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ABSTRACT

We have developed a stochastic model for the power
generated by a photovoltaic (PV) power supply system
that includes a rechargeable energy storage device. The
ultimate objective of this work is to integrate this
photovoltaic generator along with other generation
sources to perform power flow calculations to estimate
the reliability of different. electricity grid
configurations. For this reason, the photovoltaic power
supply model must provide robust, efficient realizations
of the photovoltaic electricity output under a variety of
conditions and at different geographical locations. This
has been achieved by use of a Karhunen-Loeve
framework to model the solar insolation data. The
capacity of the energy storage device, in this case a
lead-acid battery, is represented by a deterministic
model that uses an artificial neural network to estimate
the reduction in capacity that occurs over time. When
combined with an appropriate stochastic load model, all
three elements yield a stochastic model for the
photovoltaic power system. This model has been
operated on the Monte Carlo principle in stand-alone
mode to infer the probabilistic behavior of the system.
In particular, numerical examples are shown to
illustrate the use of the model to estimate battery life.
By the end of one year of operation, there is a 50%
probability for the test case shown that the battery will
be at or below 95% of initial capacity.

I Copyright © 2000 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved.

INTRODUCTION

Renewable energy generators (PV, wind, etc.) are
finding increased use for providing power to remote
areas that do not have access to the electricity grid.
Another useful characteristic of these power sources is
low operating cost compared to traditional generation
sources such as combustion turbines. Because they can
often be sited close to the power demand in distributed
generation systems, renewable generators also are
claimed to have a positive impact on the reliability of
the electricity grid in general. Sandia National
Laboratories has been developing power grid models to
quantify the reliability of the National power grid and
study how it can be improved. In order to include
renewable generation in this study, Sandia has
developed the stochastic model for a photovoltaic
power system.

An energy storage system is necessary to allow the PV
generator power to be dispatchable and to continue to
service the load during periods of low PV output. The
photovoltaic-based power supply must be sized to
satisfactorily serve the system load and also to
sufficiently charge the energy storage sub-system
(typically a lead-acid battery) that will continue to
supply the system load while the photovoltaic system is
not generating power. Optimal sizing of the system
must therefore account for the facts that the power
generated by the system and the power used by the load
are stochastic processes and that continued deep
discharge of the energy storage device can cause
accelerated capacity loss in the case of a lead-acid
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battery. Another use for the stochastic renewable
generator model is therefore to provide a predictive
capability for the performance of the battery under
various design and operating options. This can be used
to optimize the system for the best trade off among
cost, load requirements, and battery life.

The stochastic photovoltaic power system model will
be described for each of its three elements. Then, a
numerical example will be presented showing the
performance and capabilities of the software.
Ultimately the model may be used to design and
optimize renewable energy power systems
incorporating energy storage. .

PVmECHARGEABLEENERGYSTORAGE
MODEL

function of depth of discharge and duration of
discharge. Data obtained experimentally serve as
exemplars for training the ANN. At this time, only
limited battery data that characterize damage associated
with discharge periods are available. Therefore, these
data were augmented with plausible, synthetic data for
training.

All these elements are combined into a single
framework to yield a stochastic model for the power
supply/energy storage/load system. Figure 1 shows a
schematic representation of this system. The model is
operated on the Monte Carlo principle to yield
realizations of the stochastic processes characteristic of
the operational phenomena, and these can be analyzed
using the tools of statistics to infer the probabilistic
behavior of the system. We shall now discuss the solar
resource and energy storage device simulators in more
detail.

Solar Resource Simulator

Figure 1: Power supply/energy storagelload system
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In previous work, we used a bivariate Markov process
to simulate the direct normal and diffuse horizontal
solar radiation data. This technique yields accurate
realizations of the random process but it is very CPU
intensive. In light of this, we seek a faster method that
will be as accurate as, or more accurate than our current
technique.

The main focus of this investigation is to implement a
CVA approach to modeling the daily direct normal and
diffuse horizontal radiation components. CVA has
been successfully used to model random processes,
such as the dynamic response of a nonlinear mechanical
system (see Paez and Hunter\ In the following

The behavior of the rechargeable energy storage device,
in particular the damage caused in a lead-acid battery
by prolonged periods of deep discharge, is modeled by
means of an artificial neural network (ANN). This
deterministic battery model reflects the damage to
capacity caused by battery use at low state-of-charge
levels. Damage has been observed experimentally, but
because the functional form of the relationship between
capacity and deep discharge is unknown, and is
presumed to vary with battery type, we model it with an
ANN whose parameters are to be trained with
experimental data. A generalization of the radial basis
function ANN is used to represent battery damage as a

The present investigation creates a framework for the
analysis of the performance of a photovoltaic power
supply system. The power output of the PV array is
modeled as a non-Gaussian stochastic process. The
stochastic process characteristics are known primarily
through statistics of solar insolation taken from data
measured at various geographic locations. This
investigation models insolation at particular locations
using measured statistical data in a Karhunen-Loeve
framework. This robust expansion permits the
representation of insolation in terms of a small number
of deterministic eigenfunctions and non-Gaussian
random variable coefficients. Our approach uses a
canonical variate analysis (CVA) technique to simulate
two main components of the solar radiation, direct
normal and diffuse horizontal radiation. In addition, the
load profile is modeled as deterministic and/or
stochastic, depending on its operating characteristics.
The stochastic photovoltaic system and load models
allow us to simulate the charge/discharge cycles
experienced by the energy storage device during use in
the photovoltaic supply environment.
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Past states are evolved into future states, and future
states are inverse transformed into the measured
response space using the standard modal analysis
framework. That framework is characterized by the
equations:

section we describe the CVA approach, and the result
of its implementation is presented later in the paper.

Canonical Variate Analysis

Canonical variate analysis is an extension of the auto­
regressive moving average (ARMA) modeling
technique. Originally developed by Hotelling2

, CVA
was improved by Larimore3

. Larimore's
implementation of eVA permits accurate and efficient
simulation of random processes. eVA is described in
detail in several references (see Larimore3, Huntel).

[

y{td'" y{tl +IT)]
y{t2)'" y{t2 +IT)

F=. .. .. .
y{td.. ·y{tk +IT)

s{t +T) = As{t)+ Bx{t )+e{t)
y{t) = Cs{t)+Dx{t)+ Ee{t)+ w{t)

(2a)

(3)

eVA involves three critical transformations, namely,
the measurement to state transformation, the evolution
of past states to future states, and the future state to
estimated measurement transformation. Equations 1
through 4, below, implement these steps.

Let X~j)j= ...,-l,O,l,... , denote a (possibly

multivariate) measured excitation, at times
tj =jT,j = ...,-1,0,1,... , and let Y~j)j= ...,-l,O,1,... ,

denote the corresponding (possibly multivariate)
measured response. The first operation of eVA
transforms measurements of the system "past", p, into a
state space s.

(1)

where the system past, relative to time tl' is defined:

p{t1 )= ..·
[y{tl -zo) ... Y{t1 -IT) x{tl ) ••• x{tl - jT)Y

(la)

The transformation matrix, J, will be defined below.
The ensemble of past signals, P, and the ensemble of
future signals, F, of the system are defined as follows,
relative to time tl' in terms of measured excitation and
response.

where A, B, C, and D, are system matrices, e{t) and

w{t) are noise vectors, and E accounts for state model
noise in the state to measurement transformation. The
measurement to state transform defined by the matrix J
in Equation 1 is developed as follows:

(4)

where SVD[.] indicates the singular value
decomposition. The gist of the operations carried out in
these equations is to, first, establish the autocorrelation
matrices of the system past, P, and future, F, using
ensembles of segments of the measured excitation and
response. These autocorrelations are decomposed using
the Karhunen-Loeve expansion (see Ghanem and
Spanos5

). The principal components are retained, and
their cross-correlations are orthogonalized. This yields
the transformation matrix, J, a measurement to state
space transformation that yields an optimal relation
between past and future principal components. Next all
measured data segments are transformed into the state
space using J. The state transition and other state space
matrices, A, B, C, and D, are identified using linear
least squares. The transformation and state space
parameters are identified using P and F, ensembles of
signals. Response predictions operate onp to predict!.

(2)

A global model can be created using all the data, or a
local model can be created using data in the
neighborhood of a particular past, p. In this way, we
create global and local linear models. In this
investigation, local linear models are used to
characterize the joint behavior of direct normal and
diffuse horizontal insolation. Further, we take the
excitation, y, to be zero in this application.
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Equation 4 results from minimizing the mean square
error in the prediction of the future f from the past p.
The process of transforming the measurements p to
critical waveforms s, transforming past states s to future
states, and finally returning to the measurement domain
for f may seem awkward, but in fact is considerably
more stable than directly predicting f from p.
Intuitively, the gain comes from minimizing the number
of parameters necessary in the past to future prediction
process.

With the approach outlined above, we generate
realizations of daily direct normal and diffuse
horizontal radiation and subsequently uSe them as the
power source for our model. In the next section we
examine the energy storage component of our model.

RECHARGEABLE ENERGY STORAGE MODEL

A lead-acid battery will serve as the energy storage
device for this model, allowing the power from the PV
source to be dispatchable. Due to the random nature of
the PV resource, it is expected that the battery will
experience periods of deficit charging, which are
known to cause a degradation of the battery capacity. If
these periods are frequent, they can eventually lead to
battery failure. One goal of this research is to model
this damage mechanism via a non-phenomenological
technique, in this case using an ANN. The following
sections describe the particular ANN used in this work.

battery systems using ANN. In the following section, a
brief presentation of the specific ANN algorithm used
in this project is given.

The Multivariate Polynomial Spline ANN

The multivariate polynomial spline (MVPS) network is
an artificial neural network of the radial basis function
type. The radial basis function ANN, which was
developed by Moody and Darkenll

, simulates mappings
via the superposition of radial basis functions. The
radial basis function ANN is an accurate local
approximator, and although it trains rapidly, it has the
potential for size difficulties as the dimension of the
input space grows. A generalization of the radial basis
function ANN is the connectionist .normalized linear
spline (CNLS) network. This was developed by Jones
et al. IZ and seeks to simulate a mapping by using radial
basis functions in a higher order approximation than the
radial basis function network. The MVPS network
generalizes the CNLS network to multiple output
dimensions and higher degree local approximations.
The development of the mathematical framework
behind the MVPS network is presented in the
following.

First, let X be an n-dimensional input vector to the
system being modeled, and let Z be its corresponding
m-dimensional output vector. The mapping from X to Z
is denoted by:

Expand the function g(X) on the right hand side of
Equation 6 using the first. three terms in the Taylor
series:

where Ao, Al and Az are the coefficients of the local
models, Cj is the "center" of the JoIh local approximation
(also referred to as center vector or center), 'contains

Assume that the function g(X) is deterministic but that
its form and parameters are unknown. Write an identity
that equates g(X) to itself, then multiply both sides by a
weighting function (radial basis function) that is
centered at Cj :

Artificial Neural Networks

A focus of this investigation is to use an ANN to model
the damage caused in a rechargeable lead-acid battery
due to extended discharge periods. Due to the complex
behavior of a rechargeable battery, an explicit form
relating the capacity loss to the depth and duration of a
discharge cannot be easily derived. This is partly due to
the expected variability in the results obtained from the
different batteries that will be tested and partly due to
the complexity of the electrochemical reactions
involved in the process. It is thus convenient to
simulate the experimental data using a non­
phenomenological modeling technique to characterize
the relationship between the inputs and desired outputs.
In this case, the output is the damage introduced to the
battery due to discharge cycles and the inputs are the
duration and depth of the discharge. Previous work,
such as O'Gorman et al.6

, Urbina et aP, Chan et al8
, .

Yamazaki et at and Peng et alto, have successfully
demonstrated the modeling of primary and secondary

Z =g(X)

g(X) w(X ,C j,f3) = g(X) w(X,C j,/3)

j=I, ... ,N

g(X) w(X,C j' /3) =.

[AOj +Alj (X -C j)+ A2j(]w(X,C j' /3)

(5)

(6)

(7)
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the quadratic and cross terms obtained from the
elements in X, j3 is a parameter related to the width of
the radial basis function and w(X,q,j3) are the weights
attached to the local models (in this case a multivariate
Gaussian probability density function is chosen as the
weighting expression).

This approximation can be optimized in the
neighborhood of Cj using least squares or weighted
least squares and is accurate in the vicinity of the data
used to develop it as long as the behavior of the
mapping in the neighborhood is closely represented by
the Taylor series. Approximations can be developed in
all neighborhoods of the input vector space. The
subscript j (where j = O,l...N, and N is the number of
regions of approximation) accounts for this in
Equations 6 and 7.

The local approximations of the X to Z mapping can
now be combined to create an approximate, global map.
To accomplish this, several of the approximations are
superimposed in a series. Each component in the series
is weighted according to its distance from the input
vector X. Local models that are near X are weighted
heavily, whereas those that are further away are
weighted less. The series is obtained by summing the
terms in Equation 3 as follows:

The MVPS network is used in feed forward operation
by specifying the input vector X, evaluating the weights
w, calculating (, substituting the weights and (into
Equation 9, and evaluating the output g(X). This output
is an interpolation among the training outputs. Note
that the range of the summation index j is not specified
in Equation 9. It is clear that the summation should be
carried out over those local models nearest the input
vector X. The ANN computer code used in the present
investigation accepts a user-defined number of local
models and the ones nearest, in Cartesian space, to the
input vector are chosen to make each prediction. Using
the MVPS ANN, we developed a model to represent the
damage that accumulates in a lead-acid battery when
exposed to periods of deficit charging.

Lg(X)w(X,C j,j3)::
j

L[AOj +A1j(X -C j )+A2j (]w(X,C j ,j3)
j

(8)

x

Figure 2: Local polynomial models

ANN-Based Lead-Acid Battery Damage Model.

Since g(X) on the left-hand side of Equation 8 is
independent of the index j, it can be removed from the
summation. The resulting expression can be
normalized to obtain:

L[AOj +A1j(X -Cj )+A2jdw(X,c j ,P)
g(X) ::-:J::-' _

(9)

Equation 9 represents the parametric form of the MVPS
network. Figure 2 shows a single input/single output
example of local polynomial models fitted to arbitrary
input/output data. It can be seen from the figure that for
a highly nonlinear response, the local polynomial
modeling is quite appropriate. Ultimately, and as
described in the above paragraphs, the local models are
splined together to form a global model.

The objective of the rechargeable battery portion of the
power supply model is to simulate the loss of capacity
of the battery with time as it is subjected to a cycling
environment typical of photovoltaic applications. In
addition to the normal wear out of the battery that
occurs as a function of number of cycles, depth of
discharge, discharge rate, and temperature, batteries are
frequently exposed to periods of deficit charging in PV
applications. These accelerate degradation of capacity
in lead-acid systems due to sulfation of the battery
plates. It is assumed in this study that deficit charging
is the major factor causing accelerated loss of capacity
and therefore shortened life of batteries in PV power
supplies. Experimental measurements will be aimed at
determining what particular deficit charge conditions
have the greatest effect on capacity loss. Two
parameters were selected to characterize the deficit
charge, namely maximum depth of discharge, D, and
the duration of the discharge, T. Figure 3 shows these
variables.
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The maximum depth of discharge, D is defined as the
deepest discharge, (as measured from a reference
threshold, Cd) encountered during a deficit charge
period. The duration of the discharge, T is defined as
the time it takes to return the capacity to the reference
level, Cd' (This is a function of the amount of solar
insolation available.) A moving average was used to
represent the average daily capacity at any time.

the ANN description of the damage surface can be
easily updated and refined. It is important to note that
although reasonable, this initial model is only based on
limited data and must be revised.
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Figure 4: Proposed battery damage model

Figure 3: Definition of depth and duration of discharge

For initial calibration of the battery damage, the model
draws on data collected earlier at the Florida Solar
Energy Center (FSEC). Different charge to load ratios
and discharge rates were studied to determine the effect
on cycle life. For details on these tests see Reference
13. Although these data give some indication of the
reduction in cycle life that occurs due to extended times
at low state-of-charge (SOC), there are too few data
points to completely define the battery damage surface.
Consequently, a new set of deficit charge cycle tests has
been planned that will provide a large enough data set
to complete training of the ANN.

The focus in the new tests is to be on the damage due to
deficit charging, so only a single discharge rate, C120,
will be used. A few sustaining cycles will be run before
and after the deficit charge region before measuring the
capacity loss; however, batteries will not be cycled to
end-of-life. This will shorten the experiments to a few
weeks maximum and will allow a greater variety of
deficit charge characteristics (depth and duration of
discharge) to be examined. Complex impedance data
will also be collected to investigate whether small
amounts of battery degradation can be detected earlier
in the tests by this method.

Figure 4 shows the battery damage model which we
simulated using an MVPS ANN. As experimental
measurements of battery capacity loss are completed,

TEST CASE AND RESULTS

A test case was set up to exercise the PV/rechargeable
battery/load model. The model was operated on the
Monte Carlo principle to yield realizations of the hourly
solar insolation data, using the CVA technique
described earlier. The solar insolation along with the
load profile was input to the lead-acid battery model
and hourly capacity cycling data were produced.

The specific test case consisted of a PV array located in
Albuquerque, NM (latitude 35° 03'). The tilt angle was
set at 500 (which enhances power generation in the
winter months) and the azimuth angle was set to (J'

(which means that the array is facing due South). The
PV array is rated at 2.1 amps at standard test conditions
(i.e. 1000 w/m2 and 25°C temperature) and has a
nominal voltage of 12 volts. Three PV modules were
connected in parallel to give a current of 6.3 amps. A
105 Ah lead-acid battery serves as the energy storage
device for this example. It is assumed that the capacity
threshold, Cd, below which a discharge starts to cause
damage, is 52 Ah (50% of initial capacity). The battery
damage surface shown in Figure 4 is simulated via the
MVPS ANN. The applied load consists of a constant
load during nighttime and a randomly applied load
during the daytime. This load profile requires an
average of 30 Ah per day/night.
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A first passage probability analysis was performed for
the maximum potential capacity, M, and it is shown in
Figure 7. This shows the probability that a battery
passes a specific capacity threshold prior to any given
time. The results show that by approximately 4500
hours of operation (approximately 6 months), the
battery's maximum potential capacity will be below
99% ofthe initial capacity with probability one. By the
end of one year of operation, there is about an 80%
probability that the battery will be at or below 97% of
the initial capacity and about 50% probability that it
will be at 95% or less of the initial capacity.

a heavy solid line). M is the initial capacity minus the
irreversible capacity loss that accumulates due to deep
discharge events and also due to regular daily cycling.
As expected, there is a drop in the maximum potential
capacity where the deep discharges occur. This is
consistent with our ANN model shown in Figure 4.
That is, more damage is caused to the battery during
deep discharges with long duration.

Figure 6: Capacity simulation using a random load
Hoon
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The following results were obtained using simulated
PV data based on 10 years of actual insolation
measurements for the Albuquerque, NM area.
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Figure 5a shows measured hourly insolation data for the
month of January 1978. Figure 5b shows a realization
of hourly insolation data for a simulated January as
obtained with our PV simulator software. It is
important to note that these realizations will not be
identical because they are random process realizations,
but their characters should be similar because the
random process source of Figure 5b is meant to
simulate the random process source of Figure 5a. That
is, there are days in which the insolation is low and
others in which it is high.

1.2

Figure Sa: Measured total hourly insolation for January
1978

Figure 7 also shows a comparison of first passage
probability distributions for maximum potential
capacity, M, at several different barrier levels. The solid
lines are the first passage probability distributions that
result from Monte Carlo analysis of 100 insolation
realizations. The dashed lines are the first passage
probability distributions that result from Monte Carlo
analysis of ten years of measured insolation data. (The
latter curves possess a stepped character because the
number of years of data measurement is relatively
small.) Some possible reasons for disagreement in the
short term are (1) the limited amount of measured data,
and (2) the detailed behavior of the simulation.
Importantly, as the probability of first passage failure
increases, the results of the simulations converge to the
results based on measured data.

olll.U..LUJ-"-'-UUJ..l.J"-'-'-"-'-'-'-"'-'-LU.LL.UJ..LL'-LIlLl..U.LU-U..LJU..L.LUJ.LU..JCu----,

o 100 ~ = ~ ~ ~ 700 ~

Hours

Figure 5b: Simulated total hourly insolation for 31
January days

0.2

Figure 6 shows a time history for one simulated month
of estimated available capacity data (shown as a solid
line) and the maximum potential capacity, M (shown as
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Hours

Figure 7: First passage probability of M (solid line =
using simulated data; dashed line =using actual data)

This type of analysis allows us to make decisions such
as when the optimal time to replace a battery has been
reached and how to size the PV!battery system to
achieve the desired reliability for a particular
application.
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used to simulate dynamical systems. The CVA
approach was used to generate realizations of the two
main components of solar insolation.

The current system uses lead-acid batteries for energy
storage. It is acknowledged that damage can accumulate
in rechargeable batteries when they are used in a deficit
charge environment, such as PV. Damage modeling
was performed using a multivariate polynomial spline
artificial neural network. The system load was modeled
as a combined deterministic/stationary random process.

The results of the investigation and numerical examples
indicate that plausible simulations of available battery
capacity and maximum potential capacity, M, can be
generated. Indeed, the important measure of model
performance embodied in the first passage probability
distributions for M shows that the system performance
simulations are accurate. Calculations for a test case
predict good retention of battery capacity for at least
one year. It remains to investigate more metrics of
system performance to assure that system simulations
are accurate in all details.

One of our objectives in implementing the CVA
technique was to reduce the computational time
required to generate yearly realizations of the solar
insolation. Using the Markov approach of reference 7,
the CPU time to generate a year-long realization was
2.4 minutes using a. Using this new CVA approach the
time is reduced to 1.2 minutes without a loss in
accuracy. Both examples were run on a HP Vectra PC
running at 400 MHz. This time reduction is critical
since our PV generator will eventually be integrated
into a larger power flow analysis code.

SUMMARY

The objective of this investigation was to develop a
framework for simulating the power output from a
photovoltaic system, including an energy storage
device. The model has also been demonstrated to be
capable of assessing the reliability and life of
rechargeable batteries in the PV use environment. This
information can be applied to optimize PV system
designs and establish more cost-effective battery
replacement schedules. A means for simulating the
solar insolation random process was required, and we
sought an efficient technique for the generation of
random process realizations, where the random process
is only characterized by historical records of the
phenomenon. We chose to use the canonical variate
analysis approach, a technique that has been widely
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