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1 Introduction

The passage of a charged particle through a region of nonvanishing electromagnetic fields (e.g., a
bending magnet, multipole magnet, spectrometer, electrostatic lens, electromagnetic velocity sepa­
rator, etc.) can be described by a transfer map. In general, the map is a six-vector-valued function
that relates the final six phase-space coordinates of a beam particle to its initial six phase-space
coordinates. The map can be represented in either Taylor- or Lie-series form. The series-expansion
variables for the map are deviations from a nominal or reference trajectory, which in general is curved
and must be found by numerical integration of the equations of motion of a reference particle. The
reference particle is represented by a particular point in the initial phase space and a corresponding
point in the final phase space. Calculation of aberration terms (terms beyond lowest order) in the
series form of the map requires knowledge of multiple derivatives of the electromagnetic fields along
the reference trajectory.

Three-dimensional field distributions associated with arbitrary realistic beamline elements can
be obtained only by measurement or by numerical solution of the boundary-value problems for the
electromagnetic fields. Any attempt to differentiate directly such field data multiple times is soon
dominated by "noise" due to finite meshing and/or measurement errors.

This problem can be overcome by the use of field data on a surface outside of the reference
trajectory to reconstruct the fields along and around the reference trajectory. The present work
is concerned with the static electric and magnetic fields in a source-free region inside of or near
the beamline elements. These fields can be expressed as gradients of potential functions and are
harmonic (solutions of Laplace's equation). The integral kernels for Laplace's equation that provide
interior fields in terms of boundary data or boundary sources are smoothing: interior fields will
be analytic even if the boundary data or source distributions fail to be differentiable or are even
discontinuous.

In our approach, we employ all three components of the field on the surface to find a superposition
of single-layer and double-layer surface source distributions that can be used together with simple,
surface-shape-independent kernels for computing vector potentials and their multiple derivatives
(required for a Hamiltonian map integration) at interior points. These distributions and kernels are
found by the aid of Helmholtz's theorem. Kernels for derivatives are easily found by differentiating
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the kernels for vector potentials with respect to the field-point variables. A novel application of the
Dirac-monopole vector potential is used to find a kernel for the part of vector potential that arises
from the normal component of the field.

These methods are the basis for map-generating modules that can be added to existing numerical
electromagnetic field-solving codes and would produce transfer maps to any order for arbitrary static
charged-particle beamline elements.

2 Motion in a Static Magnetic Field

The methods of this paper can be applied to both static electric and static magnetic fields, and
combinations of the two. For purposes of exposition, we will consider the case of magnetic fields.

In Cartesian coordinates and with the time t as the independent variable, the Hamiltonian H
for motion of a particle of charge q in a magnetic field is given by the relation

(2.1)

Here A is the vector potential associated with the B field by the relation

B = y x A. (2.2)

For the purposes of generating maps it is more convenient to use one of the coordinates, say
the z coordinate, as the independent variable and to treat the time t and its canonically conjugate
momentumpt as dependent variables1. With this choice of phase-space coordinates, the Hamiltonian
K for the motion in a magnetic field is given by the relation

(2.3)

Typical equations of motion generated by this Hamiltonian are of the form

1
8K ( )[2/2 22 ( )2 ( )2]-1/2X = -8 = Px - qAx Pt C - m c - Px - qAx - Py - qAy ,

Px
(2.4)

8K
8x

[ 2 2 2 2 )2 ( 2] 1/2 [( ) 8Ax ( ) 8Ay ]q Pt/C - m c - (Px - qAx - Py - qAy) Px - qAx 8x + Py - qAy 8x

8Az ( )+ q 8x . 2.5

Evidently, the components of A and the first derivatives of the components of A with respect to
x and yare required to compute trajectories. If we take anyone of these trajectories to be a reference
trajectory, then higher derivatives of A with respect to x and yare also required to compute the
transfer map M (first-order deviations and higher-order aberrations) around this trajectory.

Suppose we write
x = xr

+~,

X = yr + TI,

(2.6)

(2.7)

where xr and yr refer to the reference trajectory. Then we require Taylor expansions of the form

(2.8)
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where the POI are homogeneous polynomials labeled by some convenient index ct. Indeed, if we wish
to compute an lth-order transfer map, we need to retain in the expansion (2.8) all homogeneous
polynomials of degree I + 1 and lower.



3 Modeling Field Data

For general realistic magnetic beamline elements (e.g., iron-dominated dipole electromagnets, etc.),
three-dimensional field data in the region about any reference trajectory can presently be obtained
only by measurement or by numerical solution of the boundary-value problem for the magnetic field.
Data specified at discrete points on a three-dimensional grid can be smoothed and interpolated by
various methods, but multiple differentiation of such field-data interpolants introduces "noise" due
to finite meshing and/or measurement errors. Moreover, the usual interpolating functions do not
exactly satisfy the Laplace equation, so their use is equivalent to introducing fictitious sources into
the source-free field volume. In the two-dimensional case or in the case where cylindrical geometry
can be employed, one may try to first smooth the data by fitting it to some assumed analytic form
along some line (e.g. use some Enge profile) and then extend the form to points away from the
line. In two dimensions (for example, in fitting the midplane fringe fields of a dipole with a straight
field boundary) this can be simply done by analytically continuing the fitting function into the
complex plane. That is, if the midplane field is By (x) = F (x), where F is the fitting function, then
By + iBx = F(x + iy) for points away from the midplane. The analogous three-dimensional straight­
axis approach in cylindrical coordinates (r, <f;, z) is more complicated but qualitatively similar and is
treated in Appendix A.

Insight into the difficulties with this fitting approach can be found by examining the behavior of F
in the complex plane2 . In cases where the behavior of F (z) is dominated by poles, the poles represent
effective line sources. If these sources do not approximate the distribution of the real sources of the
physical magnet, the fit will diverge, frequently in a dramatic fashion, from the true field as the field
evaluation point approaches the surfaces of the magnet. In the general three-dimensional case any
such fitting approach is even more unsatisfactory.

The above difficulties can be eliminated by a method that uses field data on some surface that
surrounds the reference trajectory and all nearby trajectories of interest in the beam-optics problem.
In this approach, one exploits the fact that the integral kernels for Laplace's equation that provide
interior fields in terms of boundary data or sources are smoothing: interior fields will be analytic
even if the boundary data or sources fail to be differentiable or are even discontinuous. Moreover,
since harmonic functions assume their maxima on boundaries, a method that uses surface data is
expected to be robust against errors. That is, interior errors are expected to be no larger and
generally smaller than errors in the surface data.

In classical potential theory, the Green's function for the Laplace equation can be used in principle
to compute field values at arbitrary points inside a surface that encloses no sources. The field value
at an arbitrary interior point can be evaluated by performing a surface integral of either the potential
or the normal component of field times the appropriate Green's function. This approach is of no
practical use for numerical computation in arbitrary geometries because the Green's function for a
surface, which is a function of three field-point variables and two surface-point variables, is specific
to that particular surface, varies from interior point to interior point, and cannot be expressed in
closed or even series form, except in the case of certain special surfaces.

For the particular case of a straight or nearly straight reference trajectory, we have implemented
two essentially equivalent approaches to expansions of the vector potential A, making use of field
data on a cylindrical surface that have been first analyzed into Fourier components in azimuthal
angle. The field data do not have to have any particular symmetry; the only restriction is that the
sagitta of the trajectory not be too large. Only one component of field is needed; we use the radial
component. The cylinder is chosen to be interior to any field windings, iron, or other magnetic
sources. Both approaches employ a numerical Fourier integral transform with a modified Bessel­
function kernel, and as expected, have been shown to be robust against errors. In the first approach3

,

a subroutine recently added to the MARYLIE code4 computes the on-axis gradient (see Appendix
A for the definition of on-axis generalized gradient) and its z derivatives from the surface data. The
routine performs a numerical Fourier integral transform every time it is called during numerical map
generation. In the second approach5 , a separate program uses a different Fourier integral kernel to
precompute a double-layer density function of z (or stream function for equivalent currents) that
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is represented by its values at a collection of discrete z points. These numbers are then read in by
a special version of MARYLIE and used by a magnet-type subroutine that computes gradients for
user-supplied stream functions.

The analytic methods described above could be implemented because the cylinder is a surface
of constant radius in cylindrical coordinates, which represent one of the classic coordinate systems
in which the Laplace equation is separable. An analogous analytic approach can be found for any
surface that can be described by holding constant one of the coordinates of a system in which the
Laplace equation is separable. For example, in the case of a rectangular box6 , one can fit double
trigonometricjhyberbolic function series with adjustable coefficients to surface data to find interior
fields.

However, for general geometries, the solution to Laplace's equation is not available in analytic
form, and the methods available for separable-coordinate geometries cannot be used. In the next
sections we describe a method that bypasses the need for an analytic solution to Laplace's equation
for general geometries by making use of all three components of the surface field, and still provides
the resultant smoothing that arises from the use of surface data. Thus, this method too is expected
to be robust against errors. As with some methods previously described7 ,8, it is based on use of
effective sources on a surface surrounding the field-evaluation volume to represent interior fields.
However, unlike the method of Ref. 8, the method we describe in the following section is not based
on the use of least-square fits to find the source strengths. Instead, the sources are found directly
from field data by use of Helmholz's theorem.

4 Helmholtz's Theorem

Let F(r) be any vector field and let V' be any. volume bounded by a surface S'. Then, according to
Helmholtz's theorem9 , F for r within V' can be written in the form,

F = 'V x A + 'V<I>,

where A and <I> are defined by the integrals,

A(r) = _~ ( n(r') x F(r') dS' +~ ( 'V' x F(r') dV'
41rlsl Ir-r'l 41rlvl Ir-r'l '

(4.1)

(4.2)

<I>(r) =~ ( n(r')· F(r') dS' _ ~ ( 'V'. F(r') dV'. (4.3)
41r lSI Ir - r'l 41r lVI Ir - r'l

Here, as usual, 'V denotes partial differentiation with respect to the components of r, and 'V' denotes
partial differentiation with respect to the components of rio Also, n(r') denotes the outward normal
to 5' at the point r'. In the case that F is the magnetic field B, and under the further assumption
that B is curl and divergence free in V' (i.e., the field is static and there are no sources in V'), which
will be true for our applications, A and <I> are given by surface integrals alone and (4.1) through
(4.3) take the simpler form

with

B = 'V X At + 'V<I>, (4.4)

At(r) = _~ ( n(r') x ~(r') d5', (4.5)
41rlsl Ir-rl

<I>(r) = ~ ( n(r')· B(r') dS'. (4.6)
41rlsl Ir-r'l

The superscript t on At is used to indicate that At depends only on the tangential components of
B on the surface.

We have obtained interior fields in terms of surface fields. However, there is one defect. To employ
canonical equations of motion using (2.3) we need to obtain B entirely from a vector potential as in
(2.2) rather than from a sum of vector and scalar potentials as in (4.4). The next section describes
how this defect can be overcome with the artifice of Dirac monopoles.
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5 Dirac Monopole Representation

Let G n denote the Dirac monopole vector potential10 ,11 given by the relation

G n ( , ) mx(r-r')
r;r,m = 41l"[lr-r'l-m.(r-r')]lr-r'l" (5.1)

The unit vector m in (5.1) points in the direction of the Dirac string, which is taken to be a straight
line that extends from the point r' to infinity in the direction of m. The vector r is the field­
evaluation point and r' the source point. Eq. (5.1) is derived from Eq. 6.161 of Ref. 9 by explicitly
evaluating the integral from zero to positive infinity along the string. The vector field G n is analytic
in r except along the Dirac string. It has the desired property

1 1 n( , )-4\7-1--'1 = \7 x G r;rm1l" r- r

for all points r except those on the string.
We now define a vector field An by the integral

An (r) = ([n(r')' B(r')]Gn[r; r'n(r')]dS'.
ls'

(5.2)

(5.3)

In writing (5.3) we have taken the string direction m at each point r' in S' to lie along the outward
normal n(r'). (Other string direction choices are also possible, and in fact necessary for certain sur­
faces, such as toroids. Different choices of string directions simply amount to gauge transformations
on An. The essential requirement is only that the strings do not intersect the volume of interest VI.)
Here we have used the notation An to indicate that An depends only on the normal component of
B.

In view of (4.3). (5.1), and (5.2), An has the property

(5.4)

Therefore we may define a net vector potential A in terms of Anand At by the rule

(5.5)

with the result, in view of (4.4) and (5.4), that (2.2) holds for the A given by (5.5), i.e., the total
magnetic field inside VI is given by the curl of the vector potential of (5.5). The relations (4.5) and
(5.5), which give At and An entirely in terms of surface data, have the virtue that they can be
differentiated repeatedly at will with respect to the components of r provided that r is within V'.
Indeed, they show that At and An, and hence A, are (real) analytic in the components of r for r
within V'. Correspondingly, the series (2.8) will converge in a finite domain in VI whose exact size
and shape can be determined from the theory of functions of many complex variables12 .

6 Further Manipulations

In view of (5.2) the vector field G n has the property

(6.1)

for points r not on the string. It can be verified by direct calculation that G n also satisfies the
Coulomb gauge condition,

\7. G n = 0

for points r not on the string. It follows from (5.3) that An also has these properties,
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y . An = 0, (6.4)

for all points r in VI. Eq. 6.3 means that the field computed from An is curl-free; by Maxwell's
equations a non-zero curl would imply that error currents are present inside VI. We note that both
these relations hold no matter what the factor n(r l

) . B(rl
) in (5.3) is and no matter how badly

the integral (5.3) is evaluated (say by numerical methods) since these relations depend only on the
underlying properties (6.1) and' (6.2) of the kernel G n . All that is required is that the kernel G n be
evaluated properly.

We would like to have analogous properties for At, the part of the vector potential due to the
components of B that are tangent to the surface. We first note that the kernel l/lr - r l I satisfies
the Laplace equation, i.e.,

2 1
Y -I-11=0.r-r

From this relation and the definition (4.5) it follows that

y 2 A t = 0

(6.5)

(6.6)

for all points r in VI no matter what the vector function n(r l
) x B(r' ) in (4.5) is and no matter

how poorly the integral is evaluated. For (6.6) to be satisfied, all that is required is that the kernel
l/lr - r'l be evaluated properly. Recall also the vector identity

(6.7)

We see from (6.6) and (6.7) that At will satisfy the condition Y x (v X At) = 0, i.e., the part of B
coming from At will have zero curl, if At satisfies the condition Y . At.

As it stands, it can be shown that (5.4) holds for At providing the whole integral (4.5) including
its full integrand are evaluated properly. What we would like to do is transform the integrand in
such a way that relations analogous to both (6.3) and (6.4) will hold for At no matter how badly
the integral and parts of its integrand are evaluated, provided that only a certain kernel is evaluated
properly. This is easily done with the aid of a scalar potential. Since B is curl-free within Wand
on the surface SI, we know that there is a scalar potentiai W with the property

B = -vIW(rl
)

for rPrime on S'. Using the integral identity

r n(r' ) x yl;V(r
l
) dS' = r W(r')n(r' ) x Vi_I_,dSI

1SJ Ir - r I 1SJ Ir - r I
that holds for any function W, the integral (4.5) for At can be rewritten in the form

At(r) = r W(rl)Gt[r; r ' , n(r')]dSI
,ls,

where G t is the kernel given by the expression

t [ I (')] 1 ') I 1G r;r ,n r = -4n(r x y -1--'1'
K r-r

(6.8)

(6.9)

(6.10)

(6.11)

Note that in (6.10) the only values of W that are required to compute At are those on the surface
SI. We also note from (6.8) that, up to an inconsequential constant, the values of W at points r in
SI are completely specified by knowing the tangential components of B on S'. We further note that
(6.11) is the vector potential of an infinitesimal dipole at r l with magnet moment vector normal to
the surface; W can therefore be identified with a double-layer density distribution on the surface.

It can be verified that the kernel G t given by (6.11) has the properties

(6.12)
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\7 . G t = o. (6.13)

It follows that, when the representation (6.10) is used, the vector field Atsatisfies curl and divergence
relations analogous to those of (6.3) and (6.4), i.e., it satisfies the relations

\7 x (\7 X At) = 0

\7 . At = 0

(6.14)

(6.15)

for r in V' no matter how badly the integral (6.10) is evaluated and no matter what values are used
for W on S'. All that is required is that the kernel G t be evaluated properly on S'.

As a consequence of (4.5), (5.3), (5.4), (6.14), and (6.15) we are guaranteed that for the total
vector potential and field, respectively,

and

\7 . A = 0,

\7 x B = \7 x (\7 x A) = 0

(6.16)

(6.17)

for r within V' no matter how badly the integrals (5.3) and (6.10) are evaluated and no matter what
values are used for n(r') . B(r') and W(r') for blr' in S'. Under the same conditions the vector
potential A(r) will also be analytic for r in V'. Again, all that is required is that the kernels G n

and G t be evaluated properly. Finally, since the divergence of a curl always vanishes, use of (2.2)
guarantees that

\7 . B = \7 . (\7 x A) =0

will always hold.
Of course, the better we evaluate the integrals (4.3) and (5.10) including their integrands, the

better the B given by (2.2) with the use of (4.5), (5.3), and (5.10) will agree with the true B.
However, no matter what (provided the kernels G n and G t evaluated properly), the physically
required conditions (6.16) and (6.17) will be met.

In the language of classical potential theory, we have found a combination of a single-layer and
a double-layer (dipole) distribution on the surface and an associated pair of vector-valued integral
kernels that together produce a total vector potential that, in turn, gives a curl-free magnetic field
inside V' that replicates the field of the beamline element. The single layer arises from the normal
component of the field at the surface and the double layer from the transverse field components, or
equivalently, from the scalar potential at the surface. Indeed, the two density distributions could
have been found by use of Green's theorem13 without explicit use of the Helmholz theorem.

7 Implementation

The kernels G n and G t given by (5.1) and (6.11) may be expanded analytically, say by some symbolic
manipulation program such as Mathematica, to give expressions of the form

Gn(xr + e, yr + Tf, zr; r', m) =L Gn"'(xT, yr, zr; r', m)p",(e, Tf),

'"
Gt(xr + e, yr + Tf, zr; r', m) = L: Gt"'(xr , yT, zr; r', m)p",(e, Tf),

'"

(7.1)

(7.2)

These expansions can then be inserted into (5.3) and the (6.10) and the surface integrals over S'
performed numerically to yield the desired expansion (2.8). Since the expansions (7.1) and (7.2)
have been carried out analytically, the expansion (2.8) will be consistent with the conditions (6.16)
and (6.17) even if the surface integrals are not done perfectly.

The program just described has been implemented for the case of a bent rectangular box with
straight end arms as illustrated in Figure 6.1 below (see Appendix B for a more detailed discussion
of possible surface topologies, i.e., boxes, tori, etc., and associated choices of the orientation of
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the Dirac string). The volume V' enclosed by such a box is well suited to integrating reference
trajectories and finding maps about these trajectories for the case of bending magnets.

Preliminary results have been obtained for dipole-like fields that can be modeled analytically (e.g.
fields produced by a superposition of magnetic monopoles located outside V'). For these model fields
surface normal fields and surface scalar potentials on 5' can be calculated, and reference trajectories
and their associated transfer maps can then be calculated using the expansion (2.8) obtained by
integrating over 5'. For these model fields, reference trajectories and transfer maps about them can
also be obtained from the direct analytic expansion of the associated model vector potential.

Numerical comparisons were made for fields computed in three ways: 1. Directly from the
sources outside of the surface, 2. by integrating the kernels (5.1) and (6.11) times source strengths
over the surface, and 3., from expansions (like that of Eq. 2.8, but in three variables) obtained by
integrating the derivatives of the kernels times source distributions over the surface. It was found
that vector potential and its derivatives computed by the three methods agreed well for points within
V'. Correspondingly, it was found that the reference trajectories and their associated maps obtained
by the two methods agreed well.

For problems of actual interest the surface normal fields and surface scalar potentials on 5' will
be determined numerically by the use of some 3-dimensional field code or by direct measurement,
and the surface integrals (5.3) and (6.10) over the expansions (7.1) and (7.2) will be carried out
using these numerical values. Based on the test results obtained so far, there is every reason to
believe that reference trajectories and their associated transfer maps computed from these surface
data should be just as highly accurate as it was for the test cases. That is, by using the methods
of this paper, modules can be added to existing electromagnetic codes that will produce reliably,
when requested, associated transfer maps to any order for arbitrary static charged-particle beamline
elements. Thus it should now be possible, for the first time, to design and analyze the effect of
general static beam-line elements, including all fringe-field and error effects, in complete detail.

Figure 6.1. A volume V' consisting of a bent rectangular box with straight arms suitable for treating
a bending magnet. The box encloses both the main bending field and the entry and exit fringe fields.
The straight arms at the ends are sufficiently long that the surface normal field and surface scalar
potential make negligible contributions on the entry and exit faces. Also shown is a sample reference
trajectory that, as expected, is almost straight at the ends and bent in the middle.

8 Conclusions

A new method has been developed for the computation of charged-particle transfer maps for general
fields and geometries based on the use of surface (boundary-value) data. The method requires a
knowledge of all three field components on the surface (or, equivalently, the value of the normal field
component and the scalar potential on the surface). These surface values are convolved with explic­
itly known and geometry-independent kernels to produce interior fields. The kernels themselves are
obtained by the use of Helmholtz's theorem and Dirac magnetic monopole vector potentials. The
.resulting interior fields satisfy the Maxwell equations exactly and are analytic functions of position
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even if the surface data contains errors and/or the convolutions are only performed approximately.
Thus, the resulting transfer maps are expected to be optimally robust against computational and/or
measurement errors. Using these methods, modules can be added to existing numerical electromag­
netic field-solving codes that would produce reliably, when requested, associated transfer maps to
any order for arbitrary static charged-particle beamline elements.
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Appendix A Sources on Surfaces of Rotation in Cylindrical Co­
ordinates

Sources on surfaces with rotational symmetry can be used to represent the fields in the special case
of magnetostatic or electrostatic elements with a straight or slightly curved reference trajectory (e.g.,
quadrupoles or dipoles with small sagitta). A cylindrical coordinate system is the most convenient
one to use in treating this case. Field-point coordinates in the following are denoted by (r, e, z),
and source coordinates by (a, ¢, z'). A toroidal surface that encloses the magnet and has a hole
through which the beam pipe passes can be generated by rotating the appropriate closed space
curve around some axis. A special case of this is an infinite cylinder, for which the space curve
closes at infinity. It should be noted that in some accelerator applications, the beam pipe extends
into the spaces between quadrupole pole pieces and encloses points with radial distances from the
magnet axis that are larger than the pole-tip radius. In these cases, no single series-expansion map
can represent the entire beam-pipe volume. If one is interested in a map for regions beyond the
pole-tip radius, it is necessary to use an offset reference trajectory to ensure that the volume of
interest is within the radius of convergence of the field expansion. The general space curve can be
defined by two functions of arc length s or some other convenient curve parameter, i.e., a = A(s),
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Z = Z(s). The sources can be represented by Fourier series in ¢J with coefficients that are functions
of arc length s and the fields and potentials by Fourier series in ewith coefficients that are functions
of rand z. As in the case of a general surface, the sources are a superposition of a fictitious
single surface-charge distribution arising from the normal component of field at the surface and a
fictitious double-layer distribution (i.e., normally-pointing surface dipole-density distribution) that
arises from the tangential components of the field at the surface. In the even simpler case of an
infinitely long cylinder, it is straightforward to find either a double-layer or single-layer distribution
that alone represents the fields inside the cylinder (existing MARYLIE computer subroutines that
treat this case were described in Section 3). If the surface does not touch real sources, distributions
are continuous except at s values where the curve tangent is not continuous. The fictitious surface
charge distribution arising from the normal component of the field at the surface can be written in
the form

00

B(s, ¢J) . n(s, ¢J) = L fm(s) sin(m¢J).
m=l

(A.l)

If the sources have no solenoidal component (i.e., no net current flows completely around the hole
of the torus), m takes on the values m = 1,2,3", '. The lack of terms with m = 0 will be assumed
in the following. (In (A.l), the cosine terms are omitted for brevity. This corresponds to admitting
only so-called normal multipole magnets. It is straightforward to add cosine terms if required by the
symmetry of the problem). For a particular s value, each term in (A.l) corresponds to a sinusoidal
charge ring of radius a(s) at axial position z'(s).

The fictitious double-layer (surface dipole-density) distribution d that arises from the tangential
field at the surface can be written in the form

d(s, ¢J) = n(s, ¢J)'l/;(s, ¢J). (A.2)

As in the general three-dimensional case, the double-layer density is the magnetic scalar potential at
the surface, i.e, 'l/;(s, ¢J) = <I>{r'[(a(s) , ¢J]}. If the scalar potential is to be obtained from measurements,
it is suffficient, for example, to measure B¢> everywhere on the surface, but measure the tangential
component of B perpendicular to B¢> along the surface for only one value of ¢J. The fictitious dipole­
density distribution arising from the tangential components of field at the surface can be written in
the form

00

'l/;(s, ¢J) = L hm(s) sin(m¢J).
m=l

(A.3)

The scalar potential for the mth term in (A.l) (the single-layer density distribution) is given by
the following integral:

where

sin me f 1" cos ma<I>m(1', e, z) =~ a(s)fm(s)ds 0 -R-da ,

R = {a(s)2 + 1'2 + [z - z'(s)F _ 2a(s)1'cos a} 1/2.

(A.4)

(A.5)

(A.6)

The integral over a in (A.4) can be expressed in terms of a Legendre function of the second kind,

1"cosmad~ = 1 (a(s)2 + 1'2 + [z - z'(s)F)
'-' ~Qm-l/2 ( ) .o R ya(s)1' 2a s l'

Eq. (A.4) then becomes

A;. (e )_sinmef ()I' () l Q (a(s)2+ 1'2+[z-z'(s)F)d (A.7)
'l'm 1', ,z - 2 a s Jm S r::T::'I: m-l/2 2 ( ) S.

IT ya(s)1' as l'

The function of (A.6) times the sin me factor is the three-dimensional cylindrical analog of the line
potential of two-dimension potential theory and is also logarithmically divergent as the field point
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approaches the source. It is the scalar potential of a ring of radius a(s) with a line charge density
that varies as sin m<jJ. For points 1", z close to a, Zl, the potential varies as the logarithm of the
distance times sin m().

For Hamiltonian dynamics calculations, a vector potential that gives the same fields as the scalar
potential of (A.7) is desired. The vector potential for the mth term in (A.1) can be found by
integrating the Dirac monopole expressions over the surface. However, simpler expressions for the
vector potential can be obtained (this amounts to a gauge transformation of the Dirac monopole
expressions) directly from the scalar potential in a gauge with A6 = 0 by equating the magnetic field
components from the gradient of (A. 7) to the field components from the curl of the vector potential.
Simple integration over () gives the two vector-potential components AT and AZ:

and

AT ( () ) _ 1" cos m() f () f: ( )~ [Q (a(s)
2 + 1"2 + [z - Zl (S)F)]d

m 1", ,z - 2 a s m S a m-l/2 2 ( ) s,
m~ z as1"

Az ( () )= rcosm()f ()I ()~[Q (a(s)2+ r2+[z-zl(s)F)]d
m 1", ,z 2 a s m S a m-l/2 2 ( ) s.

m~ 1" asr

(A.8)

(A9)

The derivatives in the above expressions can be evaluated explicitly using the derivative relations for
Legendre functions, and the chain rule. The Legendre functions themselves can be computed for large
arguments by recursion with the complete elliptic integrals K and E with the appropriate arguments,
and for small arguments from the hypergeometric series expressions1 . The scalar potential for the
mth Fourier component of the fictitious surface dipole-density sources arising from the tangential
field components at the surface (see (A.3)) can also be expressed in terms of Legendre functions:

sin m() f (A a Aa ) [ ( a(s)2 + 1"2 + [z - Zl (S)F)]
<l>m(r, (), z) =~ a(s)hm(s)n· aaa + z az Qm-l/2 2a(s)r ds. (A10)

In (A.10) , a is a radial unit vector and i an axial unit vector. The vector-potential components
are again obtained in a gauge with A6 = 0 by equating the gradient of the scalar potential to the
curl of the vector potential, and integrating over angle. The result is

T 1" cos m() f (A 02 002 ) [ ( a(s) 2 + 1"2 + [z - Zl (SW)]
Am(1", (), z) = 2m~ a(s)hm(s)n· a aaaz + z az2 Qm-l/2 2a(s)r ds,

(A.11)
and

z rcosm() f (0 02 0 02 ) [ (a(s)2 + 1"2 + [z - ZI(SW)]
Am (1", (), z) = 2m~ a(s)hm(s)n· a aaar + z azar Qm-l/2 2a(s)r ds.

(A.12)
For series expansion of the potentials and fields around the axis, which is needed for numerical map
generation, Dougall's integral expression2 with the on-axis generalized gradient is used to extend
the potential to non-zero values of r. Given the mth Fourier component of the scalar potential Vm

in cylindrical coordinates, we first note that the leading behavior of Vm(r, z) with 1" near the axis is
Vm '" r m , and then define the on-axis generalized gradient to be

() 1
. mVm(1", z)

gm Z = 1m .
r-+O r m

(A13)

(In A.13, the factor of m is included to make gm consistent with the usual definition of quadrupole
gradient for m = 2). Dougall's integral expression is

() (m - l)!r
m 171" ( . ) . 2m d

Vm r, z = f(m + 1/2)f(1/2) 0 gm Z+ z1"cost sm t t. (A.14)

The series expansion for Vm near the axis is obtained by replacing gm(z + ircost) by its Taylor
expansion, with ircost as the expansion parameter, and integrating term by term. The imaginary
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terms integrate to zero, leaving the well-known series expansion

00 1 r 2 d2 n
Vm(r, z) = (m -1)!r

m L l( )1 (--4-d2) gm(Z)n. n+m. z
. n=O

(A.15)

(A.16)

For the particular case of Legendre-function expressions of (A.6)-(A.12), the hypergeometric- func­
tion representation for Qm- 1/2 is used to find their limiting behavior with r near the axis [i.e.,
evaluate the limit of (A.13)]. The series expansion for the Legendre-function factor (A.6) is then
found to be

_1_Q (a(s)2 + r2 + [z - ZI(SW) _
m l~ -ya:r - 2a(s)r

1ramrm(2m - I)!! 00 1 (r2 d2 )n 1
2m ~ n!(n + m)! -4 dz2 [a2+ [z _ Zl (s)J2] m+l/2 .

The series expansions for the scalar and vector potentials are then obtained by substituting the
right-hand side of (A.16) for the quantity

1 Q (a(s)2 + r2+ [z - zl(s)F)
r::r::c:: m-1/2 2 ( )ya(s)r as r

(A. 17)

everywhere it occurs in (A.7)-(A.12). For numerical evaluation of the series coefficients as a function
of z, in general it is necessary to first obtain the Fourier coefficients for the scalar and dipole densities
as a function of s and then perform the integrals inside the summation sign over s by numerical
quadrature. It is possible to perform the integrals analytically if Fourier coefficients of the source
densities are represented as piecewise-continuous polynomials in s.

Finally, in reference to the problem of fitting three-dimensional field data on or near the axis
in straight-axis systems and extending it outward in radius (a mathematically unstable procedure,
which the surface-data method of this paper avoids), one could first Fourier-analyze the data in
azimuthal angle, and treat each Fourier component as a separate fitting problem in rand z using
the appropriate derivatives of the mth component of (A.15) times sin m(} or cos m(}, together with
a trial function for gm(Z). One might, for example, represent gm(Z) by high-order (5th or higher)
splines and find the spline coefficients by fitting fields from (A.15) to field values specified on a
surface or over a volume. The series of (A.15) will end at a finite value of n with this representation
of gm because splines are made up of piecewise-continuous polynomials of finite order, while the
"true" gm is infinitely differentiable. This representation therefore can model only the lowest-order
behavior of the field, for points at relatively small distances from the axis relative to the physical
aperture of the element. Other methods, in which transcendental functions are used to represent
gm, give a series that does not truncate, but the improvement can be illusory because the higher
derivatives and the associated higher-order terms can be wrong, and in many cases, wildly wrong.
The fundamental problem is that the fitting function that represents gm is generally not the "true"
function and if it has simple poles, the poles, which represent sinusoidal ring sources, have little to
do with the "true" sources.
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Appendix B Surface Topologies and Dirac Monopole Orienta­
tion

Various surfaces in addition to the curved box and infinite cylinder already discussed can be con­
sidered. For example, toroidal surfaces of the type shown in Fig. B.l can be made to have minimal
clearance of the magnetic element on the ends and have a hole that is large enough to accomodate
the beam pipe. Since the beam goes through the hole, and not through the surface, the two ends
of the surface do not need to extend out to field-free regions and the surface can be shorter. Also,
if the vertical surfaces at the ends are made to extend far enough out to the sides that the fields
on them become negligible at the outer edges, source strengths on the outside surfaces connecting
them are negligible. In such a case source distributions need only be found for inner surface around
the hole and for the parts of the vertical end surfaces near'the ends of the hole. In most cases, all
of the pieces of the surfaces can be constructed from flat pieces and parts of cylindrical surfaces,
For example, for curved dipoles, the vertical parts of the inner surface could be made of segments
of cylinders.

t

a b

Fig. B.1 Two possible toroidal surfaces with Dirac string orientations indicated. Surface a would be
used with an H magnet, while b would be used with a quadrupole.

It should be noted that the discontinuities in the tangents to the surface are not a problem in
principle because the surfaces are fictitious and have vacuum on each side; the is no field peaking as
there is at the edge of a magnet yoke, etc. However, attention must be paid to numerical problems
related to discrete source placement and spacing along edges.

It can be seen that if toroidal surfaces are used, use of Dirac monopoles with strings perpendicular
to the end surfaces could be a problem in curved beamlines, as they could intersect the beam volume.
This problem can be avoided by using strings tangential to the surface as shown in Fig. B.1. If
tangential strings are used, a two-sided Dirac monopole with two half-strength strings going in
opposite directions can be used; the associated expression for the vector potential is somewhat
simpler and may have some advantages in computation:

G n ( ') m x (r - r ' )r' r m - -.,----'-:-----'..,....,.".
" - 41rjm x (r - r l)j2
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