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A Cylindrically Symmetric Uniaxial PML Maxwell Solver for
Transient Atmospheric Electricity Simulations

Eugene M. D. Symbalisty

1 Introduction

The recent interest in high altitude discharges known as red sprites, blue jets, and elves has stimulated
the modeling of transient atmospheric electricity. The modeling of these high altitude discharges require
an initiating cloud-to-ground or intracoud lightning event in order to pre-condition the electric field
between the cloud tops and the ionosphere. In this short paper we describe a finite difference time
domain (FDTD) numerical solution of Maxwell’s equations based on the Yee (Yee 1966) algorithm
coupled with a uniaxial perfectly matched layer (PML, Berenger 1994) boundary treatment. The PML
theory has advanced considerably since its original formulation in cartesian coordinates for lossless
media, and is computationally efficient to implement. Another boundary treatment possibility for our
sources that produce radiative and electrostatic fields, which we do not consider here, is a multipole
expansion in the time domain for the electromagnetic fields.

This treatment borrows heavily from the texts of Taflove (1995 and 1998), Sullivan (2000), and
Taflove and Hagness (2000). However, the particular equation set of interest, as far as we know, has
not been described in detail elsewhere. We write Maxwell’s equations as follows:
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The current term is split into an ohmic term and a source term, J;. The source term may represent,
for example, an intracloud lightning or cloud-to-ground lightning event.

The paper is organized as follows. Maxwell’s equations are written in the frequency domain in-
cluding the PML boundary treatment. Maxwell’s equations are then rewritten in the time domain
including the terms for the PML boundary treatment. The FDTD numerical solution is then written
down. Test problems are then descibed. The test problems are relevant to the initiating lightning
event and therefore charged regions, radiative and electrostatic fields evolve from an impulsive current
source. The test problems consist of running the same current source on a large and small grid. The
final time is chosen when the electromagnetic wave is about to impinge upon a PML boundary on the
large grid. The large grid numerical solution is considered to be the true solution. The small grid is
chosen such that any numerical reflections off the small grid boundaries will have had time to propagate
back through the entire grid by the final time. The small grid and true solutions are then compared
and a relative error is computed.



2 Frequency Domain Equation Set

We begin with Maxwell’s curl equations in a uniaxial medium (Taflove 1998, p.330) in cylindrical

coordinates:
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We now specialize to our two dimensional axisymmetric (around the p = 0 axis) case. We are evolving
E,, E., and Hy and all derivatives with respect to ¢ are set to zero. Therefore, the above six equations
for E and H reduce to the following three:
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The PML boundary zones: (1) in the radial direction begin at p, and extend to the maximum radius
of the grid p,,,; (2) in the positive z direction begin at z5 and extend to the top of the grid z;, and ; (3)
in the negative z direction extend from z; down to the bottom of the grid z;. They are backed by a
perfect electrical conductor (PEC).

The parameters x, and r, are designed to kill outgoing evanescent waves when set to a value greater
than 1. Thus far, in our studies of atmospheric electricity, these waves have not presented a problem
and we therefore set the input parameter x,, equal to one.

The parameter o, is the maximum artifical conductivity in the PML zones. If d is the overall
length of the PML region in a given direction then, following Taflove (1995), we set
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R, is the theorectical reflection coefficient at normal incidence, which we set equal to e™X. The test
problems described in a following section used x = 10, m = 3, and 16 PML boundary zones at each
PML boundary. Following Taflove (1998), we next define
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Eight frequency domain equations can now be written down, after some algebra, as follows
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3 Time Domain Equation Set
Equations 19 through 26 are now easily converted to the time domain. We obtain:
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4 Numerical Solution

Equations 28 and equation 29 are the only two of the time dependent equation set that include the time
and altitude dependent ambient electrical conductivity. In order to allow for rapid and large increases
in this conductivity they are solved with exponential time stepping (Taflove 1995). We have:

n—l—%

Qu(t+ At) = Q1) e =8t 4 Co " (1 _ -2an 6)
n—l—%

Qz(t + At) = Qz(t) eigAt + CZT(I — engt) (37)



The remaining equations are written down in a straight forward FDTD approximation, following Taflove
(1998) and allowing for time centering:
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The relative permeability is assumed to be constant in time in the above equations. The time dependent
equations reduce to Maxwell’s equations in the real, non-PML zones, and the numerical solution reduces
to the Yee algorithm in the real zones.

5 Test Problems

The first problem models an intracloud lightning event with PML boundaries on the right hand, top,
and bottom sides. We are careful to invent a current density that has a neglible current in the PML
zones. The current density has a vertical component only:
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The altitudes z; and z_, set equal to 2.15 and 1.85 km respectively for this test case, are input
parameters and correspond to the centers of the ellipsoidal charge distributions (of opposite sign) that
develop. For the tests describe herein, we used a Uman like time dependence for the lightning event,
with ()4 being the value of the charge, and 7 and ( being input parameters:
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Figure 1 displays the absolute value of the radial and z electric fields and the magnetic field on the
large grid just before the electromagnetic wave reaches any of the PML boundaries. @Qp was set to
-10 Coulombs. The grid dimensions are in km and the grid cells are 10 m squares. In this case 7 =1
microsecond and 3 = 3. Figure 2 displays the absolute value of the z component on the small grid,



the large grid, and the relative error from left to right. The left and middle figures correspond to the
middle graphic on figure 1, but zoomed in on the small grid. Actually we are plotting to within 5 cells
of the PML boundaries on the small grid. The relative error is defined as:

Relative Error = |(Esman — Elarge)/Elargel (46)

The color bars on the small and large field plots are identical. If the value of field is zero on the large
grid then the relative error is not computed. If the relative error is less than the black value of the
color bar then it is not plotted and appears as white. We see that the relative error is only large where
the field in going through zero and, in fact, is changing sign. Figure 3 is similar to figure 2 except
that it is the magnetic field that is displayed. The magnetic field clearly reflects off the right hand side
boundary but the relative error is 0.001 or less. The magnetic field is more sensitive in our two tests
because the electrostatic field dominates the electric field plots once the radiation field has exited the
small grid.

The second problem models a cloud-to-ground lightning event with PML boundaries on the right
hand and top side only. The bottom boundary, or ground is set to be a perfect conductor. The altitude
z4 is an input parameter, set equal to 10 km, and corresponds to the altitude where an ellipsoidal
charge distribution develops. The grid cells are 500 m and 7 = 100 microseconds and 3 = 3. We are,
again, careful to invent a current density that has a neglible current in the PML zones. The current
density is similar to equation 44 except that it draws charge from the ground:

Jz(pa th) = f(t) 6_( ZTE4N2 (47)
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Qg4 was set to -140 Coulombs. Figure 4 displays the absolute value of the radial and z electric fields and
the magnetic field on the large grid just as the electromagnetic wave reaches the right hand side PML
boundary. The PML boundary on the top turns out to be irrelevant because the ambient electrical
conductivity reduces the field to near zero before entry to the PML region. Figure 5, analagous to
figure 2 for the first test case, displays the absolute value of the z component on the small grid, the
large grid, and the relative error from left to right. We see that the relative error is, again, only large
where the field in going through zero and, in fact, is changing sign. Figure 6, analagous to figure 3
displays the small grid, large grid, and relative error of the magnetic field. In this case the relative
error can be quite large as the field goes through zero and changes sign.
We next estimate a grid average relative error as follows:

Z |Fsmall - Ea’/‘ge|
Z |Earge|

The symbol F' represents one of the electric or magnetic field components. Table 1 tabulates this grid
averaged relative error. The summations in equation 48 are over the small grid to within five zones of
the PML boundaries.

We performed some numerical simulations varying the number of PML in each direction and also
the parameter y in equation 16. The results are found in table 2. We note that the zero PML zone
case corresponds to the perfect reflector boundary conditions and we therefore expect and obtain very
large errors. We see that with y = 10 each error continues to decrease as the number of zones increases.
However, we also note that increasing x from 10 to 16 and keeping the numbers of PML zones constant

F error =

(48)



Table 1: Grid Average Relative Error

Test FE. Error E, Error By Error
267 x107° 6.41x107% 3.42x107¢
311 x107° 1.57x107° 6.79 x 104

Table 2: Test 1 Grid Average Relative Error For Different Parameters

PML Zones y E, Error E, Error By Error
0 10 0.365 0.05399 4.93
8 10 1.54x107* 3.42x107° 1.99 x 103
12 10 5.81x107° 1.39x107° 7.54x 1074
16 10 2.67x107° 6.41 x107% 3.42x10°*
20 10 1.42x107° 3.48 x107% 1.80 x 107¢
24 10 920x107% 214x10% 1.22x10°*
28 10 6.93x 1076 1.41x1076 942 x107°
28 16 1.11 x107° 2.01x107% 1.50x 1074

at 28 actually increased the error. We suspect that the exact choice for x, the number of PML zones,
and the PML exponent is problem dependent. The exponent was kept at 3 for the work described in
this paper.

6 Conclusions

We have derived, beginning with the tensor Maxwell curl equations of Taflove (1998), the frequency
domain, time domain, and finite difference equations for problems that satisfy azimuthal symmetry with
ohmic and source currents. These problems include two dimensional high altitude discharge studies and
intracloud lightning studies. We have demonstrated that a uniaxial PML treatment reduces reflections
from boundaries to a suitably small level.
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