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We have applied fuzzy set theory to some exposure control problems 
encountered in the machining and the manufacturing of beryllium parts. A 
portion of that work is presented in this paper. The major driving force for 
using fuzzy techniques in this case rather than classical statistical process 
control is that beryllium exposure is very task dependent and our 
manufacturing plant is quite atypical. We believe that standard statistical 
techniques will produce too many false alarms. The beryllium plant 
produces parts on a daily basis, but every day is different. Some days many 
parts are produced and some days only a few. Some times the parts are 
large and sometimes the parts are small. Some machining cuts are rough 
and some are fine. These factors and others make it hard to define a typical 
day. The problem of concern, for this study, is the worker beryllium 
exposure. Even though the plant is new and very modem and the exposure 
levels are expected to be well below the required levels, the Department of 
Energy has demanded that the levels for this plant be well below required 
levels. The control charts used to monitor this process are expected to 
answer two questions: 

1. Is the process out of Control? Do we need to instigate special 
controls such as requiring workers to use respirators? 

2. Are new, previously untested, controls making a difference? 
The standard Shewhart type control charts, based on consistent plant 
operating conditions do not adequately answer this question. The approach 
described here is based upon a fuzzy modification to the Shewhart X Bar­
R chart. This approach is expected to yield better results than work based 
upon the classical probabilistic control chart. 

KEYWORDS: fuzzy logic, control chart, beryllium. 



INTRODUCTION 

Los Alamos National Laboratory has recently completed a new beryllium part 
manufacturing facility. The intent of the facility is to supply beryllium parts to the 
Department of Energy (DOE) complex and also act as a research facility to study better 
and safer techniques for producing beryllium parts. Exposure to beryllium particulate 
matter, especially very small particles has long been a concern to the beryllium industry. 
The industrial exposure limit is set at 2 )lg/m3 per worker per eight-hour shift. The DOE 
has set limits of 0.2 )lg/m3 or ten times lower than the industrial standard for this facility. 
In addition, they have requested continual quality improvement. In other words, in a short 
period of time they intend to set even lower limits. Several controls have been 
implemented to assure that the current low level can be met. But there is a real 
management concern that the process remains under control and that any further process 
improvements are truly improvements. Since the facility is a research facility with 
manufacturing capabilities, the workload and type of work done each day can vary 
dramatically. This makes the average beryllium exposure vary widely from day to day. 
This in turn makes it very difficult to determine the degree of control or the degree of 
improvement with a standard statistical control chart. For this reason we have 
implemented a fuzzy control chart to improve our perception of the process. 

The plant has three workers and seven machines. Each worker wears a device that 
measures the amount of beryllium inhaled during his or her shift. Each machine is fitted 
with a similar device. Probably due to the fact that the machines don't inhale, the machine 
readings are normally a factor of ten lower than the worker readings. The devices are 
analyzed in the laboratory and the results are reported several days after the exposure has 
occurred. The machine readings are multiplied by ten and averaged with the worker 
readings. This provides a sample size of up to ten for each day. A Shewhart-type X Bar-R 
chart can be constructed with these data and presumably answer the questions of control 
and quality improvement. Although such a chart can be useful, because of the widely 
fluctuating daily circumstances, the standard tests for controllability are not very 
meaningfuL 

There are four variables that have a large influence upon the daily beryllium exposure. 
They are the number of parts machined, the size of the part, the number of machine set 
ups performed, and the type of machine cut (rough, medium, or fine). In our fuzzy model, 
a semantic description of these four variables and the beryllium exposure are combined to 
produce a semantic description of the type of day had by each worker and each machine. 
The day type is then averaged and a distribution is found. These values are then used to 
produce a fuzzy Shewhart-type X Bar-R chart. This chart is quite consistent and takes 
into account the daily variability. It provides more realistic control limits and will make it 
easier to make an honest determination about whether a new control has made a realistic 
improvement to the system or not. 

THE FUZZY SYSTEM 

The fuzzy system consists of five input variables or universes of discourse and one output 
variable. Each input universe has two membership functions and the output universe has 



five membership functions. The input and the output are connected by thirty-two rules. 
The five input variables are: 
1) Number of Parts - with a standard range of 0 to 10 and membership functions: 

a) Few. 
b) Many. 

2) Size of Parts - with a standard range of 0 to 10 and membership functions: 
a) SmalL 
b) Large. 

3) Number of Set Ups - with a standard range of 0 to 20 and membership functions: 
a) Few. 
b) Many. 

4) Type of Cut - with a standard range of 0 to 10 and membership functions: 
a) Fine. 
b) Rough. 

5) Beryllium Exposure - with a standard range of 0 to 0.4 and membership functions: 
a) Low. 
b) High. 

The output variable is: 
1) The Type of Day - with range from 0 to 1 and membership functions: 

a) Good. 
b) Fair. 
c) OK. 
d) Bad. 
e) Terrible. 

The ranges on all of the input variables described above and shown in figure 1 are 
"idealized". They are the ranges used for the membership functions in the computer code. 
In reality, based on simulations and some data, we found that the membership functions 
should be different for different groups. The machinist-group uses a different set of input 
membership functions, but the same rules and the same output membership functions, 
than the machine-groups use. Machines one and two use the same input membership 
functions, but they are slightly different than the ones machines three and four use. 
Machines five and six are similar but their input membership functions are slightly 
different than those used by the other machines. Machine seven is different than all of the 
other machines. In order for all of the groups to use the same membership functions in the 
computer code we multiply their daily reading by factors to make them fit the appropriate 
membership function in the code. For example, the average beryllium readings for the 
machines are lower than the average machinist readings by a factor of ten. Therefore, we 
multiply the machine reading by ten so that we can use the same membership functions 
for both machinists and machines. Figure 1 represents the idealized or standard input 
membership functions used in the code. Figure 2 represents the output membership 
functions. 

The rules are based on some simple ideas. For example, if all of the four mitigating 
input variables indicate that the beryllium exposure should be low, and it is low, then the 
"type of day" is OK. Likewise, if all four indicate that the exposure should be high, and it 
is high, then the day is also OK. If all four indicate that the exposure should be low, and it 
is high, then the day is Terrible. If all four indicate that the exposure should be high, and 
it is low, then the day is Good. Fair and Bad days fall in between the OK days and the 
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Good and Terrible extremes. The thirty-two rules are given in Table L the form of the 
rules is: 

If (Number of Parts) is ... and If (Size of Parts) is ... and If (Number of Set Ups) is ... and 
If (Type of Cut) is ... and If (Beryllium Exposure) is ... Then (The Type of Day) is ... . 

The Size of Parts is determined as the number of parts multiplied by the average diameter 
of each part, measured in centimeters. The Type of Cut is determined by the number of 
parts multiplied by the diameter, multiplied by a roughness factor. A fine cut has a 
roughness factor of 1, a medium cut is 2 and a rough-cut is 3. An example of the use of 
this technique will follow a discussion of the plant simulation. 

PLANT SIMULATION 

The Los Alamos Beryllium facility has been completed, but has not yet been put into 
production. For this reason a computer program was written in order to provide a 
simulation of the facility operation and provide a demonstration of the fuzzy control chart 
technique. The results .of this study are being supplied to plant workers in order for them 
to provide input to further improve the technique. 

Some actual beryllium exposure data were available for this study. This allowed the 
investigators to develop some reasonably realistic simulations for each of the intermediate 
process steps for manufacturing the beryllium parts. The combination of plant data and 
simulation data were used in this study. The simulation-operator interaction process is 
iterative and is designed to enhance the beryllium exposure control techniques. A 
Shewhart-type control chart is used to measure the central tendency and the variability of 
the data. A process flow diagram of the plant simulation is shown in figure 3. 



Table I. Rules 

Rule number Number of Size of Parts Number of Type of Cut Beryllium Type of Day 
Parts SetUps Exposure 

1 Few Small Few Fine Low Fair 
2 Few Small Few Fine High Terrible 
3 Few Small Few Rough Low OK 
4 Few Small Few Rough High Terrible 
5 Few Small Many Fine Low Fair 
6 Few Small Many Fine High Bad 
7 Few Small Many Rough Low Fair 
8 Few Small Many Rough High Terrible 
9 Few Large Few Fine Low Fair 
10 Few Large Few Fine High Bad 
11 Few Large Few Rough< Low Fair 
12 Few Large Few Rough High Terrible 
13 Few Large Many Fine Low Good 
14 Few Large Many Fine High Bad 
15 Few Large Many Rough Low Fair 
16 Few Large Many Rough High Bad 
17 Many Small Few Fine Low Fair 
18 Many Small Few Fine High Bad 
19 Many Small Few Rough Low Fair 
20 Many Small Few Rough High Terrible 
21 Many Small Many Fine Low Good 
22 Many Small Many Fine High Bad 
23 Many Small Many Rough Low Fair 
24 Many Small Many Rough High Bad 
25 Many Large Few Fine Low Good 
26 Many Large Few Fine High Bad 
27 Many Large Few Rough Low Fair 
28 Many Large Few Rough High Bad 
29 Many Large Many Fine Low Good 
30 Many Large Many Fine High OK 
31 Many Large Many Rough Low Good 

32 Many Large Many Rough High Bad 

The model has the following limitations or boundary conditions: 
1. There are three machinists. 
2. There are seven machines. 
3. Machines 1 and 2 do rough-cuts only. 
4. Machines 3 and 4 do both rough-cuts and medium-cuts. 
5. Machines 5, 6, and 7 do only fine-cuts. 
6. Machine 7 accepts only work from machines 3 and 4. 
7. Machines 5 and 6 accept only work from machines 1 and 2. 
8. Each machinist does all ofthe work on one order. 
9. All machinists have an equally likely chance of being chosen to do an order. 
10. There are ten possible paths through the plant. (At this point all are equally likely. 

This will probably change as we obtain more data.) 
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Figure 3. The process flow diagram of the beryllium plant simulation. 

The simulation works like this: 
1. A random number generator determines how many orders will be processed on a 

given day. (One to 30.) 
2. Another random number generator picks a machinist. 
3. A third random number generator picks a part size. 
4. A fourth random number generator picks a path through the plant. (For example, 

Machine 1 to Machine 3 to Machine 7. See figure 3.) 
5. The machine and path decide the type of cut, (rough, medium, or fine). Machines 1 

and 2 are for rough-cuts only, machines 5, 6, and 7 are for fine cuts only, and 
machines 3 and 4 do rough-cuts if they are the first machines in the path and medium­
cuts iftheyare the second machines in the path. 

6. A random number generator picks the number of set ups for each machine on the 
path. 

7. Another random generator picks the beryllium exposure for the operation. It is 
distributed appropriately between the machine and the machinist. 

8. The above procedure is carried out for each part, each day. The entire procedure is 
repeated the following day, until the required number of days has passed. 

The procedure was run for thirty days to generate some sample control charts. A 
description of the fuzzy control chart construction follows. 



EXAMPLE 

In this example, we will work through each step of the process for a specific set of part 
orders. In our simulation, on day seventeen, fourteen part orders were placed. Machinist 
one processed four of these orders, machinists two processed three and machinist three 
processed seven orders. Machine one processed nine parts. Machine two processed three 
parts. Machine three processed four parts. Machine four processed five parts. Machine 
five processed two parts. Machine six processed three parts, and machine seven processed 
nine parts. 

We will use machinist one to demonstrate the fuzzy system. The multiplication factors, 
discussed in the fuzzy system description section, that must be used in order for the 
machinist-group to be able to use the standard input membership functions shown in 
figure one are: 
• Multiplication factor - machinist-group - Number of Parts = 1, 
• Multiplication factor - machinist-group --Size of Parts = 0.41667, 
• Multiplication factor - machinist-group - Number of Set-Ups = 0.26316, 
• Multiplication factor - machinist-group-- Type of Cut = 0.21986, 
• Multiplication factor - machinist-group-- Beryllium Exposure = 1. 
The cumulative size of the four parts that machinist one processed on day seventeen was 
calculated to be 11.66. (We then multiply by the factor 0.41667 to obtain the value ~4.9 
that we use with the "size of parts" chart in figure 1.) The number of set ups that he/she 
performed was 10. After multiplying by 0.26316, we obtain the number ~3.8 to use with 
the "number of set-ups" chart in figure 1. The numeric value for the type of cuts he/she 
performed on that day was 23.56. After multiplying by the factor 0.21986, we obtain ~5.2 
to U$e with our input charts in figure 1. Finally, the machinist's beryllium exposure was 
0.153 llg/m3 for that eight-hour period. 

First we note that since all of the input variables are binary, in almost every case, we 
will fire all thirty-two rules. Upon inserting our pre-multiplied input values into the 
membership functions shown in figure 1, we get the following values: 
For Number of Parts = 4, from figure 1, the membership in Many is 0.4 and the 
membership in Few is 0.6. For Size of Parts = 4.9, from figure 1, the membership in 
Small is 0.51 and the membership in Large is 0.49. For Number of Set-Ups = 3.8, from 
figure 1, the membership in Many is 0.19 and the membership in Few is 0.81. For Type 
of Cuts = 5.2, from figure 1, the membership in Rough is 0.52 and the membership in 
Fine is 0.48. The Beryllium Exposure is 0.153. From figure 1, the membership in High is 
0.38 and the membership in Low is 0.62. The variable values for set of inputs form figure 
1, for all of the rules, are listed in Table II, along with the variable values for the rule 
outputs. 

In this study we are using the MIN_MAX approach to resolve the "and-or" nature of the 
rules and we are using the "winner take all" method for defuzification. For example, Rule 
1 (Table II) is fired with the following weights: 

• Number of Parts --Few = 0.6, 
• Size of Parts -- Small = 0.51, 
• Number of Set Ups -- Few = 0.81, 
• Type of Cut - Fine = 0.48, and 



• Beryllium Exposure - Low = 0.62. 

Table II. Rules with membership values machinist number 1, day 2 from the simulation study. The rule 
input values are Number of parts = 4.0, Size of parts = 4.9, Number of set-ups =3.8, Type of cut = 5.2, and 
Beryllium exposure = 0.153. 

Rule Number of Size of Parts Number of Type of Cut Beryllium Type of Day 
No. Parts SetUps Exposure 

1 Few=0.6 Small = 0.51 Few=0.81 Fine = 0048 Low = 0.62 Fair = 0048 
2 Few = 0.6 Small = 0.51 Few = 0.81 Fine = 0048 High = 0.38 Terrible = 0.38 
3 Few = 0.6 Small = 0.51 Few = 0.81 Rough = 0.52 Low = 0.62 OK=0.51 
4 Few = 0.6 Small = 0.51 Few = 0.81 Rough = 0.52 High = 0.38 Terrible = 0.38 
5 Few=0.6 Small = 0.51 Many = 0.19 Fine = 0048 Low = 0.62 Fair = 0.19 
6 Few = 0.6 Small = 0.51 Many = 0.19 Fine = 0048 High = 0.38 Bad=0.19 
7 Few=0.6 Small = 0.51 Many = 0.19 Rough=0.52 Low=0.62 Fair = 0.19 
8 Few=0.6 Small = 0.51 Many = 0.19 Rough = 0.52 High = 0.38 Terrible = 0.19 
9 Few = 0.6 Large = 0049 Few = 0.81 Fine = 0048 Low = 0.62 Fair = 0048 
10 Few=0.6 Large = 0049 Few = 0.81 Fine = 0048 High = 0.38 Bad= 0.38 
11 Few = 0.6 Large = 0049 Few=0.81 Rough = 0.52 Low = 0.62 Fair = 0049 
12 Few = 0.6 Large = 0049 Few=0.81 Rough=0.52 High = 0.38 Terrible = 0.38 
13 Few = 0.6 Large = 0049 Many = 0.19 Fine = 0048 Low = 0.62 Good = 0.19 
14 Few = 0.6 Large = 0049 Many = 0.19 Fine = 0048 High=0.38 Bad=0.19 
15 Few = 0.6 Large = 0049 Many = 0.19 Rough = 0.52 Low = 0.62 Fair = 0.19 
16 Few=0.6 Large = 0049 Many = 0.19 Rough = 0.52 High = 0.38 Bad= 0.19 
17 Many = 004 Small = 0.51 Few = 0.81 Fine = 0048 Low = 0.62 Fair = 004 
18 Many = 004 Small = 0.51 Few = 0.81 Fine = 0048 High = 0.38 Bad = 0.38 
19 Many = 004 Small = 0.51 Few = 0.81 Rough = 0.52 Low = 0.62 Fair = 004 
20 Many = 004 Small = 0.51 Few=0.81 Rough = 0.52 High=0.38 Terrible = 0.38 
21 Many = 004 Small = 0.51 Many = 0.19 Fine = 0048 Low = 0.62 Good = 0.19 
22 Many = 004 Small = 0.51 Many = 0.19 Fine = 0048 High = 0.38 Bad = 0.19 
23 Many = 004 Small = 0.51 Many = 0.19 Rough = 0.52 Low = 0.62 Fair = 0.19 
24 Many = 004 Small = 0.51 Many = 0.19 Rough = 0.52 High = 0.38 Bad = 0.19 
25 Many = 004 Large = 0049 Few=0.81 Fine = 0048 Low = 0.62 Good = 004 
26 Many = 004 Large = 0.49 Few = 0.81 Fine = 0048 High = 0.38 Bad=0.38 
27 Many = 004 Large = 0.49 Few = 0.81 Rough = 0.52 Low = 0.62 Fair = 004 
28 Many = 004 Large = 0.49 Few = 0.81 Rough = 0.52 High = 0.38 Bad=0.38 
29 Many = 004 Large = 0.49 Many = 0.19 Fine = 0048 Low=0.62 Good = 0.19 
30 Many=OA Large = 0049 Many = 0.19 Fine = 0.48 High = 0.38 OK=0.19 
31 Many = 004 Large = 0049 Many = 0.19 Rough = 0.52 Low = 0.62 Good = 0.19 

32 Many = 0.4 Large = 0049 Many = 0.19 Rough = 0.52 High = 0.38 Bad = 0.19 

The consequent of the rule, "Fair", takes the minimum value, 0.48. If we observe the 
last column in table II, we can see that the consequent, Fair, appears ten times with values 
ranging from 0.19 to 0.49. The MIN_MAX rule assigns the maximum value of 0.49 to 
the consequent Fair. Similarly, the consequent, "Terrible", appears five times with a 
maximum value of 0.38. "OK" appears twice with a maximum value of 0.51. "Bad" 
appears ten times with a maximum value of 0.38, and "Good" appears five times with a 
maximum value of 0.4. The "winner take all" defuzzification method chooses "OK" from 
the list of (Fair = 0.48, Terrible = 0.38, OK = 0.51, Bad = 0.38, and Good = 0.4). So on 
day seventeen, machinist one has an OK "type of day". 

The next step is to provide a fuzzy distribution for the entire day based on all of the 
results from every machinist and every machine. This is easily done using the extension 



principle from fuzzy logic and the concept of a triangular fuzzy number (TFN) as 
described by Kaufmann [1]. A TFN is completely described by a triplet, T = (t1' t2, t3), or 
in our case the vector [t1' h, t3] T. The values t1, t2, and t3 are the x-values of the x-y pairs 
representing the corners of a triangle with the base resting on the x-axis (y = 0) and the 
apex resting on the line y = 1. Such a triangle can be described by the three points in the 
x-y plane (t1, 0), (t2' 1), and (t3, 0). For example, the triangular membership function OK 
in figure 2, can be described as a TFN with t1 = 0.25, h = 0.5, and t3 = 0.75, or [0.25, 0.5, 
0.75] T. The other four output membership functions are described as follows: 
• Good = [0.0, 0.0, 0.25]T, 
• Fair = [0.0, 0.25, 0.5]T, 
• Bad = [0.5, 0.75, 1.0]T, and 
• Terrible = [0.75, 1.0, 1.0] T. 
If we construct the matrix A with columns comprised of our five-output membership 
function TFNs, we obtain: 

[

0.0 0.0 0.25 0.5 0.75J 
A = 0.0 0.25 0.5 0.75 1.0 

0.25 0.5 0.75 1.0 1.0 

Next we construct a five-element vector that we will call B. The first element of the B 
vector is the fraction of the daily readings that were Good. The second element is the 
fraction of the readings that were Fair, and so on. On day seventeen, between the seven 
machines and three machinists there were no Good days recorded. There were four Fair 
days, one OK day, four Bad days, and one Terrible day. Then for day seventeen, the B 
vector is calculated to be: 

B = [0.0, OA, 0.1, OA, 0.1] T. 

The product AB is a TFN that represents the fuzzy "type of day" distribution for that day. 
In this case, the TFN is [0.3, 0.55, 0.775]T. This is a triangular distribution that is nearly 
OK, but a little on the Bad side. Figure 4 shows how day seventeen is distributed on the 
"type of day" chart. The shaded area is the TFN or fuzzy distribution for day seventeen. A 
different distribution is obtained every day. In order to construct a control chart, we need 
to determine values for both a centerline and control limits. There are several metrics that 
can be used to represent the central tendency of a fuzzy set [2,3]. The one that we have 
chosen to use is the fuzzy average. The fuzzy average,favg, is defined by equation 1. 

1 

fX,uF(X)dx 

Javg = -"-°1----

f,uF(X)dx 

° 

(1) 

Where f.lF(X) is the equation for the membership function or the fuzzy set. In our example 
for day seventeen f.l(x) is described below. 

f.lF(X) = 0, 
f.lF(X) = 4x - 1.2, 
f.lF(X) = -4A44x + 3.444, 

x ~ 0.3, 
0.3 ~ x ~. 0.55, 
0.55 ~ x ~ 0.775, 



~F(X) = 0, x ~ 0.775. 
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Figure 4. The distribution of day seventeen, shown on the type of day chart. The shaded area is the 
distribution for day seventeen. 

The fuzzy average for day seventeen in our example is 0.541667. Next we compute the 
average-average or Grand Average for our thirty-day run. This Grand Average is 
0.496261. Figure 5 depicts the daily" type of day" fuzzy distributions relative to the 
Grand Average line. 

• • 

• • 
Figure 5. Daily type of day fuzzy distributions spread about the Grand Average line. 

The control charts generated from our thirty-day simulation run are shown in figures 6 
and 7. Figure 6 is the Shewhart-type X Bar chart and figure 7 is the R or range chart. The 



upper and lower control limits (DCL and LCL) on these charts were not calculated in the 
usual X Bar-R manner. These calculations will be discussed in the next section. 

1~----------------------------------------------------~ 
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Figure 6. The Shewhart-type X Bar chart, type of day samples, for the example thirty-day simulation. 
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Figure 7. The Shewhart-type R chart, type of day samples, for the thirty-day simulation. 



DISCUSSION 

The motivation for this project was that beryllium exposure is highly task dependent. In 
the new Los Alamos beryllium facility, daily tasks will be highly variable. This means 
that a standard Shewhart X Bar-R chart based on daily beryllium exposure will probably 
not provide the control information required. In fact, previous beryllium exposure data 
show that these control charts don't supply the needed information. The simulator was 
designed, in part, using these data. Figures 8 and 9 show the Shewhart X Bar-R charts for 
beryllium exposure for the thirty-day simulation run described in the Example section. 
These charts use upper and lower control limits based on standard X Bar-R techniques, 
using variable sample sizes. Figure 8 is the X Bar chart and figure 9 is the R chart. 
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Figure 8. The Shewhart X Bar chart for, beryllium exposure samples, for the thirty-day simulation. 

Other than the variable of interest and the manner in which the upper and lower control 
limits are computed, figures 8 and 9 are quite similar to figures 6 and 7. The formulas 
used to compute the upper and lower control limits for figures 8 and 9 are found in 
standard books on statistical process control [4,5J, and are give below: 

UCLx =X +AzR 

LCLx = X -AzR 

(2) 

(3) 
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UCLR =D4 R 

LCLR = D3 R 

(4) 

(5) 

Where uCLx, LCLx, UCLR , and LCLR are the upper and lower control limits for the X 

Bar chart, or plot of sample averages, and for the R chart, or plot of sample ranges, 
respectively. Since X Bar and R are plotted on separated diagrams the control limits are 

simply designated as VCL and LCL on their respective plots. X is the Grand Average or 

average of the average samples over a given time period, in our case thirty days. R is 

the average of all sample ranges, maximum sample value minus the minimum sample 
value, over the thirty-day time period. The constants A2, D3, and D4 are taken from Table 
ITl that is reproduced from [4]. 
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Figure 9. The Shewhart R chart for, beryllium exposure samples, for the thirty-day simulation. 

T hI III T bl f 234 d5Th a e a e 0 constants or ~ua1::tons , , , an eva ues are b d h I . ase on t e sampJe SIZe, n. 

n 2 3 4 5 6 7 8 9 10 
A2 1.88 1.02 0.73 0.58 0.48 0.42 0.37 0.34 0.31 
D3 0 0 0 0 0 0.08 0.14 0.18 0.22 
D4 3.27 2.57 2.28 2.11 2.00 1.92 1.86 1.82 1.78 

The upper and lower control limits computed from equations 2, 3,4, and 5 are supposed 
to represent the ±3cr, or 3 standard deviations, about the respective means. This is clearly 
not the case for the beryllium exposure sample averages shown in figure 8. This chart 
shows the upper control level alarm would be triggered at least eight times in the thirty­
day period. In the thirty-day simulation, the plant was supposedly under control. Part of 
the problem may be because the plant model is not perfect, but most of the problem lies 
in the nature of the exposure data. This method does not take into account the task 
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dependent exposure problem. The fuzzy" type of day" method does not fair much better 
with upper and lower control limits defined by equations 2,3,4, and 5. But this is, at least 
in part, for a different reason. The current rules and membership functions used for the 
fuzzy technique make the large majority of the daily averages either Bad or Fair. This 
gives us a bimodal distribution that is not Gaussian. A different point of view about what 
constitutes Bad, Fair and OK days would possibly make the fuzzy model fit the standard 
Shewhart X Bar-R chart format. Since the rules we used comply with the current 
thinking, we took another approach to determining the upper and lower control limits for 
our control charts. 

Wheeler [5] points out that there is nothing magical about the ±3a range for upper and 
lower control limits. He states that Shewhart was looking for a range that the measured 
variable didn't step outside of too often and therefore would not cause excessive trouble 
shooting. He chose the ±3a range because it seemed to fit his goals. Wheeler further 
mentions the following empirical rules: 
• Roughly, 60% to 75% of the data will be located within a distance of one sigma unit 

on either side of the average. 
• Usually 90% to 98% of the data will be located within a distance of two sigma units 

on either side of the average. 
• Approximately 99% to' 100% of the data will be located within a distance of three 

sigma units on either side of the average. 

We used these rules and ran a simulation with our model for 1000 days. We chose the 
0.995 and the 0.005 percentiles to determine our ±3a range. These are the upper and 
lower control limits that appear in figures 6 and 7. The results from these runs are plotted 
in figures 10 and 11. 
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Figure 10. Average data generated from type of day samples for the lOOO-day simulation. 

1200 



0.6~----------------------------------------------------~ 

0.2+-------~~------~--------~--------~------.. --------~ 
o 200 400 600 

Time (days) 

800 1000 

Figure 11. Range data generated from type of day samples from the 1000-day simulation. 

1200 

Even though the beryllium exposure data does not fit the standard Shewhart X Bar-R 
chart format for a different reason than the fuzzy "type of day" data, we followed the 
same procedure for the beryllium exposure data in order to obtain fair upper and lower 
limits. Table N contains the pertinent data obtained from 1000-day simulations for both 
the beryllium exposure and fuzzy "type of day" problems. We used the 0.975 and the 
0.025 percentiles to determine our ±2cr range, and the 0.835 and 0.165 percentiles for the 
±lcr range. We also obtained the lOOO-point sample standard deviation, s, in order to 
make comparisons with percentile estimates and the mean values ±3s. 

a e ata 0 tame om - ay sunu anons. T bl IV Db· d fr 1000 d . 1· 

Type of day Type of day Be exposure Be exposure 
Average Range Average Range 

Mean value, 9 0.490451 0.483191 0.203927 0.21793 
.995 percentile 0.766667 0.5 0.367726 0.392627 
.005 percentile 0.233333 0.4 0.023639 0.013508 
.975 percentile 0.75 0.5 0.353436 0.365705 
.025 percentile 0.25 0.425 0.035289 0.041151 
.835 percentile 0.70 0.5 0.317372 0.306201 
.165 percentile 0.25 0.472222 0.085465 0.125549 

s 0.178408 0.021929 0.098909 0.086302 
8+3s 1.025674 0.548978 0.500653 0.476836 
8-3s -0.04477 0.417403 -0.0928 -0.04098 



It is worthwhile to notice that the e ±3s data ranges are much wider than the 0.995 and 
0.005 percentile ranges. This is because these percentile ranges are truly smaller than the 
true ±3cr range, but the e ±3s ranges are essentially meaningless with the 1000-day 
simulation data. 

The thirty-day simulation was run again, but this time we imposed conditions on days 
thirteen, fourteen, and fifteen that produced high beryllium exposure, but with 
justification. The number of parts processed was very high, and the average size of the 
parts was generally large. On day fourteen, we assumed that two machinists were out sick 
and the remaining machinist had a heavy workload. On day fifteen, we assumed that one 
of the machines was out of service, causing other machines to carry heavier than expected 
loads. These conditions provided days that were defined to be partially OK and partially 
Bad, not Terrible, in spite of the high beryllium exposure. Figures 12, 13, 14, and 15 
show the Shewhart-type X Bar-R charts for this simulation. Figures 12 and 13 were 
developed from fuzzy" type of day" samples and figures 14 and 15 were developed from 
beryllium exposure samples. 
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Figure 12. The Shewhart-type X Bar chart for type of day samples, giving high beryllium exposure under 

heavy-duty operations for days 13, 14, and 15, using a thirty-day simulation. 

We notice that the "type of day" control charts shown in figures 12 and 13 take into 
account the task dependency of the beryllium exposure and do not trigger the upper 
control limit alarms. This is the desired result. The R chart plays a slightly different role 
in these observations than it does in the standard Shewhart X Bar-R chart. In the standard 
case, the R chart is used to calculate the upper and lower control limits, as well as another 
metric to observe. In these calculations the R chart is used as just another interesting 
control metric. 
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Figure 13. The Shewhart-type R chart for type of day samples, giving high beryllium exposure under 

heavy-duty operations for days 13, 14, and 15, using a thirty-day simulation. 

The beryllium exposure control charts shown in figures 14 and 15 do not take into 
account the task dependency of the beryllium exposure. The X Bar chart, figure 14, 
triggers the upper level control alarm for each of the three days. This is not the desired 
result since there is good reason for the high exposure readings. The R chart does not 
trigger an alarm but does show the narrow range of the daily beryllium exposures, which 
is probably valuable information. 
The thirty-day simulation was run a third time, this time we imposed conditions on days 
five and six that produced high beryllium exposure, but with no task dependent 
justification. We were assuming low load conditions with a possible malfunction in the 
plant pressure differential system that went unnoticed. The control charts for this 
simulation are shown in figures 16, 17, 18, and 19. Figures 16 and 17 were developed 
from fuzzy "type of day" samples and figures 18 and 19 were developed from beryllium 
exposure samples. 
Again we notice that the "type of day" control charts shown in figures 16 and 17 take 

into account the task dependency of the beryllium exposure and do trigger the control 
limit alarms. This is the desired result because there was no task performed that should 
cause high beryllium exposure readings. Figure 16, the "type of day" X Bar chart triggers 
the upper control limit alarm for high beryllium exposure and figure 17, the "type of day" 
R chart, triggers the lower control limit alarm, indicating a "type of day" with a very 
narrow range. 

The beryllium exposure control charts shown in figures 18 and 19 also recognize the 
high exposure on days five and six. The X Bar chart, figure 18, triggers the upper level 
control alarm for both days. This is the desired result. The R chart does not trigger an 
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Figure 14. The Shewhart-type X Bar chart for beryllium exposure samples, giving high beryllium exposure 

under heavy-duty operations for days 13, 14, and 15, using a thirty-day simulation. 
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Figure 15. The Shewhart-type R chart for beryllium exposure samples, giving high beryllium exposure 

under heavy-duty operations for days 13, 14, and 15, using a thirty-day simulation. 
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alarm but again shows the narrow range of the daily beryllium exposures. This is valuable 
information. 
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Figure 16. The Shewhart-type X Bar chart for type of day samples, giving high beryllium exposure under 

light-duty operations for days 5 and 6, using a thirty-day simulation. 
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Figure 17. The Shewhart-type R chart for type of day samples, giving high beryllium exposure under light­

duty operations for days 5 and 6, using a thirty-day simulation. 
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Figure 18. The Shewhart-type X Bar chart for beryllium exposure samples, giving high beryllium exposure 

under light-duty operations for days 5 and 6, using a thirty-day simulation. 
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Figure 19. The Shewhart-type R chart for beryllium exposure samples, giving high beryllium exposure 

under light-duty operations for days 5 and 6, using a thirty-day simulation. 
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CONCLUSIONS 

We have shown that the fuzzy "type of day" Shewhart-type X Bar-R control chart has the 
potential to take into account the task dependency beryllium exposure in our beryllium 
plant operations. Based upon the studies completed to this point, we believe these control 
charts will provide more realistic information than the standard or modified X Bar-R 
chart using only beryllium exposure information. Because of the ability to take into 
account task dependency, "the type of day" chart can be used to determine the 
significance of plant improvements (our second largest concern) as well as trigger "out of 
control" alarms. 

More work needs to be done on the technique to make it even more useful and we feel 
that we will be able to make these improvements once our beryllium plant is actually 
running. Until this happens, one method of improving the technique would be to improve 
the fidelity of our plant model, although ultimately we intend to rely on actual plant data 
rather than simulation results. 

Some suggestions for further work, include adjusting the rules and membership 
functions so that "type of day" distributions more closely resemble Gaussian 
distributions, so that we can use the distribution ranges for estimating the ±3cr range. We 
also intend to investigate defuzzification techniques other than "winner take all", which 
might improve the distribution of our sample averages. 
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