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ABSTRACT 

Subsurface flow processes may take place at many different scales. The different scales refer to 
rock pore structure, micro-fractures, distinct fracture networks ranging from small to large fracture 
spacing, and even faults. Presently, there is no satisfactory methodology for describing quantita­
tively flow and reactive transport in multi-scale media. Approaches commonly applied to model 
fractured systems include single continuum models (SCM), equivalent continuum models (ECM), 
discrete fracture models (DFM), and various forms of dual continuum models (DCM). The SCM 
describes flow in the fracture network only and is valid in the absence of fracture-matrix inter­
action. The ECM, on the other hand, requires pervasive interaction between fracture and matrix 
and is based on averaging their properties. The ECM is characterized by equal fracture and ma­
trix solute concentrations, but generally different mineral concentrations. The DFM is perhaps the 
most rigorous, but would require inordinate computational resources for a highly fractured rock 
mass. The DCM represents a fractured porous medium as two interacting continua with one con­
tinuum corresponding to the fracture network and the other the matrix. A coupling term provides 
mass transfer between the two continua. Values for mineral and solute concentrations and other 
properties such as liquid saturation state may be assigned individually to fracture and matrix. Two 
forms of the DCM are considered characterized by connected and disconnected matrix blocks. The 
former is referred to as the DCCM (dual continuum connected matrix) model and the latter as the 
DCDM (dual continuum disconnected matrix) model. In contrast to the DCCM model in which 
concentration gradients in the matrix are allowed only parallel to the fracture, the DFM provides 
for matrix concentration gradients perpendicular to the fracture. The DFM and DCCM models can 
agree with each other only in the case where both reduce to the ECM. The DCCM model exhibits 
the incorrect behavior as the matrix block size increases, resulting in reduced coupling between 
fracture and matrix continua. The DCDM model allows for matrix gradients within individual 
matrix blocks in which the symmetry of the surrounding fracture geometry is preserved. However, 
the DCDM model breaks down for simultaneous heat and mass transport and cannot account for 
significant changes in porosity and permeability caused by chemical reactions. 

1 INTRODUCTION 

Fractured porous media, and more generally hierarchical media involving multiple length scales, 
playa ubiquitous role in flow and transport processes in the Earth's subsurface. Fracture dominated 
flow systems are involved in numerous subsurface geochemical processes including contaminant 
migration, ore deposition, weathering and others. Practical applications involving fractured porous 
media include contaminant migration, oil recovery from fractured reservoirs, geothermal energy, 
degradation of cement, and potentially subsurface sequestration of CO2, to mention but a few. 

Considerable progress has been made in developing and applying reactive transport models to 
complex geochemical systems involving porous media characterized by a single continuum [see 
Lichtner et al. (1996) for a general overview and references therein; Lichtner, 1998]. However, 
subsurface flow processes may take place at many different scales. The different scales refer to 
rock pore structure, micro-fractures, distinct fracture networks ranging from small to large fracture 
spacing, and faults. At present there does not exist a completely ~atisfactory methodology for 
describing quantitatively reactive flow and transport in multi-scale media. 

Because fractured porous media are characterized by bimodal distributions in physical and 
chemical properties with generally distinct values associated with the fracture network and rock 
matrix, a description based on a single porous medium is generally unable to capture the unique 
features characteristic of a fractured system. Furthermore, existing approaches presently used 
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for describing fracture-matrix interaction are of limited use. This is especially true for transport 
of chemically reacting constituents and situations where simultaneous flow of mass and heat is 
involved. A prime example where present approaches may fail and where more general methods 
are needed is the proposed Yucca Mountain high level nuclear waste repository which is to be 
hosted in a variably saturated fractured tuff rock. This contribution provides a critical review 
of existing approaches for representing fractured media in continuum-based models applied to 
reactive flow and transport. Extension of these methods to hierarchical. porous media is considered 
briefly. 

This contribution provides an overview of existing conceptual and numerical methods based 
on a continuum approach for describing reactive chemical transport in fractured media. The pre­
sentation is restricted to continuum-based formulations, in contrast to other approaches such as 
algorithmic methods including Cellular Automata and Diffusion Limited Aggregation (DLA), and 
network models, for example. This is because the level of chemistry which can be incorporated 
into continuum models is on a par with the most sophisticated geochemical models. These mod­
els incorporate presently available thermodynamic and kinetic data for complex multicomponent 
systems. This work reviews previous efforts to describe fracture-matrix interaction involving fluid 
and heat flow with particular emphasis on the applicability of these methods to reactive chemical 
transport. 

2 CONTINUUM MODELS FOR REACTIVE FLOWS IN 
FRACTURED MEDIA 

A number of different conceptual frameworks have been used to represent fractured porous media. 
They include the discrete fracture model (DFM), equivalent continuum model (ECM), variations 
of dual and multiple continuum models (DCM), and the representation of fractures ·as regions of 
high permeability-low porosity in heterogeneous media. Incorporation of chemical reactions in 
models of fractured porous media requires new considerations of the suitability and extension of 
some of the basic techniques used to represent fluid flow, especially with regard to the appropri­
ate length scale to account for the presence of reaction fronts. Furthermore, because equations 
for multicomponent systems require a much greater computational effort to solve, new numerical 
techniques are required. Finally, chemical reactions can dramatically alter the physical and hence 
flow properties of a porous medium. Fractures may widen or become sealed as a result of chem­
ical reactions. Alteration of the matrix surrounding fractures may affect the interaction between 
fracture and matrix. 

A fractured porous medium is composed of two distinct continua, referred to as fracture and 
matrix, represented by sub- and super-scripts j and m. A representative elementary volume (REV) 
of bulk rock with volume Vb consists of the sum of fracture Vf and matrix Vm volumes 

. Vb = VI + Vm , (2.1) 

as illustrated in Figure 1. The fraction of volume occupied by fractures, denoted by E j. is defined 
by 

VJ EI = -, (2.2) 
Vb 

with Em = 1 - E I representing the fraction occupied by the rock matrix. The fracture and matrix 
volumes may be further broken down into pore and solid fractions 

Va: = V; + V:~lid' (a = j, m), (2.3) 
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I 

Figure 1: Illustration of geometric relations in a fractured porous medium with fracture aperture 
28. See text for an explanation of symbols used in the figure. 

Note that €f corresponds to the fracture porosity of the bulk rock volume for the case that the 
fractures are not filled with solid (V! = ltj). In general, however, due to the presence of fracture 
filling in the form of solids, the intrinsic porosity of the fracture is less than unity. Bulk and intrinsic 
fracture and matrix properties of some quantity Z are related by fa: 

Z! = €aZa' 

where Z! denotes the bulk and Za the intrinsic property. 

(2.4) 

Because of their small aperture and volume, fractures can be easily altered by chemical reac­
tions. To illustrate this effect consider the redistribution of silica between matrix and fracture as 
heat drives fluid from the matrix into the fracture network. An example of this process might be 
heat generated by the decay of high level nuclear waste at the proposed Yucca Mountain repository. 
Imagine that the pore fluid in the rock matrix is brought to equilibrium with respect to a particular 
silica polymorph such as amorphous silica at boiling conditions. Further consider that as the fluid 
in the matrix boils it escapes into the surrounding fracture network. As the matrix pore fluid is 
vaporized, its silica content is deposited in surrounding fractures partially filling the fractures by 
precipitating silica polymorphs. At issue is the extent to which the fractures can be filled by the 
silica contained in the matrix pore water. To determine the volume fraction of solid precipitated in 
the fracture <P~i02' the expression 

f 1- €f m-
<PSi02 = <Pm CSi02 V Si02 ' 

€f 
(2.5) 

is evaluated, where CSio
2 

denotes the concentration of silica in the matrix pore fluid at 100°C 
assumed to be in eqUilibrium with a particular silica polymorph with molar volume V Si02' and 
matrix porosity <Pm. This relation, derived from mass balance considerations, is dependent on all 
matrix pore water flashing to steam in the fracture. If this is not the case, for example a drying front 
may propagate inward into the matrix depositing silica within the matrix, then Eqn.(2.5) provides 
an upper bound on the extent of fracture filling. Other processes may also be possible, such as 
silica becoming remobilized from fracture coatings, which are not accounted for in this simple 
analysis. Results for a matrix porosity of <Pm = 0.1 are shown in Figure 2 for quartz, chalcedony and 
amorphous silica. From the figure it is clear that for a given matrix porosity, the degree of sealing of 
the fracture depends on the fracture volume fraction €f and the particular silica polymorph which 
precipitates. Amorphous silica with a higher solubility gives the largest fracture filling followed 
by chalcedony and quartz. For complete sealing of the fracture (<P~i02 = 1) a very small fracture 
volume fraction is necessary. Moderate filling could lead to fracture coatings that armor the fracture 
and prevent or reduce imbibition into the matrix. Thus very different consequences could result 
depending on the extent of fracture filling. 

- ------------------------------
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Figure 2: Volume fraction of quartz (solid curve), chalcedony (dashed curve) and amorphous silica 
( dash-dotted curve) plotted as a function of fracture porosity. A volume fraction of one represents 
complete filling of the fracture assuming that the fracture was initially devoid of solid filling. 

This example is but a highly simplified situation that could take place at the proposed Yucca 
Mountain nuclear waste facility. Heat from the waste is expected to lead to the formation of 
heat pipes with consequent boiling and degassing of CO2 with an increase in pH and possible 
precipitation of salts as evaporation takes place (Lichtner and Seth, 1996). 

2.1 Discrete Fracture Model (DFM) 

One approach is to treat fractures explicitly taking into account coupling with the rock matrix 
through a mass transfer term (Figure 3). This approach, referred to as the discrete fracture model 
(DFM), applies to a single fracture or an infinite number of equally spaced fractures. The DFM, . 
however, rapidly becomes unwieldy for more than a few fractures if there is no simple geometric 
relation between them. 

Several forms of the DFM are possible depending on treatment of transport processes in the 
fracture and matrix. Here a simplified form for the solute transport equations is considered neglect­
ing diffusion in the fracture and advection and diffusion parallel to the fracture in the matrix. This 
is a good approximation for sufficiently fast flow rates in the fracture. A single reacting species is 
considered obeying the reaction 

(2.6) 

with solid A(s) and aqueous species A. Transport equations for the DFM can be expressed as 

(2.7) 

for the fracture, and 

(2.8) 
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Figure 3: Discrete fracture model. 

for the matrix, where z is the coordinate along the fracture, and x is the coordinate in the matrix 
perpendicular to the fracture. Linear reaction kinetics are assumed with rate constants kf and km 

for fracture and matrix, respectively, and equilibrium concentration Ceq. The solute concentration 
is denoted by Co: (a = f, m), corresponding to fracture and matrix. Diffusivity is denoted by 
D, and fracture and matrix porosity and tortuosity by 70: and 4>0:, respectively. The fluid flow 
velocity in the fracture and matrix is represented by vf and Vm , respectively. To complete the set 
of equations initial and boundary conditions must be prescribed. At the fracture-matrix interface 
the solute concentrations are presumed to be the same 

(2.9) 

The fracture transport equation is coupled to the matrix equation by the last term on the right-hand 
side of Eqn.(2.7) representing the flux across the fracture-matrix interface. 

Recently, Steefel and Lichtner (1998a,b) demonstrated a unique relation between mineral al­
teration along a fracture and that within the rock matrix perpendicular to the fracture. This property 
can be investigated by examining the stationary state solution to the DFM transport equations. The 
stationary state solution is useful for describing the time evolution of a reacting system which may 
be represented as a sequence of stationary states, with each stationary state corresponding to a dif­
ferent configuration· of minerals along the flow path (Lichtner, 1988). The stationary state solution 
to the DFM transport equations can be expressed as (Steefel and Lichtner, 1998a) 

(2.10) 

and 

(2.11) 

where Am,! represent equilibration lengths (Lichtner, 1988; 1998) in the fracture and matrix, re-
spectively, defined by . 

. >.,. = V(Tr,lm, 
PeA~Am 

Af = A~ + PeAm' 

(2.12) 

(2.l3) 
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where the dimensionless Peelet-like numberPe is defined by 

vl 8 
Pe = (T<jJD)m' 

February 29,2000 

(2.14) 

and where A~ = vI I kl denotes the fracture equilibration length for pure advective transport (Licht­
ner, 1988). According to these results a wedge-shaped front geometry is produced with slope 

(2.15) 

The slope is characterized by the sum of the two dimensionless groups Pe and Ami A~. A simple 
scaling relation exists between the concentration profile into the rock matrix Cm and along the 
fracture C I of the form 

(2.16) 

Similar scaling relations hold for other quantities such as reaction rates and mineral concentrations. 
Numerical analysis involving multicomponent systems with nonlinear reaction kinetics yielded 
similar results. 

A surprising result of this analysis is that in spite of the high flow velocity in the fracture, with 
only diffusive transport in the matrix, the fracture behaves as a diffusion dominated system because 
of the strong interaction with the matrix (Steefel and Lichtner, 1998). The results suggest that field 
observations of matrix alteration perpendicular to the fracture may be used to predict mineraliza­
tion along the fracture itself. How well this prediction is born out in natural systems depends on 
strong communication between the fracture and matrix that could be significantly impeded by the 
presence of impermeable fracture coatings, for example. 

These results may be generalized to include an infinite set of equally spaced fractures with 
spacing d (Lichtner, 1998). In this case the stationary state matrix solute concentration is given by 

(2.17) 

This solution reduces to the previous case of infinite fracture spacing for d» Am» 8. For finite 
fracture spacing which is small compared to the matrix equilibration length, the scaling relation 
between fracture and matrix concentration profiles no longer holds. If the fracture spacing is much 
smaller compared to the matrix equilibration length (8 «: d «: Am), matrix concentration gradients 
disappear and the solute concentration in the fracture and matrix become equal. This is just the 
definition of the ECM which is a limiting case of the DFM. 

2.2 Dual Continuum Models: DCCM & DCDM Approaches 

The dual continuum model (DCM) represents a fractured porous medium as two interacting con­
tinua with one continuum corresponding to the fracture network and the other the matrix. A cou­
pling term provides mass transfer between the two continua. The fracture continuum is character­
ized by high permeability and low porosity compared to the matrix continuum. The DCM enables 
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separate values of the field variables to be assigned to fracture and matrix continua. Additional 
parameters are needed to represent the average matrix block size and fracture aperture, or equiva­
lently fracture volume, associated with a representative elemental volume (REV) of bulk medium. 
From these geometric quantities the interfacial surface area between fracture and matrix can be 
computed. 

In the field of reservoir engineering dual continuum models have been in use for some time 
since their first introduction by Barenblatt and Zheltov (1960) and Barenblatt et al. (1960). The 
approach put forth by Barenblatt and Zheltov (1960) represented a fractured reservoir as two dis­
tinct overlapping continua. Flow equations were developed for each continuum, with a coupling 
term providing mass transfer between them. Shortly thereafter, Warren and Root (1963) published 
an alternative conceptual model in which the matrix was represented as a periodic array of iden­
tical blocks completely surrounded by fractures. Pruess and Narisimhan (1985) generalized the 
approach of Warren and Root (1963) to include multiple nodes within a matrix block allowing 
for local gradients to be present within the rock matrix. These authors also provided for a fully 
transient description. In this approach the matrix is discretized into concentrically nested blocks, 
spheres, or other geometric shapes. The outer most block is connected to the fracture continuum . 

. The authors referred to their generalization as the so-called MINC (Multiple Interacting Contin­
uum) approach. The term MINC, however, is somewhat of a misnomer. In their original paper, 
Pruess and Narisimhan (1985) associated different continua with the grid, and not as a material 
property of the medium independent of the grid. In so far as the matrix is considered as a single 
continuum in which provision is made for gradients in various field variables such as pressure, 
temperature, saturation, concentration etc., there are still only two solid continua-fracture and 
matrix, rather than "multiple" continua. . 

The two distinct approaches to formulating dual continuum models may be conveniently dis­
tinguished by the connectivity of the rock matrix (the fracture is always considered to be connected 
in the following). In the case of Barenblatt and Zheltov (1960), the matrix continuum is completely 
connected with each matrix block connected to its neighboring blocks. In contrast, for the con­
ceptual model used by Warren and Root (1963) and Pruess and Narisimhan (1985), the matrix 
continuum is disconnected with each matrix block connected to surrounding fractures, but not to 
other matrix blocks. In what follows these two approaches are referred to as the dual continuum 
connected matrix (DCCM) and dual continuum disconnected matrix (DCDM) formulations of the 
DCM. As originally formulated, the DeCM model associates a single matrix node with each frac­
ture node. This turns out to be a distinct disadvantage of the DCCM approach since it does not 
allow for gradients, within the matrix perpendicular to the fracture. An extension of the DCCM 
formulation to include more than one matrix node for each fracture node has been used, but only 
to limited extent. The computer code FEHM (Zyvoloski et al., 1997), for example, allows for the 
possibility of two matrix nodes for each fracture node. This extension of the DCCM model to 
multiple matrix nodes is referred to as the MDCCM model, or Multiple Node Dual Continuum 
Connected Matrix modeL The structure of the MDCCM model is similar in many respects to the 
DFM, with the transport equation for the discrete fracture replaced by a continuum formulation. 
As a consequence it would have similar computational requirements as the DFM. The MDCCM 
model is not considered further in this critique. 

It is not clear that dual continuum models can provide sufficient flexibility, especially in the 
case of sufficiently fast chemical reactions where the equilibration length is on the order of the pore 
scale or microscale. In such cases a hierarchical approach may be needed. "Fast" heterogeneous 
reactions have often in the past been represented by local equilibrium. However, in fact, such 
reactions may be much more complicated than surface controlled kinetic reactions because they 
may result in local concentration gradients and hence become sensitive to pore and fracture geom­
etry. An important unanswered question is how to scale such processes to the macroscale where 
the continuum formulation is valid. Triple- and multiple-porosity models that have been used to 
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Table 1: Summary of acronyms used for continuum models describing flow and transport in frac­
tured porous media and their definitions. 

Model Definition 
SCM Single Continuum Model 

ECM Equivalent Continuum Model 

DFM Discrete Fracture Model 

DCM Dual Continuum Model 

DCCM Dual Continuum Connected Matrix 

MDCCM Multiple Node Dual Continuum 
Connected Matrix 

DCDM Dual Continuum Disconnected Matrix 

Description 
Fracture can be represented as a single con­
tinuum with no interaction with the matrix 
Pervasive interaction between fracture 
and matrix 
Applicable to sparse, widely spaced 
fractures 
Representation of fracture and matrix as 
separate continua 
DCM in which matrix continuum is con­
nected and discretized by a single node 
DCM in which matrix continuum is con­
nected and discretized by multiple nodes 
DCM in which matrix continuum is 
disconnected 

describe flow through fractured porous media (Closmann, 1975; Abdassah and Ershaghi, 1986; 
Chen, 1989) may'be useful in such instances, but are beyond the scope of the present treatment. 

Terminology is not applied consistently in the literature when referring to these two different 
conceptual approaches. Barenblatt et al. (1960).used the terminology double porosity. However, 
other authors since then have attempted to distinguish the cases of a connected and disconnected 
matrix continuum as dual permeability (Barenblatt and Zheltov, 1960) versus dual (or double) 
porosity (Warren and Root, 1963) models, respectively. Hill and Thomas (1985) generalized the 
dual porosity model to include arbitrary connectivity referred to as a dual permeability-dual poros­
ity model. Triple porosity models have also been considered (Bai et al., 1993). To confuse the 
issue, in the soil literature the connected matrix continuum approach is referred to as a double 
porosity model (Gerke and Van Genuchten, 1993; Chittaranjan et al., 1997), rather than dual per­
meability as is common in the oil reservoir literature. A summary of the acronyms and their 
definitions used here are listed in Table 1. 

2.2.1 Dual Continuum Connected Matrix (DCCM) Model 

The DCCM formulation represents the fracture network and matrix as distinct but coexisting con­
tinua. A coupling term provides exchange of mass and heat between the two continua. In what 
follows a multicomponent chemically reacting system consisting of N aqueous species and M 
minerals is considered. Homogeneous reactions within the aqueous phase and mineral precipita­
tion/dissolution reactions take place represented by the reactions 

(2.18) 
j j 

written in terms of a set of (nonunique) aqueous primary or basis species Aj , aqueous secondary 
species Ai, and minerals Ms. The quantities Vji and Vjs represent the stoichiometric reaction co­
efficients. These reactions take place simultaneously in the fracture and matrix continua. Homo­
geneous reactions are presumed to be sufficiently fast allowing for a local equilibrium description. 
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Ion exchange and surface complexation reactions are not considered in the present treatment, al­
though they are straightforward to include. Mass conservation equations for a multicomponent 
system for fracture and matrix continua can be written in the form 

! (€'<P,wf) + V . €/Of = -€I L vjsI! - rfm, (2.19) 
s 

for the fracture continuum, and for the matrix continuum as 

:t (€m<PmWj) + v· €mOj = -€m LvjsI': + rfm, (2.20) 
s 

for aqueous primary species labeled j, and for minerals as 

a<p~ V I a ( f ) at = ss' a= ,m. (2.21) 

These equations are referenced to the bulk rock REV. For simplicity a fully saturated system is 
considered. The quantities <Pa, <P~, Wj, OJ, and P:, (a = f, m) refer to intrinsic fracture and 
matrix properties corresponding to porosity, mineral volume fraction, total solute concentration and 
flux, and mineral reaction rate, respectively. The quantity V s denotes the mineral molar volume. 
The total concentration Wj is defined relative to an arbitrarily chosen set of primary species with 
concentrations Cj as 

.T,a Ca + " Ca C~. ._- ('V~. )-lK.; II ('V
J
a. CJC!') Vii, 

'i': j = j L..J Vji i' • I. • 1 (2.22) 
j 

where Cf denotes the concentration of the ith secondary species derived from the primary species 
concentrations through mass action equations with equilibrium constant Ki and activity coeffi­
cients fi,j [see Lichtner et al. (1996) for more details]. The solute flux consisting of contributions 
from advection, dispersion and molecular diffusion is defined by 

(2.23) 

with tortuosity Ta and diffusion coefficient Da assumed to be.the same for all species within each 
continuum. The mineral kinetic reaction rate P: can be expressed as a sum over various parallel 
reaction mechanisms which has the general form based on transition state theory 

(2.24) 

with kinetic rate constant ksz, mineral surface area A~, equilibrium constant Ksl(T,p), Tempkin 
constant asl, and prefactor p~ consisting of products of primary and secondary species concentra­
tions raised to respective powers njs and nis (Lichtner, 1998) 

".,a _ 

rsl -

The ion activity product Q~ is defined as 

(2.25) 

(2.26) 
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The surface area A~ is in general different for each continuum, and as a consequence so also is the 
reaction rate Ie: even in the limiting case of equal fracture and matrix aqueous concentrations. 

The coupling term rfm is equal to the product of the interfacial specific surface area A fm 

between fracture and matrix continua multiplied by the flux Ofm between fracture and matrix 
defined by , 

r fm A ofm (2 2 
j = fm~£j' . 7) 

For the geometry shown in Figure 1, the interfacial specific fracture-matrix area A fm is given by 
the expression 

(2.28) 

More complex geometries can also be represented leading to more complicated expression for the 
fracture-matrix surface area. 

The aqueous and mineral mass conservation equations are coupled to one another through the 
reaction rate term, and through changes in porosity, tortuosity, and permeapility caused by chem­
ical reactions. The latter effects are more difficult to incorporate into the conservation equations, 
requiring various phenomenological relations that relate changes in physical continuum properties 
to changes in mineral concentrations. One approach that is often used is to relate porosity and 
mineral volume fractions for each continuum by the assumption that they add to unity 

(2.29) 
s 

This relation, however, presupposes that the connected porosity and total porosity are equivalent. 
Other continuum properties such as permeability and tortuosity are then related to porosity through 
Archie's law and the Carmen-Kozeny equation, for example. How successful this approach really 
is needs to be tested in the field and in laboratory experiments. 

2.2.2 Dual Continuum Disconnected Matrix (DCDM) Model 

An alternative formulation to the DCCM approach that alleviates the limitation to small matrix 
blocks is the dual continuum disconnected matrix (DCDM) approach. In this approach it is as­
sumed that each matrix block is completely surrounded by fractures (Figure 4). Different matrix 
blocks can only communicate with one another through the fracture network. In the DCDM for­
mulation, the matrix is resolved into a set of nested rectangular or spherical regions forming an 
onionskin-like nodal structure. Gradients across a single matrix block, caused by gravity, or ther­
mal or concentration gradients, for example, are thus not possible to describe in this formulation. 

Mass transport equations for the DCDM model for fracture continuum have the following 
form 

:t (Ef¢/Vf) + V· (Efnf) = -Ef L lIjJ! - rfm.· (2.30) 
s 

. This equation may be of 1, 2, or 3 spatial dimensions. The matrix continuum transport equations, 
however, have the one-dimensional form 

! (Em <Pm Wj) + ()~ (Em OJ) = -Em L lIjsI;n + rfm, 
s 

(2.31) 
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Figure 4: Geometry for the DeDM model for matrix blocks of size I and fracture aperture 28 
indicating the ID coordinate Y for each matrix block and possible node numbering scheme. 

written with generalized coordinate Y representing the distance from the fracture to a point within 
the matrix. The coordinate y, for example, is a radial coordinate in the case of nested spheres or 
linear distance for a nested set of cubes. The fracture-matrix coupling term rfm has the same form 
as given in Eqn.(2.27) for the DeeM formulation. 

Fundamental difficulties occur when applying the DeDM approach to simultaneous heat and 
mass transport. This may be seen by considering a stack of matrix blocks with each block sur­
rounded by a fracture. The top and bottom of the stack is held at differeritfixed temperatures. 
In the absence of heat sources or sinks within the matrix blocks, it is clear that at steady-state 

" conditions temperature gradients cannot exist within the matrix blocks. In fact, for steady state 
conditions, the temperature of each matrix block must be the same as its surrounding fracture. As 
a consequence, heat conduction takes place through the fracture network only and not through the 
matrix blocks. This leads to an effective thermal conductivity determined by the fracture network 
Keff = Kj. By contrast in a layered medium with layer thicknesses Ii of alternating fracture and 
matrix properties the effective thermal conductivity is given by the harmonic mean 

L:li 1 + 28 
" _Ii 28 1 ~ K m

, 
L....J -+-

Ki Kj Km 

(2.32) 

for 1 »8, and km « kj, with half-fracture aperture 8 and matrix block size 1. Field observations 
suggest that heat conduction in a fractured porous medium is determined primarily by the matrix 
conductivity and not the conductivity of the fracture network which above the watertable may be 
filled primarily with air. Presumably this is because matrix blocks are not completely isolated from 
each other by fractures, but in fact are in direct contact over some fraction of the fracture interfacial 
area as a result of asperities and in situ stress field. Thus the DeDM approach gives an incorrect 
value for the effective thermal conductivity for a composite medium such as a fractured porous 
rock. 

There are other limitations to the DeDM approach as formulated here. It is restricted to a 
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homogeneous matrix and cannot handle strong changes in porosity and permeability which would 
alter the flow characteristics of the rock from a fracture dominated system to one of porous flow, 
a common occurrence in chemical weathering for example (Odling and Roden, 1997). A hetero­
geneous matrix block would break the symmetry of the nested matrix node structure. Significant 
changes in porosity and permeability can alter the physical properties of the porous medium alto­
gether. Thus during chemical weathering of a granitic rock, in the extreme case of formation of a 
bauxite deposit the weathering profile changes continuously with depth from a lateritic layer near 
the surface containing aluminum oxide ore, to a highly weathered saprolite zone containing clay 
minerals, to the unweathered granite basement rock. The lateritic and saprolite layers are highly 
porous and have lost the fracture characteristics of the granite rock mass. The DCDM formula­
tion, for example, could not describe the continuous changes in material properties taking place 
with depth. As the medium becomes more porous and the fracture properties of the granite rock 
body are obliterated, the DCDM model would continue to impose a relic symmetry on the medium 
corresponding to the initial fracture geometry that would not be correct. Moreover, the boundary 
between the two distinct media in the case of weathering is continuously changing, albeit slowly, 
with time. The question of continuously joining a non-fractured porous medium to a fractured 
medium needs more study. 

2.3 Equivalent Continuum Model (ECM) 

The ECM representation of a fractured porous medium is based on a composite medium obtained 
by suitably averaging fracture and matrix properties. Concentrations of dissolved constituents are 
identical in the fracture and matrix. However, mineral concentrations and reaction rates may be, 
and generally are, distinct in each continuum. As is demonstrated quite generally below through 
scaling relations, the ECM represents the asymptotic limit of the DCCM model. 

2.3.1 Derivation of the ECM from the DCCM Model 

For conditions of sufficiently strong fracture-matrix coupling the DCCM model reduces to the 
ECM. This may be seen by adding Eqns.(2.19) and (2.20) for fracture and matrix aqueous primary 
species. The fracture-matrix coupling term rfm drops out yielding the single equation 

! (Ef¢f'Itf + Em¢m 'ItT) + v· [Efnf + EmnT] = - L: Vjs (EfI! + EmI::) . (2.33) 
s 

This equation reduces to the ECM provided that the primary species concentrations in the fracture 
and matrix are identical 

ct = Cf!l = c~cm. 
3 3 3 

(2.34) 

In that case, 'ItjCm = 'Itf = 'I!j, and the accumulation term becomes 

Ef¢f'Itf + Em¢m'ItT = ¢ecm'I!jcm, (2.35) 

where the ECM porosity ¢ecm is defined as an average over fracture and matrix porosities 

(2.36) 
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Likewise, the solute flux reduces to an expression involving the ECM solute concentrations 

~ecm _ ~f + ~m _ '" DV' .T,ecm + .T,ecm 
Uj - €fUj €mUj - -Teem'i-'ecm '£' j qeem '£' j . (2.37) 

In this equation the ECM tortuosity is related to intrinsic fracture and matrix properties by the 
expression 

(2.38) 

and the Darcy flux qeem is given by the weighted sum of intrinsic fracture and matrix velocities 

(2.39) 

For equal fracture and matrix concentrations, the mineral reaction rate reduces to 

rem = € ]f + € J1!1' = _Aeem '" k peem [1 - (K Qecm)1/CT8 IJ 
8 f 8 m 8 8 ~ 81 sl sl sl , (2.40) 

1 

where the ECM mineral surface area A:cm is given by the weighted sum of intrinsic fracture and 
matrix surface areas 

Aeem - Af+ Am s - €f s €m 8' (2.41) 

In contrast to the ECM transport equations for solute species, the ECM equations for minerals 
generally can not be reduced to a single bulk averaged equation. Formally, mineral mass transfer 
equations for the ECM can be derived that have the same form as the individual fracture and matrix 
continua given by Eqn.(2.21) 

v rem 
s 8 , (2.42) 

obtained by a weighted sum of Eqn.(2.21) written for fracture and matrix with weight factors € f and 
Em. The mineral volume fraction <t>:cm in the ECM formulation is related to the intrinsic fracture 
and matrix volume fractions by the expression 

(2.43) 

The ECM porosity and mineral volume fractions satisfy the relation 

(2.44) 

However, unlike solute concentrations, mineral concentrations in the ECM need not be, and gen­
erally are not, equal for fracture and matrix. This is because different mineral surface areas apply 
to each continuum that, furthermore, may change differently with time as reaction progresses. For 
example, fracture and matrix mineral surface areas may vary with reaction with distinctly different 
dependencies on mineral volume fraction according to a relation of the form . 

(2.45) 
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where no: is a constant which may be different for each continuum. One possible choice for the ini­
tial specific mineral surface area in the matrix is to assume the surface·area is inversely proportional 
to mineral grain size and directly proportional to the initial matrix mineral concentration 

..I,mO 
AmO = _0/_8_ 

S bm . 
S 

(2.46) 

The initial fracture mineral specific surface generally has a different value, for example, propor­
tional to the reciprocal of the half-fracture aperture 8 for minerals located at the fracture wall, plus 
the ratio of initial fracture mineral concentration to grain size for fracture filling minerals 

A f O = ! + <p!O 
S 8 f . bs 

(2.47) 

The different mineral surface areas associated with each continuum lead to different reaction rates 
in fracture and matrix continua, and hence different mineral concentrations even though the solute 
concentrations are the same for each continuum. For no: =I 0, mineral volume fractions must 
be obtained directly from the individual mass transfer equations for fracture and matrix continua 
through Eqn.(2.21) and not the ECM Eqn.(2.43). This is because it is not possible to express the 
ECM surface area as defined by Eqn.(2.41) as a function of the ECM mineral volume fraction. 
It should be noted that it is tacitly assumed that € f remains constant for all time which need not 
actually be the case. 

Deciding what values to use for the reacting mineral surface areas is perhaps one of the most 
uncertain parameters to determine. What makes specification of this parameter most difficult is 
that it is the hydrologically accessible surface area, that is the area that is in contact with the fluid, 
that is of interest. For accurate determination of the surface, in situ experiments and direct field 
measurements are required. 

A consequence' of averaging fracture and matrix properties in the ECM is that travel times 
of non-reacting tracer species are generally longer in the ECM compared to the other models 
describing transport in fractured media. Indeed, it follows that the ECM travel time for a tracer is 

" given by 

(2.48) 

where L denotes the system length. Substituting for <Pecm and qecm in terms of their intrinsic fracture 
and matrix properties gives for the case of flow in the fracture network only (vm = 0) 

( Em<Pm) 
teem = 1 + Ef</>f t" (2.49) 

where the fracture travel time t, is defined as 

tf _ </>tL 
v, (2.50) 

The travel time tf applies to single and dual continuum formulations for the case when flow is 
absent in the matrix. As a consequence of Eqn.(2.49), the ECM is not conservative in predicting 
contaminant arrival times in the case of fracture dominated flow. 
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2.3.2 Asymptotic limit of the DCCM Model: Scaling Relations 

As demonstrated by Lichtner (1993) through scaling relations, the reactive mass transport equa­
tions based on a kinetic description of mineral reaction rates approach asymptotically the local 
chemical equilibrium limit. This asymptotic relation between a kinetic description and local equi­
librium one provides an immediate understanding for the conditions of validity of local equilib­
rium. In addition, because the solution to the local equilibrium form of the reactive transport 
equations can be reduced to solving a set of algebraic equations, this relation also provides a way 
of checking the accuracy of the more complicated solution to the partial differential equations rep­
resenting the kinetic formulation. The same considerations apply to the relationship between the 
DCCM formulation and the ECM. Applying the scaling transformation 

(2.51) 

(2.52) 

with constant scale factor u to the DCCM equations [Eqns.(2.19) and (2.20)] leads to the trans­
formed equations 

s 

and 

(2.54) 

where the transformed flux OJ.,. is given by 

OJ.,. = -u-1(T(pD)o:V.,.iJ!j+qo:iJ!j, (2.55) 

in which the diffusion/dispersion term is scaled, and V.,. represents the gradient operator with 
respect to the scaled spatial coordinates. As a consequence, assuming that the boundary conditions 
imposed on the system are scale invariant, it follows that the solution to the solute and mineral 
conservation equations represented by the function F{r, tl{k}, D, q, A jm ) scales according to 
the relation 

(2.56) 

Taking the limit of this relation as u -+ 00 leads to the pure advective, local eqUilibrium form of 
the ECM as the asymptotic limit of the DCCM equations. 

3 DFM-DCCM MODEL COMPARISON 

In this section a comparison is made between stationary state solutions to the DFM and DCCM 
modeL The stationary state DCCM transport equations for a single component system expressed 
in terms of intrinsic properties for the solute species in the fracture and matrix have the form 
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where the Kronecker delta function ofa = 1 if a = j, and zero otherwise, and the fracture-matrix 
coupling term, is defined by 

(3.2) 

where the notation df = 0 and dm = l/2 is introduced to refer to the perpendicular distances from 
the fracture and matrix node centers, respectively, to their common interface. The kinetic rate 
constants ka are effective rate constants equal to the product of the intrinsic rate constant times 
the specific surface area for the fracture and matrix continua, respectively. Thus they may differ 
significantly from each other. The coupling term is presumed to be linear in the difference in 
fracture and matrix concentrations at each node. The coupling strength, has the same units as the 
kinetic rate constants [s -1 ]. 

At large distances from the inlet the solute concentration approaches the equilibrium concen­
tration Ceq of the solid. The transport equations are subject to the following boundary conditions 
at the inlet and outlet to the fractured porous medium 

(3.3) 

To solve the stationary state transport equations, first note that the fracture transport equation may 
be solved for the matrix concentration C~ to give 

(3.4) 

where 

(3.5) 

Substituting this expression into the matrix transport equation results in the following fourth order 
ordinary differential equation with constant coefficients 

f14C' d3C' cPC' dC' 
a(,) dX! - b(,) dX! + c(,) dX/ + d(,) d: + e(,)Cj o. (3.6) 

The coefficients a(,), b(,), c(,), d(,), and e(,) are defined by 

() 
€f€m{r¢D)f{r¢D)m a, -- , ) 

(3.7a) 

be,) = €~€f (Vm(r¢D)f + Vf(r¢D)m) ' (3.7b) 

c(,) = €fVf~mVm _ €m(r¢D)m (1 + cf~f) - cf(r¢D)f (1 + cm~m ) ) (3.7c) 

( ) ( 
cfkf) (cmkm) d, = €mVm 1 + --:;- + cfVf 1 + -,- , (3.7d) 

e(,) =, [ (1 + €f~f) (1 + €m~m ) - 1] , 
(3.7e) 
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The most general solution to Eqn.(3.6) for an infinite system subject to the boundary conditions at 
the inlet and outlet given by Eqns.(3.3) has the fonn 

C,(Xi 1) = Ae-q1
:t: + Be-q2

:t: + Ceq, (3.8) 

where ql ( 1) and q2 ( 1) are the two nonnegative roots of the characteristic fourth order polynomial 

(3.9) 

Because the coefficient e( 1) is positive, there must always exist an even number of positive roots. 
Because db) 2: 0, there can be only two nonnegative roots. From Eqn.(3.4), the matrix concen­
tration has the fonn 

(3.1O) 

where 

_ 1 E,k, E,V, E,T,¢,D 2 (. - 1 2) 
Wi - + -- - --qi - qi , ~ -, . 

111 
(3.11) 

The coefficients Ai are related to the boundary conditions imposed on the solution with the values 

(CO - c. ) - W3 ·(CO - C. ) \ 
~ = (_1)i+l m eq -t, eq , (i = 1, 2). 

WI-W2 
(3.12) 

In the limit 1 -+ 0 the coupling tenn vanishes and the matrix and fracture continua evolve inde­
pendently of one another. The ECM is retrieved in the limit 1 -+ 00. 

Stationary state profiles for fracture and matrix concentrations are illustrated in Figure 5 based 
on the analytical solution for a single component system. A fracture aperture of 1 mm, Darcy flow 
velocity of 1000 m y-l, matrix block size of 0.1 m, and matrix porosity of 0.05 are used in the 
calculations. As can be seen from Figure 5(a), as the fracture-matrix surface area increases the 
matrix concentration plateau decreases. The ECM limit is recovered with increasing time. As 
shown in Figure 5(b) as the fracture kinetic rate constant increases the ECM limit is obtained at 
earlier times. 

Comparing the stationary state solution for the DCCM fonnulation, Eqns.{3.8) and (3.10), 
with the DFM solution given by Eqns.{2.1 0) and (2.11), very different behavior for the solute con­
centration is obtained. In particular, a scaling relation between fracture and matrix concentrations 
does not exist in the DCCM fonnulation-if for no other reason that there is only one matrix 
node for each fracture node. In fact, the DFM, DCCM model, and ECM can only agree with 
each other when the ECM is valid. In the DCCM approach concentration gradients are parallel to 
the fracture, whereas in the DFM (and DCDM) matrix gradients are perpendicular to the fracture. 
Although gradients parallel to the fracture could have been included in the DFM, they would not 
have made a significant difference in the qualitative behavior of the solution for sufficiently rapid 
fracture flow. 

4 NUMERICAL IMPLEMENTATION 

4.1 Integrated Finite Volume 

To develop numerical techniques for solving the partial differential equations arising from the 
various fonnulations of the DCM, it is convenient to use an unstructured grid approach. In this 
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Figure 5: Stationary state concentration profiles based on the analytical solution to the stationary 
state transport equations. (a) Fracture-matrix surface area multiplied by factors of 100 (dashed), 
10 (solid), 1 (dot-dashed), and 0.1 (solid). (b) Fracture (solid) and matrix (dashed) concentration 
profiles for kinetic rate constant equal to (1) 10-10, (2) 10-11, and (3) 10-14 moles cm-2 S-I. 

approach, nodal connectivity, volumes, distances between connecting nodes, and surface areas can 
be specified arbitrarily as illustrated in Figure 6 for a simple structured grid geometry with unequal 
spacing. The integrated finite volume equations for the primary species are expressed simply as 

(4.1) 

for a fully implicit time discretization with time step At. The flux nj<n'n> is defined as 

( ) 
Wjn - Wjn' 

nj<n'n> = - npD <n'n> d d + V<n'n> 'lIj<n'n>. 
n + n' 

(4.2) 

The notation <n'n> refers to the interface between nodes n and n' with interfacial area A<n'n> 
and distances to the interface denoted by dn and dn ,. The sum in Eqn.( 4.1) is over all which are 
nodes connected to the nth node. Note that there is no reference to fracture or matrix properties 
as that is handled automatically by the grid structure and its connectivity. Even explicit reference 
to the fracture-matrix coupling term has disappeared in the integrated finite volume form of the 
equations which is now included in the term containing the sum over fluxes. This approach offers 
greater flexibility in programming both the DCCM and DCDM methods, requiring only a change 
in preprocessor to invoke the appropriate geometrical relation between nodes. The internal part of 
the code can remain the same. 

• d'+ ~ • 
DI ~ 

A(0l' 02) 

Figure 6: Integrated finite volume geom­
etry. 
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the DCCM model. 

8 



Lichtner: Witherspoon Symposium - 19- February 29, 2000 

Table 2: Node connections for the DCDM model with grid numbering as shown in Figure 4. 

Node Connecting Nodes 
1 1 2 7 
2 1 2 3 
3 2 3 4 
4 3 4 5 
5 4 5 6 
6 5 6 
7 1 7 8 13 
8 7 8 9 
9 8 9 10 

Examples of integrated finite volume grids for the DCDM and DCCM formulations are illus­
trated in Figures 4 and 7, respectively. Note that the DCCM grid is in fact just a two-dimensional 
(2D) problem with two y-nodes. The difference between a true 2D problem and the DCCM grid, 
lies in the different assignment of areas at the fracture-matrix interface. The node connections for 
the DCDM model corresponding to Figure 4 are listed in Table 2. 

The flexibility of the unstructured grid framework of the various dual continuum formula­
tions allows for practically arbitrary assignment of block connections and surface areas. However, 
one must ensure that the resulting finite volume equations actually represent partial differential 
equations. It is important to be" certain that the processes to be modeled can actually take place 
physically and are not merely an artifact of some artificially imposed grid structure. 

4.2 DCCM: Harmonic Versus Arithmetic Averaging 

An important consideration in the numerical implementation of the DCCM model is the computa-
, tion of interface properties between fracture and matrix. This is especially true because of the often 

great difference in fracture aperture and matrix block size. In finite difference form the coupling 
term Eqn.(2.27) is given by 

q,~ - q,f!1 
rJm = Ajm(r¢>D)jm d~ + ~ , . (4.3) 

where as previously defined following Eqn.(3.2), dj = 8 and dm = 1/2. To evaluate the product 
r¢>D at the fracture-matrix interface, harmonic or arithmetic averages are possible. The harmonic 
average is more rigorously based from considerations of the steady-state flux across the interface 
(Patankar, 1980). For d j « dm, the harmonic mean yields 

(4.4) 

Thus the harmonic mean yields a coupling term proportional to the effective matrix diffusivity. 
The arithmetic mean, however, gives for the interface property 

(4.5) 
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yielding a coupling term proportionai to the effective fracture diffusivity. Because the intrinsic 
fracture porosity (4)f f'V 1) is generally much larger than the matrix porosity (4)m<< 1), harmonic 
averaging leads to a smaller coupling term compared to arithmetic averaging. Which approach 
is correct? Intuitively, one would expect that the flux across the fracture-matrix interface would 
be governed by diffusion in the matrix and not the fracture, because of the very small fracture 
aperture, and hence harmonic averaging is preferred. 

The DCCM model appears to give the incorrect behavior as the matrix block size is increased. 
Evaluating the coupling term Eqn.(2.27) using harmonic averaging according to Eqn.(4.4) and 
inserting Eqn.(2.28) for the interfacial area, it is apparent from the finite difference form of the 
coupling term Eqn.(4.3) that as the matrix block size increases, the coupling term decreases as d;,2 

(4.6) 

As a consequence, coupling between fracture and matrix decreases as the matrix block size in­
creases. this behavior runs counter to that predicted by the DFM and what intuitively is to be 
expect~d. That is, the fracture-matrix interaction should be independent of the matrix block size, 
at least for times which are short compared to the transport time across the matrix block. The 
DCDM model does not have this limitation and is able to describe narrow alteration halos sur­
rounding fractures resulting from sharp concentration gradients within the rock matrix: 

Numerical difficulties arise when applying the DCCM model to cases where the fracture vol­
ume fraction €f is very smalL As shown in Figure 8, variable grid spacing can lead to completely 
erroneous results for mineral concentrations. In this figure, the DCCM model is applied to forma­
tion of kaolinite resulting from the alteration of K-feldspar. Results are compared for uniform and 
variable grid spacing using harmonic averaging. Each pair of curves compare uniform grid spacing 
with a change in spacing at 0.5 m from the inlet. Grid spacing varies from 0.0075 m to 0.09 m as 
indicated in the figure. As can be seen from the figure, an erroneous jump in the kaolinite volume 
fraction is obtained at a change in grid spacing. The magnitude of the jump is also very sensitive 
to the absolute grid size. The DCDM model, on the other hand, does not suffer from this difficulty 
since a small grid spacing on the order of the fracture aperture can used to discretize the matrix in 
the neighborhood of the fracture. 

4.3 DCDM: Decoupling Fracture and Matrix Transport Equations 

Computationally, the DCDM model is generally much more expensive compared to the DCCM 
model. For a spatial domain consisting of Nf fracture nodes and Nm nodes within each matrix 
block, for an Nc component system the DCDM model requires solving NcxNfxNm simultaneous 
equations; whereas the DCCM model requires solving only 2xN cXNf equations. However, perhaps 
surprisingly, it is possible to rigorously decouple the fracture and matrix equations in the DCDM 
model reducing the system of equations to Ncx (Nf+Nm) in number. As noted by Gilman (1986) 
this is possible because of the one-dimensional form of the matrix equations in the DCDM model. 
This result is surprising given the strong, nonlinear, coupling that is possible between fracture and 
matrix continua. The procedure outlined by Gilman (1986) involves first a backward solution of the 
matrix equations beginning with the inner most matrix node. This provides a relation between the 
concentration at outer most matrix node and the concentration at the adjacent fracture node. With 
this result the matrix concentration appearing in the coupling term in the fracture equations can 
be eliminated. As a result, the fracture equations are only a function of the fracture concentration 
and may be solved independently of the matrix equations. Once the fracture equations are solved, 
the solution of the matrix equations can be completed through a forward sweep of the matrix 
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Figure 8: Profiles showing the volume fraction of Kaolinite which precipitates as K-feldspar is 
weathered. Shown are profiles for different grid spacing based on the harmonic mean. The calcu­
lations correspond to an elapsed time of 10,000 years with a fracture flow rate of 1000 m y-1 and 
fracture volume fraction € f = 10-3 . The intrinsic fracture porosity is unity and matrix porosity 0.1. 

nodes heginning with the outer most node. This approach also lends itself to parallel computing 
techniques (Seth and Hanno, 1995; Smith and Seth, 1999) in which the matrix equations can be 
solved in parallel, greatly reduCing computation times and dramatically extending the capability 
of the DCDM to much larger numbers of nodes and chemical components that could be solved 
without these techniques. 

5 EXAMPLE: IN SITU COPPER LEACHING 

To illustrate and contrast the various approaches previously discussed for describing transport in 
porous fractured media, an example problem of in situ leaching of a hypothetical copper ore body is 
presented (Lichtner, 1998). Calculations were carried using the computer code FloTran (Lichtner, 
1999). A one-dimensional column is considered containing the copper-bearing phase chrysocolla 
and gangue minerals in the fonn of kaolinite and quartz. A sulfuric acid solution with pH 1 is 
allowed to infiltrate into the column through a fracture network. The initial fluid in the column is 
assumed to be in eqUilibrium with chrysocolla, kaolinite, and quartz at a pH of 8. The composition 
of the host rock for the model ore deposit is listed in Table 3. For the model parameters listed in 
the table, the ore body has a copper grade of 0.90% and bulk rock density of approximately 2.44 
g cm-3 . A matrix block size of 0.1 m is used in the calculations. A fracture aperture of 1 mm 
corresponding to a fracture volume fraction of €f = 2.941 X 10-2 is used. A bulk Darcy velocity of 
10 m y-1 corresponding to a fracture velocity of 340.02 m y-1, and an effective matrix diffusivity 
of 10-6 cm2 S-1 is used in the calculations. In the DFM and DCDM model, the matrix was 
discretized into 10 grid blocks of variable spacing with the smallest spacing equal to the fracture 
aperture neighboring the fracture. Secondary minerals which form during leaching are amorphous 
silica, gypsum, jurbanite, and alunite, and secondary copper minerals brochantite and antlerite. 

Results for the copper breakthrough curves for the different models are shown in Figure 9. If 
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Table 3: Model ore deposit giving primary ore and gangue mineral abundances, porosities, 
and associated mineral surface areas used in the calculations for dual, equivalent, and single 
continuum models. Values for the SCM are bulk properties. 

VolumeFr action Surface Area [cm- ] 
Property Fracture Matrix ECM SCM Fracture Matrix ECM SCM 

Chrysocolla 0.2 0.02 0 . 0253 0.0059 42. 4 . 5.118 1.235 
Quartz 0.0 0.73 0 .7085 O. 1 14.6 1 0.0294 
Kaolinite 0.0 0.2 0.1941 O. 1 40. 38.82 0.0294 
Porosity 0.8 0.05 0.0721 0.0235 

diffusion is turned off, then the assumption no flow in the matrix would require that the SCM must 
give identical results as the DCCM and DCDM models. Thus differences between breakthrough 
curves fo'r these models are due to differences in how the interaction term between fracture and 
matrix is treated. The SCM breakthrough curve exhibits a single peak resulting from dissolution 
of chrysocolla in the fractures. Likewise the ECM also exhibits a single peak but which is de­
layed in time compared to the SCM as expected from Eqn.(2.49) which predicts a retardation of 
approximately 

in agreement with the figure. 

1 + Ef~f ~ 3.02, 
Em'Ym 

(5.1) 

The width of the ECM peak is longer compared to the SCM since there is more copper to 
dissolve because the ECM incorporates copper from both the rock matrix and fractures. The 
breakthrough curves for the DFM and DCCM and DCDM models, show a bimodal distribution 
resulting from contributions from individual fracture and matrix copper sources. The shapes of 
the curves are somewhat different with the DCDM model agreeing more closely with the DFM. 
Differences between the DFM and DCDM model can be attributed to different formulations of 
the matrix which is treated as three-dimensional cubical blocks in the DCDM. The DCCM curve 
follows closely to the SCM result during the early part of breakthrough dominated by dissolution 
of copper in fractures, but then drops off to an almost constant value as the matrix becomes the 
dominant contributor. Clearly, the DCCM model is unable to give the proper behavior at longer 
times and overshoots the copper concentration as predicted by the DFM and DCDM model at early 
times. 

It should be noted that the peak copper concentration is quite high in these simulations com­
pared to what might be expected from an actual five spot leach field. This is an artifact of the 
one-dimensional form of the calculations 

6 CONCLUSION 

Describing quantitatively reactive flow and transport in fractured porous media presents a number 
of challenges that have yet to be resolved satisfactorily. Dual continuum models attempt to account 
for the bimodal distribution in physical and chemical properties characteristic of fractured porous 
media. An equivalent porous medium description is generally unable to capture the unique features 
characteristic of fractured systems. Dual continuum models are presumably applicable to highly 
fractured systems where the DFM becomes impractical, but not so highly fractured that the system 
can be described as a equivalent continuum. Whether a dual continuum as opposed to a single 
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Figure 9: Copper breakthrough curves for the SCM, ECM, DFM, DCCM and DCDM models. 

continuum representation of the fracture network only is appropriate, depends on the time scales 
of interest and the extent of interaction between the fracture network and rock matrix. 

Two different DCM models were discussed in detail, characterized by the connectedness of 
the rock matrix. In the DCCM model, the matrix formed a connected continuum with each fracture 
node associated with a single matrix node. The validity of the DCCM model rests on the absence 
of strong concentration gradients within the matrix perpendicular to the fracture. This is a con­
sequence of representing the matrix by a single node for each fracture node. The DCCM model 
should be applicable to situations where the kinetic reaction rate varies smoothly over the matrix 
block, or equivalently, the characteristic chemical equilibration length scale is long compared to 
the matrix block size. Faster reactions imply shorter equilibration length scales, leading to steeper 

, gradients, and eventually failure of the DCCM approach. 

An alternative approach, the DCDM model, is applicable to situations where the fracture 
network segregates the matrix into disconnected blocks which can only communicate with one 
another through their common fracture interface. Within each matrix block, a fine grid may be 
used to capture arbitrarily sharp gradients, thereby eliminating one of the limitations of the DCCM 
modeL However, in contrast to the DCCM approach, the DCDM model associates a single fracture 
node with each matrix block which completely surrounds the block. This symmetry imposes severe 
constraints on the DCDM modeL It is not possible, for example, to account for gradients or 
reaction fronts across matrix blocks arising, for example, from gravity driven flow. Furthermore, 
incorporation of heterogeneous matrix blocks would destroy this symmetry. Finally, it does not 
appear possible to describe simultaneous heat and mass flow within the DCDM framework. 

Many conceptual difficulties remain in providing a quantitative description of reactive flow 
and transport in fractured porous media. Although not discussed in any detail here, especially 
difficult is obtaining the necessary data to apply the models to a particular field situation. Both 
the DCCM and DCDM approaches introduce additional parameters such as matrix block size, 
fracture aperture, and fracture-matrix interaction parameters, which represent averages over dis­
tributions and which are difficult to measure and characterize. In addition, these models require 
characterizing the reactive surface area of minerals separately for fracture and matrix continua 
from experimental and field data. 
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