ =
(Eγ

2 − Eγ′
2)

Eγ
2(Ee − me)2 sin θ

√

(

1−
me

Eγ′

−
Ee

pe

cos α +
me(Ee − me)

Eγ
2 − Eγ′

2

)

2

δEe
2 + pe

2 sin2 α δα2.

(7)

This equation is valid as long as the fractional errors in the measured quantities are not too large. As
in the Compton-ring case, one must be careful when applying this error function nearθ = 0 or π.
Also note that this is just the error of one component of the angle. The orthogonal component and its
associated error are completely determined by the plane defined by the observed electron and photon
trajectories.

3.3 Numerical cross-check of electron-tracking error function

To check the validity of Equation 7 we performed a simple Monte Carlo analysis by generating Gaus-
sian distributions for the input variablesEe andα and compared the resulting distribution ofθ with
the analytic expression. We generated 100,000 events where the Compton electron kinetic energy
(Ee − me) was sampled from a Gaussian distribution with a mean of 1000keV and RMS of 10keV,
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Figure 4: Reconstructed Compton angleθ from a simulation of a single physical
event sampled 100,000 times with Gaussian errors for the observed energies. The
fit result is superimposed on the distribution.

Table 2: Electron-tracking detector. Compton angle and error comparison between a fit to simu-
lation and an analytic calculation. Sample of 100,000 events where the Electron kinetic energy is
1000keVwith an RMS error of 10keV, and the opening angle between the scattered electron and
gamma ray is 1600 mrad with an RMS of 10 mrad. with and RMS error of 2keV.

Variable Fit Result Analytic Result
θ (mrad) 1264.70 ± 0.04 1264.75

δθ (mrad) 13.47 ± 0.03 13.49

and the opening angle between the scattered electron and gamma ray had a mean of 1600 mrad with
an RMS of 10 mrad.

Using Equation 7 we reconstruct the angleθ from the simulated observables. Figure 4 shows the
reconstructedθ distribution. We fit a simple Gaussian function to this distribution. The parameters
from the fit along with the results from the analytic expressions (Equations 6 and 7) are given in
Table 2. The agreement between the fit and the analytic expression is excellent.
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4 Generic effects

4.1 Derivation of angular error due to position resolution

The direction of the outgoing photon is determined from the measured positions of the two interac-
tion points. The measurement uncertainty of these positions creates an associated uncertainty in the
direction of the photon. One can derive an analytic expression for the angular error due to the position
resolution as follows.

If two points v1 = (x1, y1, z1), v2 = (x2, y2, z2) define the direction of the outgoing photon
~v = v2 − v1, then the angle between the photon and some arbitrary unit vectorn̂ is

n̂ · ~v = v cos θ = v‖,

wherev‖ is the component of~v parallel ton̂. The component perpendicular ton̂ is thenv⊥ = v sin θ.
Taking the differential ofv cos θ = v‖ gives

dv cos θ − sin θvdθ = dv‖.

Usingvdv = v⊥dv⊥ + v‖dv‖ (which comes from the differential ofv2 = v‖
2 + v⊥

2) and substituting
into the equation above, results in

cos θ
(v⊥

v
dv⊥ +

v‖

v
dv‖

)

− sin θvdθ = dv‖.

Using thesin θ andcos θ relations, this can be simplified to

dθ =
1

v2

(

v‖dv⊥ − v⊥dv‖
)

.

For Gaussian measurement errors, this gives an error estimate of

δθ =
1

v2

√

v‖2δv⊥2 + v⊥2δv‖2. (8)

If one wants the error estimator for just the unit vector parallel to the photon direction, i.e.,n̂ = ~v/v,
then the above equation reduces toδθ = δv/v.

If δd is the measurement error for each coordinate(x, y, z) of each pointv1 and v2, then the
measurement error for the coordinates of the vector~v are

δv⊥ = δv‖ =
√

2δd.

Then Equation 8 simplifies to

δθ =

√
2

v
δd. (9)

This relation holds as long as the separation between the two interaction pointsv is significantly larger
than the measurement resolutionδd.
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4.2 Numerical cross-check of error function due to position resolution

To check the validity of Equation 9 we performed a simple Monte Carlo analysis by generating Gaus-
sian distributions for the individual coordinates of the two interaction points that define the photon
direction. We generated 100,000 events where each coordinate had an RMS of 0.01 mm. The mean
starting and ending locations were (0,0,0) and (0,0,1) mm.

For each event we calculate the opening angle between the photon direction and the expected
direction. Figure 4 shows the opening angleθ distribution. We fit a simple Gaussian times asin θ
function (to account for the geometric solid angle effect) to this distribution. The parameters from the
fit along with the results from the analytic expression (Equation 9) are given in Table 3. The agreement
between the fit and the analytic expression is excellent.
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Figure 5: Angular deviation of the reconstructed photon direction from a simula-
tion of a single physical event sampled 100,000 times with Gaussian errors for the
measured interaction locations. The fit result is superimposed on the distribution.

Table 3: Opening angle comparison between the analytic calculation and the fit to the simulation.
Sample of 100,000 events where the starting and ending coordinates have an RMS error of 0.01 mm.
The separation between the coordinates is 1.00 mm

Variable Fit Result Analytic Result
θ (mrad) 0.16 ± 0.49 0.00

δθ (mrad) 14.10 ± 0.17 14.14


